

A EUROPEAN JOURNAL OF CHEMICAL BIOLOGY CHEMBIO CHEMICAL

SYNTHETIC BIOLOGY & BIO-NANOTECHNOLOGY

Accepted Article

Title: Alicyclobacillus acidocaldarius squalene-hopene cyclase: the critical role of the steric bulk at Ala306 and the first enzymatic synthesis of epoxydammarane from 2,3-oxidosqualene

Authors: Natsumi Ideno, Shikou Umeyama, Takashi Watanabe, Mami Nakajima, Tsutomu Sato, and Tsutomu Hoshino

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: ChemBioChem 10.1002/cbic.201800281

Link to VoR: http://dx.doi.org/10.1002/cbic.201800281

WILEY-VCH

www.chembiochem.org

- 1 Alicyclobacillus acidocaldarius squalene-hopene cyclase: the critical role of steric
- 2 bulk at Ala306 and the first enzymatic synthesis of epoxydammarane from 2,3-
- 3 oxidosqualene
- 4
- 5 Natsumi Ideno, Shikou Umeyama, Takashi Watanabe, Mami Nakajima, Tsutomu Sato and
- 6 Tsutomu Hoshino*
- 7

8 Graduate School of Science and Technology and Department of Applied Biological
9 Chemistry, Faculty of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata
10 950-2181, Japan

- 11
- 12 Tsutomu Hoshino: Prof. Dr.
- 13 *Corresponding author
- 14 E-mail: <u>hoshitsu@agr.niigata-u.ac.jp</u>
- 15
- 16
- 17

1 Abstract

- 2 The acyclic molecule squalene (1) is cyclized into a 6,6,6,6,5-fused pentacyclic hopene
- 3 (2) and hopanol (3) (ca. 5:1) by *Alicyclobacillus acidocaldarius* squalene-hopene
- 4 cyclase (AaSHC). The polycyclization reaction proceeds with regio- and stereochemical
- 5 specificity under precise enzymatic control. This pentacyclic hopane skeleton is
- 6 generated by folding **1** into an all-chair conformation. The Ala306 in *Aa*SHC is
- 7 conserved in known SHCs; however, increases in steric bulk (A306T and A306V) led to
- 8 the accumulation of 6,6,6,5-fused tetracyclic scaffolds possessing 20*R* stereochemistry
- 9 in high yield (94% for A306V). The production of the 20*R* configuration indicated that
- 10 **1** had been folded in a chair-chair-chair-boat conformation; in contrast, the normal
- 11 chair-chair-chair conformation affords the tetracycle with 20S stereochemistry, but
- 12 the yield produced by the A306V mutant was very low (6%). Consequently, bulk at
- 13 position 306 significantly affects the stereochemical fate during the polycyclization
- 14 reaction. SHC also accepts (3R) and (3S)-2,3-oxidosqualenes (OXSQs) to generate 3α ,
- 15 β -hydroxyhopenes and 3α , β -hydroxyhopanols through a polycyclization reaction
- 16 initiated at the epoxide ring. However, the Val and Thr mutants generated
- 17 epoxydammarane scaffolds from (3R)-OXSQ, which indicated that the polycyclization
- 18 cascade started at the terminal double bond position. This work is the first to report the
- 19 polycyclization of oxidosqualene starting from the terminal double bond.
- 20

21 Introduction

- 22 The cyclization mechanisms by which acyclic squalene (1) and (3*S*)-2,3-
- oxidosqualene form polycyclic triterpenes have attracted much attention from chemists
 and biochemists for over a half a century.^[1,2] *Alicyclobacillus acidocaldarius* squalene-
- 25 hopene cyclase (*Aa*SHC) catalyzes the conversion of **1** into hopene (**2**) and hopanol (**3**)
- 26 (ca 5:1), pentacyclic triterpenes consisting of 6,6,6,6,5-fused A/B/C/D/E-ring systems,
- 27 as shown in Scheme 1A.^[2a,b] The X-ray crystallographic structure of the SHC from A.
- 28 *acidocaldarius* (*Aa*SHC) was first reported in 1997^[3] and further refined later.^[4]
- 29 Compound **1** is folded into an all-prechair conformation inside the reaction cavity and is
- 30 cyclized in a regio- and stereospecific fashion via a series of carbocationic
- 31 intermediates, leading to the formation of 5 new C-C bonds and 9 stereocenters. This
- 32 reaction consists of 8 reaction steps^[2b] (Scheme 1B): (1) the acyclic molecule **1** is folded
- into a chair conformation to give the intermediary monocyclic cation **4**; (2) a second
- ring formation reaction occurs to afford cation **5**, consisting of a 6,6-fused bicyclic
- 35 cation; (3) a third ring formation reaction produces the 6,6,5-fused tricyclic cation 6; (4)
- 36 cation **6** undergoes a ring expansion to generate the secondary cation **7** with a 6,6,6-

Accepted Manuscript

1	fused A/B/C-ring system; (5) a further ring closure gives the tertiary cation 8 with a
2	6,6,6,5-fused tetracycle (17-epi-dammarenyl cation); (6) cation 8 undergoes a second
3	ring expansion reaction to provide the secondary cation 9 (prohopanyl cation); (7) the
4	final ring formation reaction furnishes the 6,6,6,6,5-fused pentacyclic cation 10
5	(hopanyl cation); and (8) proton elimination from Me-29 introduces a double bond to
6	produce 2 , and a water molecule attacks the C-22 cation of 10 to give 3 . Contrary to this
7	step-wise mechanism, there are reports that the polycyclization reactions proceed in a
8	concerted manner. ^[5a, b] (3S)-2,3-Oxidosqualene (11) is also accepted as a substrate by
9	SHC, yielding 3β -hydroxyhopene (12) and 3β -hydroxyhopanol (13) through an all-chair
10	conformation in a similar cyclization pathway to that of 1 (Scheme 1C). (3R)-2,3-
11	Oxidosqualene (14) is also converted into 3α -hydroxyhopene (15) and 3α -
12	hydroxyhopanol (16) through a boat-chair-chair-chair conformation. ^[6a-d]
13	
14	<scheme 1=""></scheme>
15	To identify the active site residues of AaSHC and their functions, site-specific
16	mutagenesis experiments were conducted. The central Asp residue (Asp376) in the
17	$D^{374}XD^{376}D^{377}$ motif functions as the proton donor to initiate the polycyclization
18	reaction. ^[7a,b] His451 hydrogen bonds with Asp376 to enhance the motif acidity. ^[2a,6a]
19	Asp377 likely stabilizes cation 4 . ^[7a] Trp312 likely binds with the terminal methyl group
20	via a hydrophobic interaction (possibly CH- π interaction) to place 1 in close proximity
21	to the DXDD motif, thus facilitating the initiation of the polycyclization reaction. ^[8]
22	Phe365 stabilizes cation 5. ^[9] Phe601 likely stabilizes cations 6 and 7, ^[10] and Phe605
23	stabilizes the intermediary cations 9 and 10 . ^[11] All the Phe residues mentioned above
24	function to stabilize transient cations via cation/ π interactions. ^[12] The main function of
25	Y420 is to stabilize the bicyclic cation 5 by pointing towards the active site cavity and
26	providing additional negative electrostatic potential. ^[2a,4,13] The steric bulk at the Leu607
27	position is critical for the correct chair-folding around the B-ring formation site. ^[13] The
28	steric bulk of another aliphatic residue, Ile261, is also crucial for enforcing the correct
29	folding around the D/E-ring formation sites. ^[14] The I261A variant generates cations $\bf{6}$
30	and 7 with 13α -H and 17α -H configurations, respectively, which are opposite to the
31	configurations of the genuine intermediary cations 6 (13 β -H) and 7 (17 β -H); thus, the
32	steric bulk at this position directs the stereochemical fate. There have been many recent
33	reports on the use of SHC mutants as biocatalysts, by which many known and unknown
34	compounds have been successfully created. ^[15]
35	Herein, we report the function of the Ala306 residue in AaSHC, which is widely
36	conserved in known SHCs (Fig. S1, Supporting Information). The X-ray crystal

structure of AaSHC complexed with a modeled hopene molecule indicates that Ala306 1 is located near the squalene molecule (Fig. S2).^[3,4] To investigate the function of Ala306 2 3 of AaSHC in hopene biosynthesis, we constructed site-directed mutants in which the 4 steric bulk at this position is altered, incubated 1, 11, and 14 with these variants, and 5 determined the structures of the resulting enzymatic products. We provide clear 6 evidence that the Ala306 residue is located in close proximity to the D-ring formation 7 site and that the steric bulk at this position is a key determinant of the stereochemical 8 fate during the polyolefin cyclization reaction, similar to the Ile216 residue. 9 Furthermore, we report the first case in which the polycyclization reaction of

- 10 oxidosqualene was initiated from the terminal double bond instead of the terminal
- 11 epoxide ring, resulting in the production of a 17-*epi*-epoxydammarane scaffold.
- 12

13 **Results**

14 Isolation of products generated from the incubation of 1 with A306X mutants

15 Fig. 1A shows the GC profile obtained by incubating 1 with the cell-free 16 homogenates of the A306V variant. Squalene 1 (200 mg) was incubated (pH 6.0, 45°C, 17 16 h) with the cell-free extracts (300 mL) obtained from a 6 L culture of the A306V 18 variant. The incubation mixture was freeze-dried, and the lipophilic materials, including 19 the enzymatic products, were extracted with hexane. These were then subjected to SiO_2 20 column chromatography by eluting with 100% hexane to remove the Triton X-100 21 present in the incubation mixture and to partially separate the products into several 22 fractions. Only a small amount of 1 was recovered, indicating that the reaction by the 23 variant was almost complete. The purity of the partially separated fractions was 24 monitored by GC-MS. The fraction containing a mixture of 17, 19, and 20 was obtained 25 by partial fractionation with 100% hexane as the eluent. Complete separation of the 26 products was attained by column chromatography with activated SiO₂ (heated in an oven at 180°C for 2 h), yielding 2.2 mg of 17, 1.0 mg of 19, and 1.5 mg of 20 in a pure 27 28 state. However, separation of the other products was more difficult. The fraction 29 containing products 18, 21, 22, 23, and 24 was chromatographed on a 5% AgNO₃-30 impregnated SiO₂ column, and pure 23 was obtained in a yield of 1.4 mg by eluting 31 with hexane/EtOAc (100:0.2), but the separation of 18 and 21 failed. This separation 32 was achieved by C₁₈ reverse-phase HPLC (THF/H₂O=60:40), which yielded 0.8 mg of 33 18 and 1.3 mg of 21 in a pure state. The fraction obtained by eluting with hexane/EtOAc 34 (100:1) contained a mixture of **21**, **22**, **23**, and **24**. Pure **24** (2.1 mg) was obtained by 35 reverse-phase HPLC (THF/H₂O=70:30), but the separation of 21, 22, and 23 was not 36 successful. The fractions containing 18, 21, 22, and 23, which were not separable by 5%

