

Chemistry

Synthetic Communications An International Journal for Rapid Communication of Synthetic Organic

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

Silica supported perchloric acid and potassium bisulphate as reusable green catalysts for nitration of aromatics under solvent free microwave conditions

M. Satish Kumar, Y. Hemanth Sriram, M. Venkateswarlu, K. C. Rajanna, M. Sai Sudhakar, Purugula Venkanna & P. K. Saiprakash

To cite this article: M. Satish Kumar, Y. Hemanth Sriram, M. Venkateswarlu, K. C. Rajanna, M. Sai Sudhakar, Purugula Venkanna & P. K. Saiprakash (2017): Silica supported perchloric acid and potassium bisulphate as reusable green catalysts for nitration of aromatics under solvent free microwave conditions, Synthetic Communications, DOI: <u>10.1080/00397911.2017.1387923</u>

To link to this article: <u>http://dx.doi.org/10.1080/00397911.2017.1387923</u>

+	View supplementary material 🗗		Accepted author version posted online: 23 Oct 2017.
	Submit your article to this journal 🛽 🖉	<u>.111</u>	Article views: 6
à	View related articles 🖸	CrossMark	View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

Silica supported perchloric acid and potassium bisulphate as

reusable green catalysts for nitration of aromatics under

solvent free microwave conditions

M. Satish Kumar

Department of Chemistry, Osmania University, Hyderabad, TS, India

Y. Hemanth Sriram

Department of Chemistry, Osmania University, Hyderabad, TS, India

M. Venkateswarlu

Department of Chemistry, Osmania University, Hyderabad, TS, India

K. C. Rajanna*

Department of Chemistry, Osmania University, Hyderabad, TS, India

M. Sai Sudhakar

Department of Chemistry, BITS Pilani, Hyderabad, TS, India

Purugula Venkanna

Department of Chemistry, Osmania University, Hyderabad, TS, India

P. K. Saiprakash

Department of Chemistry, Osmania University, Hyderabad, TS, India

*Address correspondence to Prof. K. C. Rajanna, Department of Chemistry, Osmania University Hyderabad 500007, TS, India. E-mail: kcrajannaou@yahoo.com

**Supplemental data (full experimental details, and spectroscopic data) are attached a separate file website

ABSTRACT

Silica supported perchloric acid and bisulfate (SiO2/HClO4 and SiO2/KHSO4) have been developed as reusable green catalysts for nitration of aromatic compounds using NaNO2in acetonitrile medium under conventional and solvent free microwave conditions. The reaction times under microwave irradiation are significantly shorter than conventional method even though the yields obtained in microwave assisted reactions are comparable with those obtained under reflux conditions.

GRAPHICAL ABSTRACT

KEYWORDS: aromatic compounds, microwave irradiation, NANO₂, nitration, rate acceleration, SIO₂/HCLO₄, SIO₂/KHSO₄

Introduction

Nitro aromatic compounds are important precursors for various industrial products such as pharmaceuticals, plastics and dyes. In spite of voluminous literature is reported for alternative protocols, many of the catalysts used could not be recycled. Therefore, Nitro aromatic compounds are yet, mainly produced by using mixed acid (nitric acid and sulfuric acid) for nitration.^[1–3] However, this classical nitration protocol is not only hazardous, but also causes environmental pollution when the remaining (unused) nitration mixture is sent to the industry or laboratory drains. In order to eliminate and/reduce such environmental issues, there has been an upsurge in the development of environmentally safe chemistry protocols following Paul Anastas priciples.^[4] Rajesh Vekariya and Hitesh Patel^[5] summarized recent advances in the synthesis of nitrophenols following green chemistry approches.