1	argentation chromatography, were combined and subjected to 10%-AgNO3 SiO2 column
2	chromatography, and eluted with hexane/EtOAc (100:0.1) to yield a mixture of 18, 21,
3	and 22, and then C_{18} -HPLC (THF/H ₂ O=60:40) successfully gave pure 22 in a yield of
4	0.6 mg. The isolation yields of 18 , 21 , 22 , and 23 were very low, despite the large peaks
5	detected by GC (Fig. 1A). The low yields could be ascribed to both the separation
6	difficulty and the use of an AgNO ₃ -SiO ₂ column (as the recovery from AgNO ₃
7	chromatography is generally low). In addition, there were many remaining fractions that
8	have yet to be purified. Fig. S3.1 depicts the GC trace from the incubation of 1 with the
9	A306T variant. Products 25–27, which were not detected as products of the Val mutant,
10	were newly revealed in the GC traces, and 28 was identified as a new product of the
11	A306F mutant (Fig. S3.2). Products 25–28 were all identified by comparing their EIMS
12	fragment patterns and retention times to those of previously isolated authenticated
13	compounds. ^[2b]
14	
15	<figure 1=""></figure>
16	Isolation of products generated from the incubation of 11 and 14 with A306X
17	mutants
18	Fig. 1B shows the GC chromatogram of the reaction mixture obtained by
19	incubating a mixture of 11 and 14 with the A306V mutant. To isolate the enzymatic
20	products 29–33 , a racemic mixture of 11 and 14 (100 mg) was incubated (pH 6.0, 45°C,
21	20 h) with the cell-free extract (300 mL) from a 6 L culture of the A306V mutant. After
22	lyophilization of the reaction mixture, the reaction products were extracted with hexane,
23	which was passed through a short SiO ₂ column by elution with hexane/EtOAc (100:20)
24	to remove Triton X-100. The residues obtained after removing Triton X-100 were
25	subjected to SiO ₂ column chromatography in a stepwise gradient fashion
26	(hexane/EtOAc=100:1 to 100:2). Product 33 was isolated in a pure state (6.0 mg), but
27	the other products could not be separated. The inseparable fractions were divided into
28	the following 2 fractions: a mixture (22.4 mg) of 29 , 31 , and 33 , and a mixture (14.7
29	mg) of 30 and 32 . Products 29 and 31 were successfully separated by normal-phase
30	HPLC (hexane/2-propanol=100:0.1) to yield 29 (2.3 mg) and 31 (1.0 mg) in a pure
31	state. Products 30 and 32 were separated by normal-phase HPLC
32	(hexane/THF=100:1.0) with yields of 2.0 mg and 2.3 mg, respectively. The A306F
33	variant generated products 34, 35, and 36 from a mixture of 11 and 14, as shown in Fig.
34	S4. Fifty mg of a mixture of 11 and 14 was incubated with the A306F mutant. SiO_2
35	column chromatography (hexane/EtOAC=100:1 to 100:5) afforded pure 36 (14.5 mg)
36	and a mixture (6.0 mg) of 34 and 35 , which were then acetylated with Ac_2O/Py (1:1).

Normal-phase HPLC (hexane:2-PrOH=100:0.02) successfully isolated the pure acetates
 of 34 and 35 in yields of 0.6 mg and 0.8 mg, respectively. The isolation yields are not

- 3 consistent with the production yields because some fractions still contained inseparable
- 4 products.
- 5

6 Structural determination of products 17–36.

7 Fig. 2 lists the structures of enzymatic products that were identified. Products 17-8 28, with the exception of 23, were previously isolated from the site-specific variants of 9 AaSHC.^[2b]. Detailed NMR analyses of 23, a new product generated from AaSHC-10 mutants, are described below. The EIMS and NMR spectra of 17-22 and 24 are shown 11 in Figs. S5–S10, and brief descriptions for proposing the structures are provided in the Supporting Information. We isolated **17** from the L607F,^[13] Y420A,^[13], and Y609F 12 variants.^[8] Compound **18** is identical to the product isolated from variants I261A^[14] and 13 F605A.^[11] Product **19** was isolated from mutants Y609A,^[8] Y612A^[8], and F365A.^[9] 14 Product **20** is identical to the compound generated by the F601A mutant.^[10] Compound 15 21 was isolated from the W489 variant.^[2b, 16, 17] Product 22 was previously isolated from 16 the F605A mutant.^[11] Product 24 was isolated from the W169F, W169H, and W489F 17 variants.^[17] The EIMS spectra of minor products **25–28** are shown in Fig. S13. The 18 19 spectra and GC retention times of 25-28 were the same as those of samples we isolated 20 previously: 25 and 27 from F605A,^[11] 26 from P263G,^[19], and 28 from F365A.^[9] 21 Accordingly, these structures are illustrated in Fig. 2. 22 The detailed NMR analyses of product 23, including 2D NMR spectra (600 MHz, 23 C_6D_6 , Fig. S11.9), revealed that 23 had the same tetracyclic skeleton as 22. Furthermore, 24 22 and 23 had identical EIMS spectra (Figs. S10.1 and S11.1), but their GCMS 25 retention times were different (Fig. 1A), indicating that the 2 compounds are 26 stereoisomers. The relative configurations of 23, which is present in the A/B/C/D-fused 27 tetracyclic scaffolds, were determined to be identical to those of 22 by detailed analyses 28 of the NOESY spectrum (Fig. S11.6). Thus, the C-20 stereochemistry of 23 is opposite 29 to that of 22 and can be assigned as the 20S configuration for 23. Consequently, 23 is 30 20S-tirucalla-7(8),24-diene, as shown in Fig. 2. The $\delta_{\rm H}$ of Me-21 of 20S-tirucalla-31 7(8),24-diene in CDCl₃ was reported to be $\delta_{\rm H}$ 0.895 (d, J=6.8 Hz),^[18] which was close 32 to that of 23 ($\delta_{\rm H}$ 0.885, J=6.8 Hz) in CDCl₃ solution. Thus, the 20S stereochemistry of 33 23 is credibly assigned. 34 Next, the structural analyses of the enzymatic products 29–36, which were 35 generated by incubating a mixture of 11 and 14, are described. We have not reported the

36 enzymatic reactions of **11** and **14** by the *Aa*SHC variants; all the products are new SHC-

1 metabolites, and the NMR analyses are described below. 2 The ¹H-NMR spectrum of **29** (400 MHz, C_6D_6 , Fig. S14.2) showed the presence of an isopropylidene residue: $\delta_{\rm H}$ 1.83 (s, 3H, Me-26) and 1.75 (s, 3H, Me-27). The ¹³C 3 4 NMR spectrum (100 MHz, C₆D₆, Fig. S14.4) revealed the presence of a tetrasubstituted 5 double bond ($\delta_{\rm C}$ 139.7, s; 134.9, s). Detailed HMBC analyses (Fig. S14.10) indicated 6 that 29 consists of a 6,6,6,5-fused tetracyclic system and that the double bonds of 29 7 exist at C-13–C-17 and C-24–C25. The multiplicity of H-3 ($\delta_{\rm H}$ 3.29) showed a broad 8 singlet, indicating that the hydroxyl group is α -oriented. The doublet Me was located at 9 C-20 because Me-21 ($\delta_{\rm H}$ 1.14, d, J=7.2 Hz, 3H) showed a strong HMBC cross peak for 10 C-17. The chemical shift of Me-21 ($\delta_{\rm H}$ 0.918 d, J=6.8 Hz) in the CDCl₃ solution (see 11 Fig. S14.3) was very close to the reported value ($\delta_{\rm H}$ 0.910 d, J=6.9 Hz) for 20Rdammara-13(17),24-diene.^[18] Thus, **29** was determined to be 3α -hydroxy-20*R*-12 13 dammara-13(17)-24-diene, as shown in Fig. 2. 14 The EIMS spectrum of **30** (Fig. S15.1) is almost identical to that of **29** (Fig. S14.1), 15 indicating that **30** is a stereoisomer of **29**. Detailed NMR analyses (Fig. S15.9) showed 16 that dammara-13(17).24-diene can be assigned to 30 as described in the structural 17 determination of 29. The C-20 stereochemistry of 30 was the same as that of 29 because 18 the Me-21 of **30** showed a $\delta_{\rm H}$ 0.919 (d, J=6.8 Hz, 3H) identical to that of **29** in CDCl₃ 19 solution (cf. in the C₆D₆ solution, $\delta_{\rm H}$ 1.14 for Me-21 of **29**; $\delta_{\rm H}$ 1.15 for Me-21 for **30**; 20 both compounds had the same chemical shifts in C_6D_6). The OH was determined to be 21 β -oriented because H-3 ($\delta_{\rm H}$ 3.16) gave a dd splitting pattern (dd, J=10.2, 6.1 Hz). The 22 entire structure of **30** can be deemed 3β-hydroxy-20*R*-dammara-13(17),24-diene, as 23 shown in Fig. 2. 24 The ¹H-NMR (400 MHz, C_6D_6) and ¹³C-NMR (100 MHz, C_6D_6) spectra of **31** (Fig. 25 S16.3 and S16.4) revealed the presence of 2 double bonds: $\delta_{\rm H}$ 5.41 (2H: m, 1H, H-12; m, 1H, H-24) and & 125.5 (d, C-24), 130.9 (s, C-25), 115.9 (d, C-12) and 149.2 (s, C-26 27 13). Two Me groups ($\delta_{\rm H}$ 1.88, s, 3H, Me-26; 1.73, s, 3H, Me-27) had clear HMBC cross 28 peaks with C-25 and C-24, indicating that the isopropylidene moiety remained without 29 participation of the cyclization reaction, and thus, **31** is a tetracyclic product. Me-30 ($\delta_{\rm H}$ 30 1.13, s, 3H) showed a distinct HMBC correlation with C-13; Me-21 ($\delta_{\rm H}$ 1.05, d, J=6.8 31 Hz, 3H) had a clear HMBC contour with C-17 (δ_{C} 48.94, d); and the multiplicity of C-32 17 (d) indicated the presence of a proton at C-17. Thus, another double bond is 33 positioned at C-12–C-13. Indeed, the chemical shifts of H-11 [$\delta_{\rm H}$ 1.92 (m) and 2.16 (m)] 34 clearly indicated that H-11 is located at the allylic position. The OH group was α -35 oriented because the multiplicity of H-3 ($\delta_{\rm H}$ 3.29) showed a broad singlet. Detailed 36 NMR analyses (Fig. S16.10) indicated that **31** possesses 3α -hydroxy-17-*epi*-dammara-

1 12(13),24-diene with R stereochemistry at C-20 because the chemical shift of Me-21 in 2 CDCl₃ solution was $\delta_{\rm H}$ 0.789 (d, J=6.4 Hz, see Fig. S16.2.2), which was very close to the reported value ($\delta_{\rm H}$ 0.784, d, J=6.8 Hz),^[18] and to that of Me-21 ($\delta_{\rm H}$ 0.793, d, J=6.8 3 4 Hz, measured in CDCl₃, see Fig. S9.9) in product 21. 5 Detailed NMR analyses (Fig. S17.9) indicated that product 32 also has a 17-epi-6 dammara-12(13),24-diene scaffold, which was further confirmed by the fact that the 7 EIMS spectra of **31** (Fig. S16.1) and **32** (Fig. S17.1) were identical. The OH function 8 was oriented at the β -position, as the multiplicity of H-3 ($\delta_{\rm H}$ 3.14) was a double doublet 9 (J=11.4, 4.7 Hz). Furthermore, the chemical shift of Me-21 ($\delta_{\rm H}$ 1.06, d, J=6.7 Hz, Fig. 10 S17.2.2) of **32** in C₆D₆ solution was the same as that ($\delta_{\rm H}$ 1.05, d, J=6.8 Hz, Fig. S16.3.2) 11 of **31** (cf. $\delta_{\rm H}$ 0.784 for **32** and $\delta_{\rm H}$ 0.789 for **31**, in CDCl₃ solution, Fig. S17.2.1). Thus, 12 **32** was proposed to be 3β -hydroxy-17-*epi*-20*R*-dammara-12(13),24-diene. 13 No olefinic protons and no double bonds were found in the ¹H-NMR (600 MHz, acetone d_6 , Fig. S18.2) and ¹³C-NMR spectra (150 MHz, acetone d_6 , Fig. S18.3) of 14 15 product 33, indicating that the full cyclization reactions occurred. Three carbons 16 connected to the oxygen atom were found: $\delta_{\rm C}$ 86.06 (s, C-20), 88.23 (d, C-24) and 70.43 17 (s, C-25). Three Me groups had distinct HMBC correlations with these 3 carbons: Me-21 ($\delta_{\rm H}$ 1.19, s, 3H)/C-20 and both Me-26 ($\delta_{\rm H}$ 1.13, s, 3H) and Me-27 ($\delta_{\rm H}$ 1.05, s, 3H)/C-18 19 24/C-25, where the chemical shift assignments of Me-26 and Me-27 are exchangeable. 20 Me-21 exhibited further HMBC contours with C-22 ($\delta_{\rm C}$ 38.70, t) and C-17 ($\delta_{\rm C}$ 49.30, 21 d), and H-24 ($\delta_{\rm H}$ 3.71, dd, J=10.6, 5.2 Hz) was spin-coupled with H-23 ($\delta_{\rm H}$ 1.75, m, 1H; 22 1.85, m, 1H). Thus, the moiety 2-(tetrahydrofuran-2-yl)propan-2-ol is connected to C-23 17. This THF moiety was further confirmed by EIMS, in which the fragment ion m/z24 143 was observed as the base peak (Fig. 18.1). More detailed HMBC analyses revealed 25 the presence of a 6,6,6,5-fused tetracyclic ring, in which H-17 is positioned in a β -26 orientation because H-17 had a clear NOE with H-13 ($\delta_{\rm H}$ 2.09, m, 1H). Further 27 analyses, including 2D NMR (Fig. S18.9), indicated that product 33 is 20,24-28 epoxydammarane-25-ol with 17β-H (17-epi-epoxydammarane skeleton). No NOE was 29 found between Me-21 and H-24, indicating that either (20R, 24R) or (20S, 24S) can be 30 assigned for the THF ring. We have reported that epoxydammarane scaffolds are created 31 by the SHC-mediated reactions of non-natural (3R)- and (3S)-2,3-squalene diols and 2,3:22,23-dioxidosqualenes,^[20] but this work is the first to report the production of the 32 epoxydammarane from oxidosqualene. The ¹H- and ¹³C-NMR data of **33** (Fig. S18.9) 33 34 were indistinguishable from those of (20R, 24R)-17-epi-epoxydammarane (Fig. 35 S18.10), which was obtained from the reaction of (3R)-2,3-squalene diol with native SHC.^[20] (20S, 24S)-17-epi-Epoxydammarane and (20R, 24R)-17-epi-epoxydammarane 36

1	are diastereomers, thus the NMR spectra of the 2 diastereomers must be different, which
2	allowed us to propose $(20R, 24R)$ -stereochemistry for 33 .
3	Product 34 -acetate showed peaks for 5 vinylic Me groups: $\delta_{\rm H}$ 1.69 (s, 3H, Me-29);
4	$\delta_{\rm H}$ 1.81 (s, 3H, Me-30); $\delta_{\rm H}$ 1.72 (s, 6H, Me-26 and Me-28); and $\delta_{\rm H}$ 1.78 (s, 3H, Me-27).
5	One tetrasubstituted double bond ($\delta_{\rm C}$ 126.2, s, C-8 and $\delta_{\rm C}$ 140.4, s, C-9) was found.
6	Furthermore, 3 aliphatic Me signals were observed: $\delta_{\rm H}$ 1.05 (s, 3H, Me-25), $\delta_{\rm H}$ 0.892 (s,
7	3H, Me-24), and $\delta_{\rm H}$ 1.05 (s, 3H, Me-23). These findings are suggestive of a bicyclic
8	ring system. Me-25 and Me-26 had distinct HMBC cross peaks with C-9 and C-8,
9	respectively, thus the tetrasubstituted double bond is arranged at C-8 and C-9. The H-3
10	($\delta_{\rm H}$ 5.03) showed a broad singlet, indicating α -oriented OH. Consequently, the structure
11	of 35 is polypoda-8(9),13,17,21-tetraen- 3α -ol, as shown in Fig. 2.
12	Detailed NMR analyses of 35-acetate (Fig. S20.9) and 36 (Fig. S21.9) revealed that
13	the structures of 35 and 36 are polypoda-7(8),13,17,21-tetraen- 3α -ol and polypoda-
14	$7(8)$,13,17,21-tetraen-3 β -ol, respectively.
15	
16	<figure 2=""></figure>
17	Discussion
18	Mechanistic insights into the production of 17-36 from substrates 1, 11, and 14.
19	Scheme 2 shows the formation mechanisms of 6,6-fused bicyclic products.
20	Substrates 1 and 11 were folded into a chair-chair conformation to give 6,6-fused
21	bicyclic cations 5 and 37, respectively. Substrate 14 was folded into a boat-chair
22	conformation to afford the same bicyclic skeleton 38 , but the OH-orientation (α -
23	arrangement) from 14 was opposite to that (β -orientation) from 11. This finding is
24	consistent with the cyclization mechanisms of 1, 11, and 14 (Scheme 1). Proton
25	elimination from Me-26 gave 17 (path a). The deprotonation of 7α -H produced 19, 35,
26	and 36 (path b). The elimination of H-9 generated 34 (path d), which was obtained only
27	from substrate 14. Product 28 was produced by the following successive antiparallel
28	1,2-shifts: H-9 \rightarrow C-8 cation, Me-25 \rightarrow C-9, H-5 \rightarrow C-10, and the deprotonation of 6 β -H to
29	give the double bond at C-5 and C-6 (path c).
30	Scheme 3A shows the formation mechanism of tricyclic 20. This compound was
31	produced only from 1. Substrate 1 was folded into a chair-chair-boat conformation (39)
32	to furnish the 6,6,5-fused A/B/C-ring system with 13α -H (40). On the other hand, the
33	chair-chair-chair conformation (41) gives the 6,6,5-fused tricycle with 13β -H (42),
34	which is identical to cation 7. Deprotonation from Me-27 of cation 40 afforded product
35	20 (path <i>a</i>).
36	Scheme 3B depicts the cyclization mechanisms leading to the pentacyclic products

ChemBioChem

10.1002/cbic.201800281

1 25 and 26, the skeletons of which were produced only from 1 and not from 11 and 14. 2 Squalene 1 was folded into an all-chair conformation to afford the final hopanyl cation 3 10. The following successive rearrangement reactions of 10 with the C-22 cation 4 afforded 25 (path b): H-21 to C-22 cation, H-17 to C-21, Me-28 to C-17, followed by 5 deprotonation of H-13. H-21 was eliminated to give 26 (path c). 6 Scheme 3C illustrates the formation mechanism of product 33, which is produced 7 by the A306V and the A306T mutants (Fig. 1B and Fig. S4). The (20R, 24R) 8 stereochemistry of 33 indicates that this compound was produced from (3R)-9 oxidosqualene 14, but not from 11. Substrate 14 was folded into an all-chair 10 conformation. Proton attack on the terminal double bond, but not on the epoxide ring, 11 triggered successive ring formation reactions to yield the 17-epi-6,6,6,5-fused 12 dammarenyl cation 43. The epoxide ring of 43 attacked the C-20 cation (Re-face 13 attack), and then the nucleophilic attack of a water molecule on the C-25 cation afforded 14 **33**. Intriguingly, the cyclization reaction started from the terminal double bond position and not from the epoxide ring. This study is the first to report a polycyclization reaction 15 16 that initiated from the terminal double bond, despite the epoxide ring being present in 17 the substrate. As shown in Scheme 1B, the SHC-mediated cyclization reaction starts 18 from the epoxide ring side but not from the terminal double bond side. This 19 phenomenon has been clearly explained in terms of the higher nucleophilicity of 20 epoxide than that of double bond π -electrons towards the DXDD motif, a proton donor that can initiate the polycyclization reaction.^[7] However, why epoxydammarane 21 22 compounds such as 33 are never produced from 11 and 14 by the native SHC, even in 23 small amounts, is unclear. An increase in the steric bulk at position 306 (A306V and 24 A306T variants) may have altered the geometry of the substrate inside the reaction 25 cavity, and the terminal double bond may have been positioned nearer to the DXDD 26 motif than the epoxide ring. In the case of the wild type SHC, the epoxide ring may be in closer contact with the DXDD motif, and the more highly nucleophilic nature of the 27 28 epoxide ring may further facilitate the polycyclization reaction. We have reported that 29 native SHC can accept both (3R)- and (3S)-2,3-squalene diols to afford 24*R*-and 24*S*epoxydammarane, respectively.^[20] Furthermore, the four different 2,3;22,23-30 31 dioxidosqualenes (3R,S and 22R,S isomers) are also converted into four 3-hydroxyepoxydammarane scaffolds with four different configurations (3R, 24R; 3R, 24S; 3S, 32 24R; 3S, 24S); ^[20] that is, native SHC can accept both 22R- and 22S-isomers as 33 34 substrates, which correspond to (3R)- and (3S)-isomers in the case of the 35 polycyclization reactions of 2,3-oxidosqualene, respectively, resulting in the production 36 of both 24R- and 24S-epoxydammaranes. This fact that native SHC can accept both

1	(3R)-14 and $(3S)$ -11 raises the question why $(3S)$ -11 was not cyclized by the A306V and
2	A306T variants to produce $24S$ -epoxydammarane, while both $(3R)$ -14 and $(3S)$ -11
3	underwent cyclization reactions from the epoxide ring to generate 3α - and 3β -hydroxy-
4	tetracycle 29–32 and bicycle 34–36 . It is also unclear why the mutated SHCs cannot
5	accept the monocyclic and bicyclic products of the premature cyclization step to yield
6	further cyclized products through reentry of the mon- and/or bicyclic product into the
7	reaction cavity after exiting. The substrate uptake and the product release occur through
8	the same channel, ^[3,4] which may be very compact; thus, the truncated cyclization
9	products cannot reenter the reaction cavity. In contrast, tetraprenyl-β-curcumene cyclase
10	from Bacillus megaterium (BmeTC) can accept 3-deoxyachilleol A (monocyclic
11	triterpene) to yield (+)-ambrein as a result of the re-entry of this monocyclic product
12	into the reaction cavity. ^[21] Further studies are necessary to provide detailed insight into
13	the cyclization mechanism underlying how 33 is produced from 14 .
14	
15	<scheme 2=""></scheme>
16	Scheme 4 shows the formation mechanisms of tetracyclic products from 1, 11, and
17	14. Two types of formation mechanisms are proposed: (A) the chair-chair-boat
18	folding conformation 44 from 1, leading to the tetracycle 45 with 17α -H; (B) the chair-
19	chair-chair-chair folding conformation 48 from 1, resulting in the tetracycle 49 with
20	17 β -H. Substrates 11 and 14 were also cyclized according to the folding conformation
21	of Type A, yielding the 3 β -hydroxytetracyclic cation 46 and 3 α -hydroxytetracyclic
22	cation 47, respectively. By contrast, Type B is limited to the cyclization reactions of 1.
23	The Newman projection of cations 45, 46, and 47 is shown in Scheme 4A. A minimal
24	motion (60° rotation) in the reaction cavity leads to $20R$ stereochemistry, but a large
25	rotation (120°) gives the 20S configuration. A minimal motion is preferable to a large
26	motion in the reaction cavity and is thus allowed to afford $20R$ stereochemistry. This
27	theory was proposed by Abe and Rohmer. ^[18] By contrast, the minimal motion (60°
28	rotation) of cation 49 with 17β -H affords a 20S configuration (allowed, Scheme 4B),
29	but the large motion (120° rotation) results in the generation of 20R products (not
30	allowed, Scheme 4B). Thus, cation 49 led to products with 20S stereochemistry. Cation
31	45 underwent further structural modifications. A hydride shift of H-17 to the C-20
32	cation, followed by the deprotonation of H-13, furnished 18, 29, and 30 (path <i>a</i>). 1,2-
33	Shifts of H-17 to the C-20 cation and H-13 to C-17, followed by the removal of H-12 α ,
34	gave 21, 31, and 32 (path b). The following consecutive 1,2-rearrangement reactions
35	occurred: H-17 \rightarrow C-20 cation, H-13 \rightarrow C-17, Me-30 \rightarrow C-13, Me-18 \rightarrow C14, and the
36	subsequent deprotonation of H-7 α generated product 22 (path <i>c</i>). Proton elimination of