On the other hand, design and synthesis of reusable heterogeneous catalysts received much more attention, because these catalysts can be removed easily by filtration and reused after completion of the reaction. This reusability makes the whole process eco-friendly, and thus plays a prominent role in organic chemistry due to environmental and economic considerations. In addition, heterogeneous and reusable catalysts are superior over homogeneous catalysts. Silica supported catalyst could be placed in the forefront because of its unique features such as high efficiency due to large surface area, high mechanical and thermal stabilities, greater selectivity, low toxicity, reusability, and simplicity of handling. Recently, potassium bisulphate immobilized on silica (SiO₂-KHSO₄) has been found to be an efficient, recyclable heterogeneous catalyst for synthesis of propargyl indoles.^[6] Literature survey reveals that NaHSO₄ immobilized on silica (SiO₂-NaHSO₄) could also employed as efficient heterogeneous catalyst for various organic transformations.^[9–16] On the other hand, silica supported perchloric acid (SiO₂/HClO₄) has also been accomplished as an eco-friendly heterogeneous catalyst for various types of organic reactions.^[17–24] Encouraged by these features, we wish to report clean and environment friendly protocols for nitration of aromatic compounds using NaNO₂ presence of reusable heterogeneous green

catalysts SiO₂-HClO₄ and SiO₂-KHSO₄ under reflux conditions. And we have also explored the same reactions under Microwave condition. Nevertheless, Heravi and other co-workers^[25,26] recently reported the nitration of aromatic compounds using NaNO₂in presence of KHSO₄in acetonitrile medium under un-immobilized conditions.

Results and Discussion

Initially, we have prepared Si-adsorbed catalyst (SiO₂-HClO₄ and SiO₂-KHSO₄) and characterized by SEM and XRD data. As shown in Figures 1 and 2. These observations are largely similar to those reported by Zeba Siddiqui,^[27] confirming the heterogeneous nature of catalysts which comprise adsorbed KHSO₄ and HClO₄ on silica. We have optimized the quantity of the prepared catalyst required for nitration reaction using phenol as a model substrate, and varied amounts of catalysts as shown in **Table 1**. Accordingly we used the optimized amount of catalyst in the conventional and microwave assisted nitration reactions. It is also important to note that no nitro product was observed in the absence of the catalyst.

The data compiled in **Table 1** revealed that optimum quantity of SiO₂-HClO₄ catalyst for nitration reaction is 0.2gms where as SiO₂-KHSO₄ catalyst is 0.25gms. Further increase of catalyst amount did not appreciably affect the yield of the product. The conversion yields of the nitration of phenol presented in **Table 1** also indicate that best results are obtained with SiO₂-HClO₄ over SiO₂-KHSO₄ catalyst because HClO₄ is stronger acid than KHSO₄ (Perchloric acid is a superacid with very low pKa, and HSO₄⁻ with pKa = 1.92; or K_a = 1.2 x 10⁻²).^[28] Thus HClO₄ provides strong acidity with minimal interference because perchlorate is weakly nucleophile, whereas KHSO₄ creates an acidic environment due to the complete protolysis of the ion HSO₄⁻. Scheme 2 shows a general conversion of aromatic compound to nitroarene. To examine the reusability of the catalysts (SiO₂-HClO₄ and SiO₂-KHSO₄) after completion of the reaction, the catalysts were separated from the reaction mixture by simple filtration, treated with ethyl acetate, and dried. The catalyst thus obtained was reused under otherwise similar conditions (same set of experimental conditions used in initially) and used again to corroborate the results obtained earlier. The recycled catalysts were found to be active up to four or five cycles, with a slight reduction of catalytic activity, as shown in **Figure 3**.