Accepted Manuscrip

3	subsequent deprotonation reaction of H-7 α furnished 23 (path c). The nucleophilic
4	attack of a water molecule on the C-20 cation gave 27 (path e).
5	
6	<scheme 3=""></scheme>
7	Distribution ratio of products generated by altering the steric bulk at position 306
8	Table 1 shows the product distribution ratio obtained by the reactions of squalene 1.
9	To address the steric bulk, we employed the van der Waals volumes (nm ³) reported by
10	Lin et al.: Gly, 0.00279; Ala, 0.05702; Thr, 0.19341; Val, 0.25674; Leu, 0.37876; and
11	Phe, 0.55298. ^[22] These values indicate that the steric bulk increases as follows:
12	Gly <ala<thr<val<leu<phe. afforded="" bulk,="" decreased="" gly="" mutant,="" steric="" td="" the="" the<="" with=""></ala<thr<val<leu<phe.>
13	normal cyclization products 2 and 3 in large quantities and the aberrant cyclization
14	products 25 and 26 (pentacycle) in small amounts, but did not produce any bi-, tri-, or
15	tetracyclic products. The Thr variant, with increased bulk, afforded decreased amounts
16	of 2 and 3 (25%), while the tetracyclic products were generated in increased quantities
17	(57%). The generation of the tetracyclic products suggests that the Ala306 residue is
18	located near the D-ring formation site. A further increase in steric bulk (A306V variant)
19	afforded small amounts of $2(2\%)$ and of bicyclic (4%) and tricyclic products (2%), but
20	large quantities of tetracyclic products were produced (90%). Furthermore, almost all
21	the tetracyclic products possessed a 20 <i>R</i> configuration (94%) derived from cation 45 ,
22	while only 6% were 20S tetracycles derived from cation 49. In the case of the A306T
23	variant, 63% of the products consisted of 18, 21, and 22, derived from cation 45
24	(Scheme 4A), and 37% consisted of 23, 24, and 27, derived from cation 49 (Scheme
25	4B). Therefore, an increase in the steric bulk facilitates the formation of cation 45 .
26	Cation 8, an intermediary tetracyclic cation (Scheme 1A), is the same as cation 49
27	(Scheme 4B), indicating that 20S tetracyclic products should be generated from the
28	intermediary cation 8 or 49 during the normal cyclization process. However, increased
29	steric bulk at the 306 position drastically increased the production of 20R tetracycles,
30	strongly indicating that the size of the residue at 306 is critical to the normal
31	polycyclization pathway. The Leu mutant furnished bicyclic products with a
32	significantly high yield (43%), and an almost equal amount of tetracyclic products
33	(39%), as shown in Table 1 and Fig. S3.3. The Leu and Val residues have the same
34	hydrophobic properties, but possess no polar OH and π -electrons; the difference
35	between them is only the steric size (Leu>Val). Replacing Phe with bulk larger than Val
36	and Leu generated only bicyclic products and no tetracyclic products. This finding

Me-21 of cation 49 provided product 24 (path d). Cation 49 underwent sequential 1,2-

shift reactions (path c): H-17 \rightarrow C-20, H-13 \rightarrow C-17, Me-30 \rightarrow C-13, Me-18 \rightarrow C14. The

ChemBioChem

10.1002/cbic.201800281

Accepted Manuscrip

indicates that the introduction of significantly larger substituents at the 306 position 1 2 altered the orientation of substrate 1 inside the reaction cavity. Consequently, the steric 3 bulk at position 306 significantly affects the stereochemical fate and the truncation steps 4 during the polycyclization cascade. 5 Table 2 shows the product distribution ratios obtained by the incubation of 11 and 6 14. The wild type produced 12 and 13 from 11, and 15 and 16 from 14, but no other 7 product was produced, as shown in Scheme 1B. The A306T variant produced tetracyclic 8 products in larger amounts (82%), in addition to 12 and 15 (8%). This result is 9 consistent with the outcomes from the incubation of 1 (Table 1), but a small amount (8%) of epoxydammarane 33 was found by GC (Fig. S4). The A306V variant also 10 11 produced tetracyclic products with a 20R configuration (47%), and no products with 12 20S stereochemistry were present above the limit of GC detection. Interestingly, a larger 13 amount of **33** was produced (20%) than that by the A306T variant. The A306F mutant 14 produced only bicyclic products 34–36, which was consistent with the results of 15 squalene incubation with the A306F variant. Notably, products 29–32 were all generated 16 from cations 46 and 47 (equivalent to 45), which resulted from a chair-chair-chair-boat 17 folding conformation (Scheme 4A). In addition, 33 was produced only from 14 but not 18 from 11. The higher production of 33 by the Val mutant than by the Thr mutant indicates 19 that the production of 33 is also dependent on the steric bulk at position 306. In fact, the 20 larger Phe variant did not generate any 33 (Table 2). Thus, an appropriate steric size is 21 required for the formation of 33.

22

23 This study clearly demonstrates that the appropriate steric bulk at position 306 of 24 AaSHC is critical for directing the normal polycyclization cascade. We describe the 25 enzymatic reactions of various substrate analogs with SHC, e.g., norsqualenes lacking Me-group ^[6a, 23] and homosqualenes bearing ethyl groups on the squalene backbone, ^[24] 26 27 and we provide insight into how the polycyclization reaction is affected by the specific 28 modifications. The steric bulk at the Me-positions of squalene substrate significantly 29 altered the polycyclization pathway, e.g., alteration of the folding conformation leading 30 to different stereochemistry and a truncation of the ring-forming cascade, which in some cases resulted in the generation of novel triterpene scaffolds.^[23b] The results of the site-31 specific mutagenesis experiments provide further evidence that the appropriate steric 32 33 size of the active site residues is critical to correct folding and the full cyclization 34 pathway. 35

36 Conclusions

Accepted Manuscrip

1 The following conclusions can be drawn from our study: (1) the appropriate steric 2 bulk of the Ala306 residue directs the normal polycyclization reaction without 3 premature termination; (2) the Ala side chain is in close proximity to the D-ring 4 formation site, as the A306V mutant produced large amounts of tetracyclic products 5 with the 20R configuration; and (3) this is the first report describing the initiation of the 6 polycyclization reaction from the terminal double bond rather than from the epoxide 7 ring. As discussed above, the production of 33 raises the question why the native SHC 8 does not produce epoxydammarane structure(s) from 11 or 14, specifically why the 9 proton attack occurs only at the epoxide ring, but not the terminal double bond, despite both the terminal double bond and the epoxide ring entering the reaction cavity through 10 11 the substrate channel. The A306V and A306T variants are able to accept both heads of 12 oxidosqualene 14 because products 29–32 are generated by a proton attack on the 13 epoxide ring, while product 33 is produced by a proton attack on the terminal double 14 bond. 15

16

17 Experimental

18

19 General analytical methods: NMR spectra were recorded in C₆D₆ on a Bruker 20 DMX 600 or DPX 400 spectrometer, the chemical shifts (δ) given in ppm relative to the 21 residual solvent peak $\delta_{\rm H}$ 7.280 and $\delta_{\rm C}$ 128.0 as the internal reference for ¹H- and ¹³C-22 NMR spectra, respectively. In the case of CDCl₃ solutions, the chemical shifts are given 23 in ppm relative to the solvent peak ($\delta_{\rm H}$ 7.26; $\delta_{\rm C}$ 77.0). The coupling constants J are given 24 in Hz. GC analyses were performed on a Shimadzu GC-8A chromatograph equipped 25 with a flame ionization detector (DB-1 capillary column, $0.53 \text{ mm} \times 30 \text{ m}$). GC-MS 26 spectra were performed on a JEOL SX 100 spectrometer under electronic impact at 70 27 eV with a DB-1 capillary column (0.32 mm x 30 m). HR-EIMS was performed by 28 direct inlet system. Specific rotation values were measured at 25°C with a Horiba 29 SEPA-300 polarimeter.

30

31 Site-directed mutagenesis

The *shc* genes were mutated via oligonucleotide-directed *in vitro* mutagenesis using the Pharmacia Unique Site Elimination Mutagenesis kit (Pfizer, New York, NY, USA). Plasmid pKS, a pUC119 derivative containing a 1 kb *KpnI-SacI* fragment, was used as a template for all mutagenesis reactions. The synthetic oligonucleotides for the mutations (with changes to the wild type sequence shown in bold type) are as follows:

1	A306G: 5'-GGATGTTTCAGGGGGTCGATATCGCCGGTGTG-3'
2	A306T: 5'-GGATGTTTCAGACTTCGATATCGCCGGTGTG-3'
3	A306V: 5'-GGATGTTTCAGGTTTCCGATATCGCCGGTGTG-3'
4	A306L: 5'-GGATGTTTCAG TTG TC <u>GATATC</u> GCCGGTGTG-3'
5	A306F: 5'-GGATGTTTCAG TTT TC <u>GATATC</u> GCCGGTGTG-3'
6	Silent mutations were also used to screen the desired mutants by restriction fragment
7	analysis (underlined sequences). To ascertain that the desired mutation had been
8	achieved, the entire region of the inserted DNA was sequenced.
9	
10	Incubation conditions and GC analysis
11	The SHC described here is from A. acidocaldarius. ^[7-14, 16-17, 19,20] Standard culture of
12	the cloned Escherichia coli and incubation conditions were performed according to our
13	published protocols. ^[7] The cell-free extract was prepared as follows. One liter of <i>E. coli</i>
14	culture encoding the native and mutated SHCs (pET3a) was harvested by centrifugation
15	50 mL of citrate buffer solution (pH 6.0, 50 mM) was added to the pellets, and
16	ultrasonication was then performed to disrupt the cells. The supernatant was used for
17	incubations after removal of all cell debris by centrifugation. One mL of the supernatant
18	contained <i>ca</i> . 200 μ g of the pure SHCs. One mg of the substrates, 1 and a mixture of 11
19	and 14, and 20 mg of Triton X-100 were emulsified with 1.0 mL dH ₂ O and 3.0 mL Na-
20	citrate buffer solution (pH 6.0, 0.5 M). To this solution, 2.0 mL of the cell-free extract
21	was added, followed by incubation at 45°C for 12 h. To terminate the enzyme reaction,
22	6 mL of 15% KOH/MeOH was added and heated at 80°C for 30 min. The lipophilic
23	enzyme products and the substrate analogs, which remained unreacted, were extracted 4
24	times with hexane (5 mL) from the incubation mixtures, and the quantities of the
25	products and the starting materials were estimated by GC analyses with a DB-1
26	capillary column (30 m in length, J&W Scientific, Folsom, CA, USA). GC-EIMS
27	product profiles and substrate distributions, prepared after the saponification treatment
28	(quenching reaction), were identical to those obtained prior to the saponification
29	reaction, and hence there was no change in product distribution and structural
30	modification, or the substrates produced by the quenching conditions. The epoxide ring
31	was also unmodified by this quenching treatment. GC analyses shown in Fig. 1A were
32	performed under the following conditions: injection temperature, 290°C; column
33	temperature, 290°C; N ₂ carrier pressure, 0.75-1.5 kg/cm ² . GC analyses shown in Fig.
34	1B were performed on the same GC instrument and GC column as (A), but the N_2
35	carrier pressure was 0.5 kg/cm ² .
36	Spectroscopic data of enzymatic products.