Nitration of aromatic compounds proceeds smoothly with NaNO₂in presence of SiO₂-HClO4 and SiO2-KHSO4 under reflux conditions in acetonitrile medium. Data presented in Tables 2 and 3 clearly demonstrate that silica supported Perchloric acid is efficient over silica supported bisulfate in terms of reaction times and yields obtained. The reaction with phenol was completed in 1.5hours in presence of SiO₂-HClO₄ and where as 2.5hours in case of SiO₂-KHSO₄. In both the cases 2-nitro phenol and 4-nitro phenols were obtained as products. Similarly, other aromatic compounds (entries 2-12) provided the corresponding nitro products in good to excellent yields under similar reaction conditions. The reaction times for all the studied reactions under conventional reflux condition are in the range of 1.5hours to 3.5hours in presence of SiO₂-HClO₄, where as in the case of SiO₂-KHSO₄ is 2.5 to 5hours. The products obtained were identified by spectroscopic methods and compared with literature reports.^[29] In order to decrease the reaction times and avoid the use of solvent, reactions were conducted under microwave (MW) irradiation. Reaction times reduced from 1.5-5hours (under reflux) to 1-4min in MW assisted reactions. Rate enhancements under microwave could be attributed due to bulk activation phenomenon,^[29] which is achieved due to rapid heating and pressure effects. On the basis of observed results, a plausible mechanism for SiO₂-HClO₄ and SiO₂-KHSO₄ catalyzed nitration could be proposed as shown in Scheme 2. The reactions in presence of silica supported catalysts with NaNO₂ gives HNO₂in the first step, due to acidic nature of silica catalysts. Nitrous acid thus formed might convert to nitric acid under reflux temperature. Ultimately, NO₂ + electrophile is generated due to the reaction between HNO₃ and silica catalysts, which then interact with aromatic compound to afford nitro compound, and catalyst is regenerated as shown in mechanistic pathway of Scheme 3.

Conclusions

In summary, we have demonstrated that nitration of aromatic compounds using NaNO₂in presence of $SiO_2/HClO_4$ and $SiO_2/KHSO_4$ (Silica supported) catalysts proceeds smoothly under reflux and solvent free microwave conditions, with high yields, short reaction times, The chosen catalysts could be recycled easily, showing that the developed protocols could also be included as good examples of green chemistry methods and advantageous over several protocols.

Experimental Details

Preparation of SiO₂/KHSO₄ and SiO₂/HClO₄ catalysts

Silica gel (4g, 100–200 mesh) was added to a solution of KHSO₄ (20 mmol) in distilled water (25ml), and stirred for about 30min at room temperature, for the adsorption of KHSO₄ onto the surface of the silica gel. Water was removed in vacuum to give a powder which was dried in an oven at 120°C for 2-3hrs to afford a SiO₂/KHSO₄ catalyst. Procedure for the preparation of SiO₂/HClO₄ catalyst is same as mentioned in the previous section for the preparation of SiO₂/KHSO₄ catalyst.

SEM and XRD analysis of SiO2/KHSO4 and SiO2/HClO4 catalysts

Scanning electron microscopic pictures of SiO₂/KHSO₄ and SiO₂/HClO₄ catalysts (Figures 1 and 2) under different magnifications in the range of 50 to 200µm revealed nonuniform morphologies with polynomial cubic crystals and flakes embedded with grain and spike like species. XRD analysis of the samples (Figure 1d) and **Figure 2d**) probably indicate amorphous nature of the catalysts. Broad peaks observed around 23 and 25 respectively (on 20 scale) could be attributed to silica. These observations are largely similar to those reported by Zeba Siddiqui,^[27] confirming the heterogeneous nature of catalysts which comprise adsorbed KHSO₄ and HClO₄ on silica.

Nitration of aromatics using SiO2/KHSO4 under conventional conditions

The optimum amount of the catalyst (SiO₂/KHSO₄ or SiO₂/HClO₄) was added to the mixture of aromatic compound (10 mmol), NaNO₂ (10 mmol) and acetonitrile, in a previously cleaned round bottom flask and stirred under reflux till the reaction is completed. Progress of the reaction was monitored by TLC. After the completion of reaction, the catalyst was separated by filtration, and the reaction mixture is treated with NaHCO₃ solution, followed by the addition of ethyl acetate. Organic layer was then separated, dried over Na₂SO₄, purified with column chromatography and evaporated under vacuum to get final product. Products thus obtained were characterized spectroscopically and obtained data were confirmed with earlier reports.^[30] Nitration of phenol in the present study afforded 2-NO₂ phenol as major product and 4-NO₂ phenol as minor component respectively.