2 previous papers, as described in Text.^[2b] To validate the identification, we isolated 3 products 17-24 and determined by the detailed NMR analyses: see the Figs. S5-S12 in 4 Supporting Information. Production of 23 by the mutated SHCs has not been reported 5 before. Production yields of 25-28 were significantly small, thus identifications were made by GC-EIMS, as described in Fig. S13. NMR and EIMS data of products 29-36, 6 7 which have not been reported before. Therefore, the spectroscopic data of 23 and 29-36 8 are given here. **Product 23**: $[\alpha]_D^{25} = -0.565$ (*c*=0.018, EtOH); ¹H NMR (600 MHz, C₆D₆): δ =0.964 (s, 9 3H, Me-19), 0.967 (s, 3H, Me-28), 1.03 (s, 3H, Me-29), 1.04 (m, 1H, H-1), 1.05 (s, 3H, 10 11 Me-18), 1.12 (d, J=6.4 Hz, Me-21), 1.18 (s, 3H, Me-30), 1.27 (m, 2H, H-22 and H-3), 12 1.42 (m, 1H, H-16), 1.48 (dd, J=12.1, 5.4 Hz, 1H, H-5), 1.52 (m, 2H, H-2 and H-3), 13 1.58 (m, 1H, H-20), 1.60 (m, 1H, H-11), 1.62 (m, 1H, H-15), 1.63 (m, 1H, H-17), 1.66 (m, 1H, H-11), 1.68 (m, 1H, H-2), 1.72 (m, 1H, H-22), 1.74 (m, 1H, H-1), 1.75 (s, 3H, 14 15 Me-27), 1.77 (m, 2H, H-12 and H-15), 1.83 (s, 3H, Me-26), 1.92 (m, 1H, H-12), 2.00 16 (m, 1H, H-6), 2.09 (m, 1H, H-16), 2.14 (m, 1H, H-23), 2.25 (m, 1H, H-6), 2.33 (m, 1H, H-23), 2.42 (m, 1H, H-9), 5.42 (bt, *J*=6.2 Hz, H-24), 5.47(bd, *J*=2.6 Hz, 1H, H-7); ¹³C 17 NMR (150 MHz, C₆D₆): δ=13.36 (q, C-19), 17.72 (q, C-27), 18.48 (t, C-11), 18.62 (q, 18 19 C-21), 19.44 (t, C-2), 21.50 (g, C-29), 22.25 (g, C-18), 24.70 (t, C-6), 25.53 (t, C-23), 20 25.88 (q, C-26), 27.56 (q, C-30), 28.60 (t, C-16), 33.16 (q, C-28), 33.29 (s, C-4), 34.29 21 (t, C-12), 34.46 (t, C-15), 35.39 (s, C-10), 36.37 (d, C-20), 36.64 (t, C-22), 39.26 (t, C-22 1), 42.69 (t, C-3), 43.82 (s, C-13), 49.50 (2C, d, C-9 and s, C-14), 51.66 (d, C-5), 53.42 23 (d, C-17), 118.5 (d, C-7), 125.7 (d, C-24), 130.7 (s, C-25), 146.1 (s, C-8). Me-21 24 showed $\delta_{\rm H}$ 0.885 (d, J=6.8 Hz) in the CDCl₃ solution. The assignments of C-13 and C-25 14 may be exchangeable. MS(EI): *m/z*: 69 (30%), 109 (28%), 395 (100%), 410 (27%); [M⁺]; HRMS (EI): *m*/*z*: calcd. for C₃₀H₅₀: 410.39125; found: 410.39187. 26 **Product 29**: $[\alpha]_D^{25} = -17.15$ (*c*=0.206, EtOH); ¹H NMR (400 MHz, C₆D₆): δ =0.872 (s, 27 3H, Me-29), 0.949 (s, 3H, Me-19), 1.045 (s, 3H, Me-28), 1.105 (s, 3H, Me-18), 1.141 28 29 (d, J=7.2 Hz, 3H, Me-21), 1.253 (s, 3H, Me-30), 1.39 (m, 1H, H-11), 1.40 (m, 1H, H-30 15), 1.43 (m, 1H, H-6), 1.47 (m, 2H, H-1), 1.48 (m, 1H, H-7), 1.53 (2H, m, 1H, H-22; 31 m, 1H, H-5), 1.54 (m, 1H, H-6), 1.55 (m, 1H, H-2), 1.62 (m, 1H, H-22), 1.67 (m, 1H, 32 H-11), 1.70 (m, 1H, H-7), 1.71 (m, 1H, H-9), 1.752 (s, 3H, Me-27), 1.828 (s, 3H, Me-33 26), 1.93 (m, 1H, H-2), 2.02 (m, 1H, H-12), 2.07 (m, 1H, H-15), 2.10 (m, 1H, H-23), 34 2.25 (m, 1H, H-23), 2.28 (m, 1H, H-16), 2.46 (m, 1H, H-16), 2.59 (dd, J=13.6, 3.6 Hz, 35 1H, H-12), 2.72 (m, 1H, H-20), 3.29 (br s, 1H, H-3), 5.42 (t, *J*=6.4 Hz, H-24); ¹³C NMR (100 MHz, C₆D₆): δ=16.50 (q, C-19), 17.53 (q, C-18), 17.79 (q, C-27), 18.53 (t, C-6), 36

Almost the enzymatic products obtained from squalene incubation were reported in our

20.18 (q, C-21), 22.09 (t, C-11), 22.39 (q, C-29), 23.23 (q, C-30), 23.30 (t, C-12), 25.86 1 2 (q, C-26), 25.94 (t, C-2), 27.18 (t, C-23), 28.59 (q, C-28), 29.47 (t, C-16), 31.05 (t, C-3 15), 32.24 (d, C-20), 33.90 (t, C-1), 35.72 (t, C-7), 36.02 (t, C-22), 37.74 (s, C-10), 4 37.79 (s, C-4), 41.60 (s, C-8), 49.71 (d, C-5), 51.82 (d, C-9), 56.94 (s, C-14), 75.80 (d, 5 C-3), 125.5 (d, C-24), 130.9 (s, C-25), 134.9 (s, C-17), 139.7 (s, C-13). The assignments 6 of C-4 and C-10 may be exchangeable. MS (EI) see Fig. S14.1. HRMS (EI): *m/z*: calcd. 7 for C₃₀H₅₀O: 426.38616; found: 410.38896. **Product 30**: $[\alpha]_D^{25} = -10.9$ (*c*=0.278, EtOH); ¹H NMR (600 MHz, C₆D₆): $\delta = 0.796$ (dd, 8 9 J=11.8, 1.4 Hz, 1H, H-5), 0.909 (s, 3H, Me-19), 0.912 (s, 3H, Me-29), 0.92 (m, 1H, H-10 1), 1.070 (s, 3H, Me-18), 1.149 (s, 3H, Me-28), 1.152 (d, J=6.7 Hz, 3H, Me-21), 1.275 11 (s, 3H, Me-30), 1.40 (2H, m, 1H, H-11; m, 1H, H-15), 1.44 (m, 1H, H-6), 1.46 (m, 1H, 12 H-7), 1.47 (m, 1H, H-9), 1.53 (m, 1H, H-22), 1.56 (m, 2H, H-2), 1.62 (2H: m, 1H, H-13 22; m, 1H, H-7), 1.63 (m, 1H, H-11), 1.64 (m, 1H, H-6), 1.69 (m, 1H, H-1), 1.753 (s, 14 3H, Me-27), 1.831 (s, 3H, Me-26), 2.02 (m, 1H, H-12), 2.07 (m, 1H, H-15), 2.09 (m, 15 1H, H-23), 2.24 (m, 1H, H-23), 2.28 (m, 1H, H-16), 2.47 (m, 1H, H-16), 2.59 (ddd, 16 J=12.5, 4.7, 1.8 Hz, 1H, H-12), 2.72 (m, 1H, H-20), 3.16 (dd, J=10.2, 6.1 Hz, 1H, H-3), 5.41 (t, J=7.0 Hz, H-24); ¹³C NMR (150 MHz, C₆D₆): δ=15.83 (q, C-29), 16.61 (q, C-17 18 19), 17.52 (q, C-18), 17.79 (q, C-27), 18.59 (t, C-6), 20.18 (q, C-21), 22.17 (t, C-11), 19 23.11 (q, C-30), 23.31 (t, C-12), 25.86 (q, C-26), 27.17 (t, C-23), 27.89 (t, C-2), 28.35 20 (q, C-28), 29.47 (t, C-16), 31.06 (t, C-15), 32.26 (d, C-20), 35.84 (t, C-7), 36.01 (t, C-21 22), 37.62 (s, C-10), 39.15 (s, C-4), 39.26 (t, C-1), 41.34 (s, C-8), 52.02 (d, C-9), 56.29 22 (d, C-5), 56.83 (s, C-14), 78.46 (d, C-3), 125.4 (d, C-24), 130.9 (s, C-25), 135.1 (s, C-17), 139.5 (s, C-13). MS (EI) see Fig. S15.1. HRMS (EI): *m*/*z*: calcd. for C₃₀H₅₀O: 23 24 426.38616; found: 410.38648. 25 **Product 31**: $[\alpha]_D^{25} = +6.3$ (*c*=0.074, EtOH); ¹H NMR (400 MHz, C₆D₆): δ =0.900 (s, 26 3H, Me-29), 1.011 (s, 3H, Me-18), 1.030 (s, 3H, Me-19), 1.047 (d, J=6.8 Hz, 3H, Me-27 21), 1.065 (s, 3H, Me-28), 1.131 (s, 3H, Me-30), 1.32 (2H: m, 1H, H-1; m, 1H, H-15), 28 1.44 (m, 1H, H-22), 1.46 (m, 1H, H-7), 1.50 (m, 1H, H-6), 1.51 (m, 1H, H-2), 1.52 (m, 29 1H, H-1), 1.57 (2H; m, 1H, H-5; m, 1H, H-6), 1.62 (m, 1H, H-22), 1.63 (m, 2H, H-16), 30 1.730 (s, 3H, Me-27), 1.77 (m, 1H, H-15), 1.80 (m, 1H, H-7), 1.85 (m, 1H, H-2), 1.884 31 (s, 3H, Me-26), 1.92 (2H: m, 1H, H-11; m, 1H, H-9), 1.98 (m, 1H, H-20), 2.16 (m, 1H, 32 H-11), 2.23 (m, 2H, H-23), 2.59 (m, 1H, H-17), 3.29 (bs, 1H, H-3), 5.41 (2H: m, 1H, H-12; m, 1H, H-24); ¹³C NMR (100 MHz, C₆D₆): δ=15.48 (q, C-21), 15.71 (q, C-19), 33 34 17.05 (q, C-18), 17.74 (q, C-27), 18.69 (t, C-6), 22.44 (q, C-29), 22.85 (q, C-30), 23.86 35 (t, C-11), 24.49 (t, C-16), 25.76 (t, C-2), 25.89 (q, C-26), 26.53 (t, C-23), 28.59 (q, C-

2 C-5), 50.57 (s, C-14), 75.77 (d, C-3), 115.9 (d, C-12), 125.5 (d, C-24), 130.9 (s, C-25), 3 149.2 (s, C-13). The assignments of C-4 and C-10 may be exchangeable. MS (EI) see 4 Fig. S16.1. HRMS (EI): *m/z*: calcd. for C₃₀H₅₀O: 426.38616; found: 410.38432. **Product 32**: $[\alpha]_D^{25} = +8.0$ (*c*=0.213, EtOH); ¹H NMR (600 MHz, C₆D₆): δ =0.865 (dd, 5 J=12.0, 10.3 Hz, 1H, H-5), 0.92 (m, 1H, H-1), 0.947 (s, 3H, Me-29), 0.973 (s, 3H, Me-6 18), 0.991 (s, 3H, Me-19), 1.061 (d, J=6.7 Hz, 3H, Me-21), 1.148 (s, 3H, Me-30), 1.157 7 8 (s, 3H, Me-28), 1.30 (dd, J=6.3, 11.8 Hz, 1H, H-15), 1.42 (m, 1H, H-7), 1.47 (m, 1H, H-9 22), 1.50 (m, 1H, H-6), 1.52 (m, 1H, H-2), 1.56 (2H: m, 1H, H-1; m, 1H, H-2), 1.62 (m, 10 2H, H-16), 1.63 (m, 1H, H-22), 1.64 (m, 1H, H-6), 1.68 (m, 1H, H-7), 1.72 (m, 1H, H-9), 11 1.732 (s, 3H, Me-27), 1.78 (m, 1H, H-15), 1.832 (s, 3H, Me-26), 1.89 (m, 1H, H-11), 1.99 (m, 1H, Me-20), 2.08 (m, 1H, H-11), 2.24 (m, 2H, H-23), 2.59 (m, 1H, H-17), 3.14 (dd, 12 J=11.4, 4.7 Hz, 1H, H-3), 5.39 (bs, 1H, H-12), 5.47 (t, J=7.4 Hz, H-24); ¹³C NMR (150 13 14 MHz, C_6D_6): $\delta = 15.48$ (q, C-21), 15.88 (2C; q, C-19; q, C-29), 16.97 (q, C-18), 17.73 (q, 15 C-27), 18.72 (t, C-6), 22.83 (q, C-30), 23.91 (t, C-11), 24.50 (t, C-16), 25.88 (q, C-26), 16 26.53 (t, C-23), 27.71 (t, C-2), 28.32 (q, C-28), 32.08 (t, C-15), 34.72 (d, C-20), 35.08 (t, 17 C-7), 36.34 (t, C-22), 37.48 (s, C-10), 38.30 (s, C-8), 38.96 (t, C-1), 39.06 (s, C-4), 48.57 18 (d, C-9), 48.94 (d, C-17), 50.47 (s, C-14), 56.32 (d, C-5), 78.50 (d, C-3), 115.9 (d, C-12), 19 125.5 (d, C-24), 130.9 (s, C-25), 149.3 (s, C-13). MS (EI) see Fig. S17.1. HRMS (EI): 20 *m*/*z*: calcd. for C₃₀H₅₀O: 426.38616; found: 410.38648. **Product 33**: $[\alpha]_D^{25} = -20.8$ (*c*=0.239, EtOH); ¹H NMR (600 MHz, acetone d₆): δ =0.817 21 22 (s, 3H, Me-29), 0.82 (m, 1H, H-5), 0.849 (s, 3H, Me-28), 0.86 (m, 1H, H-1), 0.861 (s, 23 3H, Me-19), 0.969 (s, 3H, Me-18), 1.025 (s, 3H, Me-30), 1.050 (s, 3H, Me-27), 1.06 (m, 24 1H, H-15), 1.135 (s, 3H, Me-26), 1.14 (m, 1H, H-3), 1.188 (s, 3H, Me-21), 1.21 (m, 1H, 25 H-11), 1.26 (m, 1H, H-7), 1.32 (m, 1H, H-3), 1.38 (m, 1H, H-2), 1.39 (m, 1H, H-6), 1.43 (2H: m, 1H, H-15; m, 1H, H-9), 1.49 (m, 1H, H-12), 1.52 (m, 1H, H-6), 1.53 (m, 26 27 1H, H-16), 1.58 (m, 1H, H-11), 1.59 (m, 1H, H-22), 1.61 (2H: m, 1H, H-2; m, 1H, H-7), 28 1.65 (m, 1H, H-1), 1.75 (m, 1H, H-23), 1.76 (m, 1H, H-16), 1.85 (m, 1H, H-23), 1.92 29 (2H: m, 1H, H-12; m, 1H, H-22), 2.09 (m, 1H, H-13), 2.24 (m, 1H, H-17), 3.71 (dd, 30 J=10.6, 5.2 Hz, 1H, H-24); ¹³C NMR (150 MHz, acetone d₆): $\delta = 16.33$ (q, C-18), 16.64 31 (q, C-19), 16.94 (q, C-30), 19.37 (t, C-6), 19.47 (t, C-2), 21.86 (q, C-29), 23.21 (t, C-32 11), 25.83 (q, C-27), 26.40 (t, C-23), 26.84 (t, C-12), 27.37 (q, C-26), 28.29 (t, C-16),

37.60 (s, C-10), 37.61 (s, C-4), 38.52 (s, C-8), 48.36 (d, C-9), 48.94 (d, C-17), 49.75 (d,

- 33 28.91 (q, C-21), 33.12 (t, C-15), 33.76 (q, C-28), 33.95 (s, C-4), 36.09 (t, C-7), 38.19 (s,
- 34 C-10), 38.70 (t, C-22), 41.35 (t, C-1), 41.68 (s, C-8), 42.89 (t, C-3), 44.60 (d, C-13),
- 35 49.36 (d, C-17), 49.85 (s, C-14), 51.71 (d, C-9), 57.79 (d, C-5), 70.43 (s, C-25), 86.06
- 36 (s, C-20), 88.23 (d, C-24). MS (EI) see Fig. S18.1. HRMS (EI): *m*/*z* 429 (M⁺-Me):

1 calcd. for $C_{29}H_{49}O_2$: 426.37325; found: 429.37229.

Product 34-acetate: $[\alpha]_D^{25} = -9.5$ (*c*=0.014, EtOH); ¹H NMR (600 MHz, C₆D₆): δ =0.892 2 3 (s, 3H, Me-24), 1.051 (s, 3H, Me-25), 1.052 (s, 3H, Me-23), 1.50 (m, 1H, H-6), 1.62 (m, 1H, H-6), 1.68 (m, 1H, H-1), 1.691 (s, 3H, Me-29), 1.724 (s, 3H, Me-26), 1.724 (s, 3H, 4 5 Me-28), 1.779 (s, 3H, Me-27), 1.806 (s, 3H, Me-30), 1.82 (s, 3H, Me-32, acetyl Me), 6 1.85 (m, 1H, H-1, 1.88 (2H, m, H-2), 1.92 (m, 1H, H-5), 2.01(dd, J=6.0, 18.2 Hz, 1H, H-7), 2.14 (m, 1H, H-12), 2.16 (m, 1H, H-7), 2.24 (4H: m, H-15 and H-19), 2.32 (m, 7 8 1H, H-12), 2.33 (m, 4H, H-16 and H-20), 2.38 (m, 2H, H-11), 5.03 (bs, 1H, H-3), 5.37 9 (t, J=6.8 Hz, 1H, H-21), 5.42 (t, J=6.8 Hz, 1H, H-13), 5.43 (t, J=6.8 Hz, 1H, H-17); ¹³C 10 NMR (150 MHz, C_6D_6): δ = 16.12 (q, C-28), 16.21 (q, C-27), 169.7 (s, C-31, acetyl 11 CO), 17.72 (q, C-29), 18.87 (t, C-6), 19.70 (q, C-26), 20.02 (q, C-25), 20.76 (q, C-32, 12 acetyl CH₃), 21.84 (q, C-24), 23.71 (t, C-2), 25.83 (q, C-30), 27.20 (2C: t, C-16 and t, 13 C-20), 27.88 (q, C-23), 28.74 (t, C-12), 29.65 (t, C-11), 30.75 (t, C-1), 33.66 (t, C-7), 14 36.99 (s, C-4), 38.98 (s, C-10), 40.19 (t, C-15), 40.19 (t, C-19), 46.52 (d, C-5), 77.48 (d, 15 C-3), 124.7 (d, C-17), 124.9 (d, C-21), 125.3 (d, C-13), 126.2 (s, C-8), 131.1 (s, C-22), 16 134.8 (s, C-18), 135.1 (s, C-14), 140.4 (s, C-9). The assignments of C-14 and C-18 may 17 be exchangeable. MS (EI) see Fig. S19.1. HRMS (EI): m/z 408 (M⁺-CH₃CO): calcd. for 18 C₃₀H₄₈: 408.37560; found: 408.37590. 19 **Product 35-acetate**: $[\alpha]_D^{25} = -20.0$ (*c*=0.025, EtOH); ¹H NMR (600 MHz, C₆D₆): 20 δ=0.867 (s, 3H, Me-25), 0.893 (s, 3H, Me-24), 0.957 (s, 3H, Me-23), 1.11 (m, 1H, H-1), 21 1.44 (m, 1H, H-11), 1.56 (m, 1H, H-1), 1.61 (m, 1H, H-11), 1.691 (s, 3H, Me-29), 1.740 22 (s, 6H, Me-27 and Me-28), 1.806 (s, 3H, Me-30), 1.83 (3H: m, 2H, H-2; m, 1H, H-5), 23 1.88 (m, 1H, H-9), 1.889 (s, 3H, Me-26), 1.890 (s, 3H, Me-32, acetyl Me), 1.96 (very 24 broad, 2H, H-6), 2.15 (m, 1H, H-12), 2.24 (m, 4H, H-15 and H-19), 2.33 (m, 4H, H-16 25 and H-20), 2.34 (m, 1H, H-12), 4.99 (t, J=2.4 Hz, H-3), 5.37 (t, J=6.8 Hz, H-21), 5.42 (t, J=6.8 Hz, H-13), 5.43 (t, J=6.8 Hz, H-17), 5.45 (very br s, 1H, H-7); ¹³C NMR (150 26 MHz, C₆D₆): δ = 13.57 (q, C-25), 16.10 (q, C-28), 16.28 (q, C-27), 169.6 (s, acetyl CO), 27 28 17.72 (q, C-29), 20.77 (q, acetyl <u>CH</u>₃), 21.90 (q, C-24), 22.36 (q, C-26), 23.08 (t, C-2), 29 23.59 (t, C-6), 25.83 (q, C-30), 27.20 (2C: t, C-16 and C-20), 27.67 (2C: q, C-23; t, C-30 11), 30.61 (t, C-12), 32.29 (t, C-1), 36.54 (s, C-4), 36.58 (s, C-10), 40.19 (t, C-19), 31 40.22 (t, C-15), 44.99 (d, C-5), 54.12 (d, C-9), 77.90 (d, C-3), 122.4 (d, C-7), 124.7 (d, 32 C-17), 124.9 (d, C-21), 125.3 (d, C-13), 131.1 (s, C-22), 135.1 (s, C-18), 135.2 (s, C-14), 33 135.6 (s, C-8). The assignments may be exchangeable between C-4 and C-10, between 34 C-14 and C-18, between C-27 and C-28 and C-15 and C-19. MS (EI) see Fig. S20.1. 35 HRMS (EI): *m*/*z* 408 (M⁺-CH₃CO): calcd. for C₃₀H₄₈: 408.37560; found: 408.37759.