2-NO₂ Phenol: (yellow crystalline solid) ¹HNMR (300MHz, CDCl₃): δ 9.52 (s, 1H, OH), 8.15 (dd, 1H, J = 8.5Hz, J = 8Hz), 8.12 (d, 1H, J = 8Hz) 7.55 (dd, 1H, J = 8Hz J = 7.5Hz) 6.95 (d, 1H, *J* = 8.5Hz); ¹³C NMR (75MHz, CDCl₃): δ 155.2, 137.6, 133.8, 125.1, 120.2, 119.9; mp = 43-48°C; HRMS (EI) Calcd. M, 139.1088, Found: 139.0272

4-NO₂ Phenol: (yellow powder), ¹HNMR (300MHz, CDCl₃): δ 9.95 (s, 1H, OH), 6.95 (d, 2H, *J* = 8Hz), 8.15 (d, 2H, *J* = 8Hz); ¹³C NMR (75MHz, CDCl₃): δ 161.7, 141.3, 126.3, 115.8; mp = 111-113°C; HRMS (EI) Calcd. M, 139.1086, Found: 139.0274

Microwave assisted nitration of aromatics under solvent free conditions

For the purpose of microwave assisted nitration of aromatics Aromatic compound (10 mmol), NaNO₂ (10 mmol) and optimum quantity of the catalyst (**SiO₂/KHSO₄** or **SiO₂/HCIO₄**) were taken in a previously cleaned beaker, mixed thoroughly and placed in micro-wave oven (CEM-908010, bench mate model, 300W laboratory microwave reactor), till the reaction is completed. Progress of the reaction was monitored by TLC. After the completion, the reaction mixture is treated with ethyl acetate, catalyst is separated by filtration. The filtrate and is washed with NaHCO₃ solution. Organic layer was then separated, dried over Na₂SO₄, purified with column chromatography and evaporated under vacuum to get final product as mentioned above.

Acknowledgements

The authors are grateful to the Head (Chemistry Department), Osmania University Hyderabad for constant support and encouragement.

References

^[1]Olah, G. A.; Kuhn, S. J. In Friedel-Crafts and Related Reactions; Wiley-Interscience, New York, 1964, Vol. 2.

^[2]Ingold, C. K. *Structure and Mechanism in Organic Chemistry*, 2nd ed.; Cornell University Press, Ithaca, NY, 1969.

- [3](a) Olah, G. A.; Narang, S. C.; Olah, J. A.; Lammertsma, K. Proc. Natl. Acad. Sci. U.S.A. 1982, 4487; (b) Olah, G. A.; Malhotra, R.; Narang, S. C. Nitration: Methods and Mechanism; Feuer, H. Ed.; VCH, New York. 1989.
- [4] Anastas, P. T.; Warner, J. C. *Green Chemistry: Theory and Practice*; Oxford University Press, Oxford, England, 1999.
- [5] Vekariya, R. H.; Patel, H. D. Synth. Com. 2014, 14, 2313–2335.
- [6] Mukut, G.; Tonder, H. V.; Johannes, C. B.; Benzuidenhoudt, B. *Iran. J. Chem., Eng.* **2015**, *3*, 34.
- [7] Azzam, S. H. S.; Siddekha, A. S.; Nizam, A.; Pasha, M. A. Chin. J. Catal. 2012, 33, 677–680.
- [8] Mishra, S.; Ghosh, R. Synthesis 2011, 3463–3470.
- [9] Kinfe, H. H.; Mebrahtu, F. M.; Moshapo, P. T. Synth. Comm. 2013, 43, 1237–1242.
- [10] Siddiqui, Z. N.; Farooq, F. J. Mol. Catal. A: Chem. 2012, 363-364, 451-459.
- [11] Maghsoodlou, M. T.; Heydari, R.; Habibi-Khorassani, S. M.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M.; Mojtaba, L. Synth. Comm. 2012, 42, 136–143.
- [12] Adharavana Chari, M.; Syamasundar, K. (a) J. Mol. Catal. A: Chem. 2004, 221, 137–139;
 (b) Catal. Commun. 2005, 6, 624.
- [13] Das, B.; Ravikanth, B.; Laxminarayana, K. J. Mol. Catal. A: Chem. 2006, 253, 92-95.
- [14] Das, B.; Banerjee, J. Chem. Lett. 2004, 33, 960.
- [15] Zhu, X.; Li, Z.; Jin, C.; Xu, L.; Wu, Q.; Su, W. Green Chem. 2009, 11, 163.
- [16] Khan, A. T.; Choudhury, L. H.; Ghosh, S. J. Mol. Catal. A: Chem. 2006, 255, 230–235.
- [17] Bigdeli, M. A.; Heravi, M. M.; Mahdavini, G. H. J. Mol. Catal. A: Chem. 2007, 275, 25-29.
- [18] Bigdeli, M. A.; Nemati, F.; Mahdavini, G. H. Tetrahedron Lett. 2007, 48, 6801–6804.
- [19] Bandgar, B. P.; Gawande, S. S.; Muley, D. B. Green Chem. Lett. Rev. 2010, 3, 49–54.
- [20] Maheswara, M.; Oh, S. H.; Kim, K.; Do, J. Y. Bull. Korean Chem. Soc. 2008, 29, 9.
- [21] Maheswara, M.; Siddaiah, V.; Lakishmi, G.; Vasantha, D.; Venkata Rao, C. Arkivoc 2006, 2, 201–206.
- [22] Du, Y.; Wei, G.; Cheng, S.; Hua, Y.; Linhardt, R. J. Tetrahedron Lett. 2006, 47, 307–310.
- [23] Murthy, Y. L. N.; Diwakar, B. S.; Govindh, B.; Venu, R.; Nagalakshmi, K. Chem. Sci. Trans. 2013, 2, 805–812.
- [24] Heravi, M. M.; Oskooie, H. A.; Baghernejad, B. J. Chin. Chem. Soc. 2007, 54, 767–770.
- [25] Baghernejad, B.; Heravi, M. M.; Oskooie, H. A.; Beheshtiha, Y. G.U. J. Sci. 2009, 22, 169– 173.
- [26] Karimi Zarchi, M. A.; Rahmani, F. J. Appl. Polym. Sci. 2011, 120, 2830–2834.
- [27] Siddiqui, Z. N. Arab. J. Chem. 2015. doi:10.1016/j.arabjc.2015.06.013
- [28] (a) Trummal, A.; Lipping, L.; Kaljurand, I.; Koppel, I. A.; Leito, I. J. Phys. Chem. A. 2016, 120, 3663–3669. (b) Kathleen, S.; Katherine, W.; Alsop, W. R.; Clough, S. R.; Hoyt, M.; Pugh, P. Perchlorate: Environmental Problems and Solutions, CRC Press. 2006, 16.
- [29] (a) Varma, R. S.; Clark, D. E.; Sutton, W. H.; Lewis, D. A. *Microwaves: Theory and Application in Material Processing IV*, "*Eds.*, American Ceramic Society, Westerville, OH; 1997, 357; (b) Varma, R. S. *Green Chem.* 1999, *1*, 43.
- [30] (a) Satish Kumar, M.; Rajendar Reddy, K.; Rajanna, K. C.; Venkanna, P.; Krishnaiah, G. Synth. React. Inorg. Met.-Org. Chem. 2013, 43, 977–983; (b) Rajanna, K. C.; Satish Kumar, M.; Venkanna, P.; Ramgopal, S.; Venkateswarlu, M. Int. J. Org. Chem. 2011, 1, 250–256; (c) Satish Kumar, M.; Rajanna, K. C.; Rajendar Reddy, K.; Venkateswarlu, M.; Venkanna, P. Synth. Comm. 2013, 43, 2672–2677; (d) Satish Kumar, M.; Rajanna, K. C.;

Venkateswarlu, M.; Venkanna, P.; Saiprakash, P. K. Synth. Comm. 2015, 45, 251–2258; (e) Srinivas, P.; Rajanna, K. C.; Satish Kumar, M.; Rajendar Reddy, K. Synth. React. Inorg. Metal-Org. Nano-Met. Chem. 2014, 44, 364–370.