36 **Product 36**: $[\alpha]_D^{25} = -34.4$ (*c*=1.697, EtOH); ¹H NMR (400 MHz, C₆D₆): $\delta = 0.878$ (s,

1	3H, Me-25), 0.975 (s, 3H, Me-24), 1.084 (s, 3H, Me-23), 1.11 (m, 1H, H-1), 1.22 (t,
2	J=8.4 Hz, H-5), 1.40 (m, 1H, H-11), 1.41 (m, 1H, H-2), 1.55 (m, 1H, H-2), 1.60 (m, 1H,
3	H-11), 1.69 (m, 1H, H-9), 1.694 (s, 3H, Me-29), 1.750 (s, 3H, Me-28), 1.768 (s, 3H,
4	Me-27), 1.807 (s, 3H, Me-30), 1.835 (s, 3H, Me-26), 1.87 (m, 1H, H-1), 2.02 (very b r,
5	2H, H-6), 2.16 (m, 1H, H-12), 2.27 (m, 4H, H-15 and H-19), 2.27-2.38 (m, 4H, H-16
6	and H-20), 2.38 (m, 1H, H-12), 3.15 (dd, J=10.8, 4.8 Hz, H-3), 5.37 (t, J=6.8 Hz, 1H,
7	H-21), 5.42 (t, J=6.8 Hz, 1H, H-13), 5.44 (t, J=6.8 Hz, 1H, H-17), 5.53 (very br s, 1H,
8	H-7); ¹³ C NMR (100 MHz, C ₆ D ₆): <i>δ</i> =13.71 (q, C-25), 131.1 (s, C-22), 16.12 (q, C-28),
9	16.26 (q, C-27), 17.73 (q, C-29), 22.27 (q, C-26), 23.81 (t, C-6), 25.30 (q, C-24), 25.84
10	(q, C-30), 27.13 (t, C-20), 27.23 (t, C-16), 27.70 (t, C-11), 27.93 (t, C-2), 28.12 (q, C-
11	23), 30.66 (t, C-12), 36.78 (s, C-10), 37.54 (t, C-1), 38.83 (s, C-4), 40.22 (2C, t, C-15
12	and C-19), 49.84 (d, C-5), 54.37 (d, C-9), 78.76 (d, C-3), 122.5 (d, C-7), 124.7 (d, C-
13	17), 124.9 (d, C-21), 125.3 (d, C-13), 135.1 (2C, s, C-14 and C-18), 135.2 (s, C-8). The
14	assignments may be exchangeable between C-14 and C-18, between C-16 and C-20 and
15	between C-27 and C-28. MS (EI) see Fig. S21.1. HRMS (EI): m/z : calcd. for C ₃₀ H ₅₀ O:
16	426.38616; found: 410.38354.
17	
18	
19	Acknowledgements
19 20	Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan
19 20 21	Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B).
19 20 21 22	Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B).
 19 20 21 22 23 	Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane
 19 20 21 22 23 24 	Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane
 19 20 21 22 23 24 25 26 	Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane References
 19 20 21 22 23 24 25 26 27 	Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane References [1] a) B. B. Waadward, K. Blach, J. Am. Cham. Soc. 1053, 75, 2022, 2024, b) A.
 19 20 21 22 23 24 25 26 27 28 	 Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane References [1] a) R. B. Woodward , K. Bloch, <i>J. Am. Chem. Soc.</i>, 1953, 75, 2023-2024. b) A. Eschenmoser L. Puzicka, O. Lager, D. Arigoni, <i>Halv. Chim. Acta</i> 1955, 38, 1890
 19 20 21 22 23 24 25 26 27 28 29 	 Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane References [1] a) R. B. Woodward , K. Bloch, <i>J. Am. Chem. Soc.</i>, 1953, 75, 2023-2024. b) A. Eschenmoser, L. Ruzicka, O. Jeger , D. Arigoni, <i>Helv. Chim. Acta</i> 1955, <i>38</i>, 1890–1904. c) I. W. Cornforth, R. H. Cornforth, C. Donniger, G. Popiak, Y. Shimizu, S.
 19 20 21 22 23 24 25 26 27 28 29 30 	 Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane References [1] a) R. B. Woodward, K. Bloch, <i>J. Am. Chem. Soc.</i>, 1953, 75, 2023-2024. b) A. Eschenmoser, L. Ruzicka, O. Jeger, D. Arigoni, <i>Helv. Chim. Acta</i> 1955, <i>38</i>, 1890–1904. c) J. W. Cornforth, R. H. Cornforth, C. Donniger, G. Popjak, Y. Shimizu, S. Ichii E. Forchielli, E. Caspi, <i>I. Am. Chem. Soc.</i>, 1965, 87, 3224-3228
 19 20 21 22 23 24 25 26 27 28 29 30 31 	 Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane References [1] a) R. B. Woodward , K. Bloch, <i>J. Am. Chem. Soc.</i>, 1953, 75, 2023-2024. b) A. Eschenmoser, L. Ruzicka, O. Jeger , D. Arigoni, <i>Helv. Chim. Acta</i> 1955, <i>38</i>, 1890–1904. c) J. W. Cornforth, R. H. Cornforth , C. Donniger, G. Popjak, Y. Shimizu, S. Ichii, E. Forchielli , E. Caspi, <i>J. Am. Chem. Soc.</i>, 1965, <i>87</i>, 3224-3228. [2] For a review of squalene, oxidosqualene cyclases, see: a) K. U. Wendt, G. E. Schulz.
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 	 Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane References [1] a) R. B. Woodward , K. Bloch, <i>J. Am. Chem. Soc.</i>, 1953, 75, 2023-2024. b) A. Eschenmoser, L. Ruzicka, O. Jeger , D. Arigoni, <i>Helv. Chim. Acta</i> 1955, 38, 1890–1904. c) J. W. Cornforth, R. H. Cornforth , C. Donniger, G. Popjak, Y. Shimizu, S. Ichii, E. Forchielli , E. Caspi, <i>J. Am. Chem. Soc.</i>, 1965, 87, 3224-3228. [2] For a review of squalene, oxidosqualene cyclases, see: a) K. U. Wendt, G. E. Schulz, E. J. Corey, D. R. Liu, <i>Angew. Chem., Int. Ed.</i> 2000, <i>39</i>, 2812–2833; b) T. Hoshino.
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 	 Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane References [1] a) R. B. Woodward , K. Bloch, <i>J. Am. Chem. Soc.</i>, 1953, 75, 2023-2024. b) A. Eschenmoser, L. Ruzicka, O. Jeger , D. Arigoni, <i>Helv. Chim. Acta</i> 1955, <i>38</i>, 1890–1904. c) J. W. Cornforth, R. H. Cornforth , C. Donniger, G. Popjak, Y. Shimizu, S. Ichii, E. Forchielli , E. Caspi, <i>J. Am. Chem. Soc.</i>, 1965, <i>87</i>, 3224-3228. [2] For a review of squalene, oxidosqualene cyclases, see: a) K. U. Wendt, G. E. Schulz, E. J. Corey, D. R. Liu, <i>Angew. Chem., Int. Ed.</i> 2000, <i>39</i>, 2812–2833; b) T. Hoshino, T. Sato, <i>Chem. Commun.</i> 2002, 291–301; c) R. A. Yoder, J. N. Johnston, <i>Chem. Rev.</i>
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 	 Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane References [1] a) R. B. Woodward , K. Bloch, <i>J. Am. Chem. Soc.</i>, 1953, 75, 2023-2024. b) A. Eschenmoser, L. Ruzicka, O. Jeger , D. Arigoni, <i>Helv. Chim. Acta</i> 1955, <i>38</i>, 1890–1904. c) J. W. Cornforth, R. H. Cornforth , C. Donniger, G. Popjak, Y. Shimizu, S. Ichii, E. Forchielli , E. Caspi, <i>J. Am. Chem. Soc.</i>, 1965, <i>87</i>, 3224-3228. [2] For a review of squalene, oxidosqualene cyclases, see: a) K. U. Wendt, G. E. Schulz, E. J. Corey, D. R. Liu, <i>Angew. Chem., Int. Ed.</i> 2000, <i>39</i>, 2812–2833; b) T. Hoshino, T. Sato, <i>Chem. Commun.</i> 2002, 291–301; c) R. A. Yoder, J. N. Johnston, <i>Chem. Rev.</i> 2005, <i>105</i>, 4730–4756; d) M. J. R. Segura, B. E. Jackson, S. P. T. Matsuda, <i>Nat.</i>
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 	 Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Nos. 25450150 (C) and 18380001(B). Keywords: squalene; cyclization, enzyme catalysis; hopene; epoxydammarane References [1] a) R. B. Woodward , K. Bloch, <i>J. Am. Chem. Soc.</i>, 1953, 75, 2023-2024. b) A. Eschenmoser, L. Ruzicka, O. Jeger , D. Arigoni, <i>Helv. Chim. Acta</i> 1955, <i>38</i>, 1890–1904. c) J. W. Cornforth, R. H. Cornforth , C. Donniger, G. Popjak, Y. Shimizu, S. Ichii, E. Forchielli , E. Caspi, <i>J. Am. Chem. Soc.</i>, 1965, <i>87</i>, 3224-3228. [2] For a review of squalene, oxidosqualene cyclases, see: a) K. U. Wendt, G. E. Schulz, E. J. Corey, D. R. Liu, <i>Angew. Chem., Int. Ed.</i> 2000, <i>39</i>, 2812–2833; b) T. Hoshino, T. Sato, <i>Chem. Commun.</i> 2002, 291–301; c) R. A. Yoder, J. N. Johnston, <i>Chem. Rev.</i> 2005, <i>105</i>, 4730–4756; d) M. J. R. Segura, B. E. Jackson, S. P. T. Matsuda, <i>Nat. Prod. Rep.</i>, 2003, <i>20</i>, 304-317; e) I. Abe, <i>Nat. Prod. Rep.</i> 2007, <i>24</i>, 1311–1331; f)

I	D. Nes, <i>Chem. Rev.</i> 2011 , <i>111</i> , 6423–6451; h) G. Siedenburg, D. Jendrossek, <i>Appl.</i>
2	Environ. Microbiol., 2011, 77, 3905-3915; i) PO. Syrén, S. Henche, A. Eichler, B.
3	M. Nestl, B. Hauer, Curr. Opin. Struct. Biol. 2016, 41, 73-82; j) T. Hoshino, Org.
4	Biomol. Chem., 2017, 15, 2869-2891.
5	[3] K. U. Wendt, K. Poralla, G. E. Schulz, Science, 1997, 277, 1811-1815.
6	[4] a) K. U. Wendt, A. Lenhart, G. E. Schulz, J. Mol. Biol., 1999, 286, 175-187; b) D. J.
7	Reinert, G. Balliano, G. E. Schulz, Chem. Biol., 2004, 6, 1717-1720.
8	[5] a) R. Rajamani, J. Gao, J. Am. Chem. Soc., 2003, 125, 12768-12781; b) L. Smentek,
9	B. A. Hess, Jr., J. Am. Chem. Soc., 2010, 132, 17111-17117.
10	[6] a) T. Hoshino, S. Nakano, T. Kondo, T. Sato, A. Miyoshi, Org. Biomol. Chem., 2004,
11	2, 1456-1470; b) M. Rohmer, C. Anding, G. Ourisson, Eur. J. Biochem., 1980, 112,
12	541-547; c) P. Bouvier, Y. Berger, M. Rohmer, G. Ourisson, Eur. J. Biochem., 1980,
13	112, 549-556; d) R. Rohmer, P. Bouvier, G. Ourisson, Eur. J. Biochem., 1980, 112,
14	557-560.
15	[7] a) T. Sato, T. Hoshino, <i>Biosci, Biotechnol. Biochem.</i> , 1999 , <i>63</i> , 2189-2198; (b) T.
16	Dang, G. D. Prestwich, Chem. Biol., 2000, 7, 643-649.
17	[8] T. Sato, T. Hoshino, Biosci, Biotechnol. Biochem., 2001, 65, 2233-2142.
18	[9] T. Hoshino, T. Sato, Chem. commun., 1999, 2005-2006.
19	[10] T. Hoshino, M. Kouda, T. Abe , S. Ohashi, Biosci, Biotechnol. Biochem., 1999, 63,
20	2038-2041.
21	[11] T. Hoshino, M. Kouda, T. Abe , T. Sato, Chem. Commun., 2000, 1485-1486.
22	[12] M. Morikubo, Y. Fukuda, K. Ohtake, N. Shinya, D. Kiga, K. Sakamoto, M. Asanuma,
23	H. Hirota, S. Yokoyama , T. Hoshino, J. Am. Chem. Soc., 2006, 128, 13148-13194.
24	[13] T. Sato, S. Sasahara, T. Yamakami, T. Hoshino, Biosci, Biotechnol. Biochem., 2002,
25	66, 1660-1670.
26	[14] T. Hoshino, T. Abe, M. Kouda, Chem. Commun., 2000, 441-442.
27	[15] a) L. C. Kühnel, B. M. Nestl, B. Hauer, ChemBioChem, 2017, 18, 2222-2225; b) S.
28	A. Bastian, S. C. Hammer, N. Kreß, B. M. Nestle, B. Hauer, ChemCatChem., 2017,
29	9, 4364-4368; c) S. C. Hammer, A. Marjanovic, J. M. Dominicus, B. M. Nestle, B.
30	Hauer, Nat. Chem. Biol., 2015, 11, 121-126; d) M. Seitz, P. O. Syrén, M. Seitz, B.
31	M. Nestle, B. Hauer, ChemBioChem, 2013, 14, 436-439.
32	[16] T. Sato and T. Hoshino, Biosci, Biotechnol. Biochem., 1999, 63, 1171-1180.
33	[17] T. Sato, T. Abe, T. Hoshino, Chem. Commun., 1998, 2617-2618.
34	[18] I. Abe, M. Rohmer, J. Chem. Soc., Perkin Trans 1, 1994, 783-791.
35	[19] T. Sato, M. Kouda, T. Hoshino, Biosci., Biotechnol. Biochem., 2004, 68, 728-738.
36	[20] T. Hoshino, Y. Yonemura, T. Abe , Y. Sugino, Org. Biomol. Chem., 2007, 5, 792-801.
	21

[21] D. Ueda, T. Hoshino, T. Sato, J. Am. Chem. Soc., 2013 , 135,18335-18338.
[22] Z-h Lin, H-x Long, Z. Bo, Y-q Wang, , Y-z Wu, Peptides, 2008, 29, 1798-1805.
[23] a) T. Hoshino and T. Kondo, <i>Chem. Commun.</i> 1999 , 731-732; b) T. Hoshino and S.
Ohashi , Org. Lett., 2002, 4, 2553-2556; c) S. Nakano, S. Ohashi and T. Hoshino,
Org. Biomol. Chem., 2004, 2, 2012-2022.
[24] a) K. Takahashi, Y. Sasaki, T. Hoshino, Eur. J. Org. Chem. 2018, 1477-1490; b) I.
Kaneko, Y. Terasawa, T. Hoshino, Chem. Eur. J., in press:
doi.org/10.1002/chem.201801668

35 Scheme 1. (A) Polycyclization pathways of squalene (1) into hopene (2) and hopanol
36 (3) by squalene-hopene cyclase. Squalene 1 folds in an all-prechair conformation in the

- 1 reaction cavity. (B) The cyclization consists of 8 reaction steps. (C) Polycyclization
- 2 reactions of (3S)-2,3-oxidosqualene (11) and (3R)-2,3-oxidosqualene (14). Here, 11
- 3 folds into an all-prechair structure similar to that in the polycyclization reaction of **1**,
- 4 leading to 3β -hydroxyhopene (12) and 3β -hydroxyhopanol (13). However, 14 folds into
- 5 a boat-chair-chair-chair conformation, resulting in the production of 3α -
- 6 hydroxyhopene (15) and 3α -hydroxyhopanol (16).
- 7
- 8
- 9

Incubation of 1.0 mg of 1 and that of a mixture of 11 and 14 (1.0 mg) with 2.0 mL of
cell-free homogenates was carried out at 45°C for 24 h. The lipophilic materials were

extracted with hexane. Triton X-100 present in the hexane extract was removed by

29 passage through a short SiO₂ column using hexane/EtOAc (100:20) as eluent. The

30 lipophilic materials thus collected were subjected to GC measurements. The GC

31 conditions are described in the Experimental section.

- 1 were generated by the incubation of **1** with the A306T variant (Fig. S3.1). Products **17**,
- 2 **19**, and **28** were produced by the reaction of **1** with the A306F mutant (Fig. S.1.2). Fig.
- 3 S4 shows the GC profiles of the incubation mixtures of a racemic mixture of 11 and 14
- 4 with the A360T and A306F variants. Products **29–33** were produced by the A306T
- 5 mutant. Products **34–36** were produced by the A306F mutant.
- 6 Compound names. 17: α-polypodateraene, 18: dammara-13(17)-24-diene, 19: γ -
- 7 polypodateraene, **20**: (17*E*)-(13αH)-malabarica-14(27),17,21-triene, **21**: 20*R*-dammara-
- 8 12(13), 24-diene, **22**: 20*R*-eupha-7(8),24-diene, **23**: 20*S*-tirucalla-7(8),24-diene (a new
- 9 SHC-mediated product), 24: 17-epi-dammara-20(21),24-diene, 25: neohop-13(18)-ene,
- 10 **26**: hop-21(22)-ene, **27**: 20-hydroxy-17-*epi*-dammaraene, **28**: neopolypoda-
- 11 5(6),13,17,21-teraene (rearranged skeleton of bicyclic polypodatetraene), **29**: 20*R*-
- 12 dammara-13(17),24-dien-3α-ol, **30**: 20*R*-dammara-13(17),24-dien-3β-ol, **31**: 20*R*-
- 13 dammara-12(13),24-dien-3α-ol, **32**: 20*R*-dammara-12(13),24-dien-3β-ol, **33**: (20*R*,
- 14 24*R*)-17-*epi*-epoxydammarane, **34**: polypoda-8(9),13,17,21-tetraen-3α-ol, **35**:
- 15 polypoda-7(8),13,17,21-tetraen- 3α -ol (3α -hydroxy- γ -polypodatetraene), **37**: polypoda-
- 16 7(8),13,17,21-tetraen-3 β -ol (3 β -hydroxy- γ -polypodatetraene).
- 17

Accepted Manuscr

Accepted Manuscr

36 20S configurations. Cation **8** is formed by the folding of **1** into a chair-chair-chair-chair

Boted

- 1 conformation (Scheme 1). This indicates that the native SHC furnishes the tetracyclic
- 2 product(s) with the 20S configuration, in contrast to the A306V mutant.
- 3
- 4 **Table 1**. Product distribution ratio (%) obtained from the reactions of squalene (1) with
- 5 A306X variants. The reported van der Waals volumes (nm³) are as follows: Gly,
- 6 0.00279; Ala, 0.05702; Thr, 0.19341; Val, 0.25674; Leu, 0.37876; Phe, 0.55298, ^[22] thus,
- 7 the steric bulk increases as follows: Gly<Ala<Thr<Val<Leu<Phe.
- 8

	1	1		1											
	Normal		rmal Bicycle		Tricycle	Tetracycle						Pentacycie			
		proc	lucts												
Compounds	1	2	3	17	19	28	20	18	21	22	23	24	27	25	26
Wild type	_	84	16	_	_	_	_	_	_	_	_	_	_	-	-9
SHC															U
A306G	43	45	7	_	—	—	_	_	—	—	_	_	_	4	2
A306T	2	23	2	_	_	_	_	11	13	12	8	9	4	1	1.5
A306V	2	2	_	3	1	_	2	22	31	27	8	2	_	_	
A306L	20	1	_	6	31	_	2	21	13	3	_	3	_	_	D -
A306F	56	_	_	1	42	1	_	_	_	_	_	_	_	_	

9 -: little or no production, below the limit of GC detection. There might be other

10 products that have not been characterized, but the production amounts are a little, if any

11 present.

12

13

14 **Table 2**. Product distribution ratios (%) generated by incubating oxidosqualene (**11** and

15 **14**) with A306X mutants. The steric bulk increases as follows: Ala<Thr<Val<Phe.^[22]

16

	Normal products				Bicycle			Tetra	cycle	Epoxy-			
													dammara .e
Compounds	11 & 14	12	13	15	16	34	35	36	29	30	31	32	33
Wild type	_	54.2	9.5	31.3	4.9	-	_	_	-	_	_	_	- <
SHC													
A306T	2	4	_	4	_	_	_	_	24	26	18	14	8
A306V	33	_	_	_	_	_	_	_	15	13	11	8	20
A306F	42	_	_	_	_	8	12	38	_	_	_	_	_

17

18 –: negligible or trace amount

19 The Ala306 in A. acidocaldarius SHC is widely conserved in known SHCs. Increases in

20 steric bulk (A306T and A306V) led to the accumulation of 6,6,6,5-fused tetracyclic

21 scaffolds possessing 20*R* stereochemistry in high yield (94% for A306V). The

22 production of the 20R configuration indicates that squalene had been folded in a chair-

chair-chair-boat conformation, indicating that the bulk at position 306 significantly

24 affects the stereochemical fate during the polycyclization reaction. Intriguingly,

25 epoxydammarane was generated from (3R)-oxidosqualene.