Entry	Phenol	Amount of catalyst (gms)					
	(mmol)	SiO2-HClO4	Yield (%)	SiO2-KHSO4	Yield (%)		
1	10	0.1	50	0.1	48		
2	10	0.15	65	0.15	58		
3	10	0.20	91	0.20	67		
4	10	0.25	92	0.25	76		
5	10	0.3	92	0.3	76		
6	10	-		0.4	77		

Table 1. Catalyst optimization for nitration of Phenol.

S. No	Substrate	Product	Conventional		Microwave	
			R. T	Yield	R. T	Yield
			(hrs)	(%)	(min)	(%)
1	Phenol	2- NO2:4- NO2 Phenol	1.5	75:16	1	78:20
2	β- Napthol	1-NO2-2-naphthol	3	82	2	90
3	Anisole	4- NO2:2- NO2 Anisole	2	74:15	2	85:12
4	Toulene	4- NO2:2- NO2 Toulene	2	70:20	1	82:15
5	p-Cresol	4-Me-2-NO2 Phenol	1.5	82	2	94
6	o-Cresol	2-Me-4-NO2 Phenol	2.5	76	2	85
7	Chloro benzene	4- NO2:2- NO2 Cl benzene	3	65:18	2	72:18
8	Indole	3-NO2 Indole	2.5	80	1	92
9	Napthalene	2-NO2:1-NO2Napthalene	3	64:15	2	72:16
10	Benzoic acid	3- NO2 Benzoic acid	3.5	72	2	80
11	Thiophene	2-NO2 Thiophene	3	74	2	85
12	Furan	2- NO2 furan	2	75	2	82

Table 2. Nitration of aromatic compounds in presence of SiO2/HClO4 catalyst.

S. No	Substrate	Product	Conventional		Microwave	
			R. T	Yield (%)	R. T (min)	Yield (%)
			(hrs)			
1	Phenol	2- NO2:4- NO2 Phenol	2.5	64:12	2	68:15
2	β- Napthol	1-NO2-2-naphthol	5	62	4	70
3	Anisole	4- NO2:2- NO2 Anisole	3	65:15	4	70:16
4	Toulene	4- NO2:2- NO2 Toulene	3	58:20	2	60:22
5	p-Cresol	4-Me-2-NO2 Phenol	3	75	3	82
6	o-Cresol	2-Me-4-NO2 Phenol	3.5	70	3	74
7	Chloro benzene	4- NO2:2- NO2 Cl benzene	4	54:15	3	62:18
8	Indole	3-NO2 Indole	2.5	78	2	85
9	Napthalene	2-NO2:1- NO2Napthalene	4	50:16	3	62:15
10	Benzoic acid	3- NO2 Benzoic acid	4	68	4	75
11	Thiophene	2-NO2 Thiophene	3.5	65	4	70
12	Furan	2- NO2 furan	3	70	3	75

Table 3. Nitration of aromatic compounds in presence of SiO2/KHSO4 catalyst.

Figure 1. (a) SEM of *Si-KHSO4* with 100µm magnification. (b): XRD analysis of SiO2/ KHSO4 catalyst.

Figure 2 (a): SEM of *Si-HClO4* with 100µm magnification. (b): XRD analysis of Si-HClO4 catalyst.

Scheme 1. Nitration of aromatic compounds using Si-supported HClO4 and KHSO4 as catalysts in presence of NaNO2.

Scheme 2. Adsorption of HClO4 and KHSO4 on SiO2 to get SiO2-HClO4 and SiO2-KHSO4.

Scheme 3. Mechanism of nitration in presence of SiO2-HClO4 and SiO2-KHSO4.

