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ABSTRACT: Chemoselective iron-catalyzed dehydrogenative cross-coupling using 2-acylimidazoles is described. The addition of 

a phosphine oxide ligand substantially facilitated the generation of tert-butoxy radicals from di-tert-butyl peroxide, allowing for 

efficient benzylic C–H bond cleavage under mild conditions. Extensive mechanistic studies revealed that the enolization of 2-

acylimidazole proceeded through dual iron catalyst activation, followed by subsequent chemoselective cross-coupling with a benzyl 

radical over an undesired benzyl radical-derived homo-coupling dimer that inevitably formed in earlier reported conditions. A vari-

ety of alkylarenes, aliphatic alkane and functionalized 2-acylimidazoles were applicable, demonstrating the synthetic utility of the 

present catalysis. Contiguous all-carbon quaternary carbons were constructed through dehydrogenative cross-coupling. The catalyt-

ic chemoselective activation of 2-acylimidazole over bidentate coordinative and much more acidic malonate diester was particular 

noteworthy. Catalytic oxidative cross-enolate coupling of two distinct carboxylic acid equivalents was also achieved using acetoni-

trile as a coupling partner. 

Keywords: redox catalysis, Lewis acid, C-H activation, dehydrogenative, dual iron activation, hydrocarbon, α-alkylation, quater-

nary carbon center  

 

Introduction 

Inert C–H bond transformation to a C–C bond is considered an 

ideal process for constructing carbon frameworks in terms of 

atom- and step-economy.
1
 Abundant hydrocarbon feedstock, 

such as toluene derivatives and alkanes, is a highly attractive 

starting material for sp
3
 C–H bond functionalization. Trans-

formation of an sp
3
 C–H bond to a C–C bond, however, re-

mains a significant challenge in modern organic chemistry 

compared to the transformation of an sp
2
 C–H bond due to the 

lack of a coordinating π-bond.
2
 Due to the intrinsic low acidity 

of the sp
3 
C–H bonds of hydrocarbon feedstock, deprotonative 

activation by Brønsted bases alone is quite difficult.
3
 On the 

other hand, a radical process is considered an efficient activa-

tion mode for sp
3 
C–H bond functionalization,

4 
but the radical 

process generates extremely reactive transient radical species 

and these radical species easily couple with each other, there-

by providing undesired homo-coupling dimers as major prod-

ucts.
5
 Therefore, olefins, aromatics, and organometallic rea-

gents as an activated form are generally utilized as coupling 

partners to readily capture the transient radicals generated over 

undesired homo-coupling dimer formation derived from tran-

sient radicals (Scheme 1A).
6-8

 On the other hand, coupling an 

sp
3
 carbon with transient radicals is a formidable challenge 

because efficient in-situ activation such as deprotonation may 

be required to avoid generating a significant amount of homo-

coupling dimers derived from the transient radicals (Scheme 

1B).
8
 Recently, Chatani’s and You’s groups reported elegant 

directing group-assisted strategies for dehydrogenative cross-

coupling reactions to generate
 
in-situ catalytic active spe-

cies.
9,10 

These reactions required a high temperature, however, 

presumably to efficiently generate transient radicals derived 

from alkylarenes (thermal radical generation) (Scheme 1C). 

   Alkylation of carbonyls is one of the most fundamental and 

well-established Csp
3
–Csp

3
 bond-forming transformations.

11 
In 

general, alkylation of carbonyls is performed using alkyl hal-

ide with stoichiometric amounts of strong bases such as lithi-

um diisopropylamide for activating carbonyls. This conven-

tional method, however, has several drawbacks. 1) Basic con-

ditions limit the functional group tolerance and chemoselec-

tive deprotonative activation of less acidic carbonyls over 

more acidic carbonyls.
12

 2) Alkyl halides must be prepared.
13

 

For example, benzyl bromide is commonly prepared from 

toluene with bromine or N-bromo succinimide. 3) Sterically-

hindered substrates are difficult to use. Especially, construct-

ing a contiguous all-carbon quaternary carbon center is quite 

challenging.
14

 In contrast, dehydrogenative C–C bond for-

mation of carbonyls with hydrocarbon feedstock is an ideal 

process. Li’s pioneering work was performed using tautomer-

izable 1,3-diketones with diarylmethane derivatives.
15

 Several 

examples were recently reported using hydrocarbon feedstock 

as an alkylating reagent for coupling with carbonyls.
16

 These 

reported reactions, however, require the use of tautomerizable 

carbonyls, 1.3-diketones or 1,3-ketoesters, to rapidly capture 

the transient radicals (Scheme 1A).
17

 Moreover, high tempera-

ture is needed to generate radical species and most cases suf-

fered from the homo-coupling formation of hydrocarbon, re-

sulting in only a moderate chemical yield.
16d,17

 Herein we de-

veloped a catalytic dehydrogenative Csp
3
–Csp

3
 bond-forming 

reaction using hydrocarbon feedstock with non-tautomerizable 

Page 1 of 13

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

2-acylimidazole under mild conditions (Scheme 1D).
18,19

 No-

tably, we observed only a trace amount of the undesired ho-

mo-coupling dimer derived from hydrocarbon feedstock. Ex-

tensive mechanistic studies revealed that ligand addition sub-

stantially facilitated the generation of tert-butoxy radicals 

from di-tert-bulyl peroxide (DTBP), allowing for catalyst-

controlled transient radical generation from feedstock hydro-

carbon. In addition, dual activation of 2-acylimidazoles by an 

iron catalyst occurred for efficient enolization. 

 

 

Scheme 1. Radical Process for C-H to C-C Transformation  

 

 

 

Results and Discussion 

1. Development of Iron-Catalyzed Dehydrogenative Cou-

pling of 2-Acylimidazole with Toluene 

We began our investigation using 2-acylimidazole 1a as an 

enolate precursor in toluene (2a) with FeCl3 and DTBP at 

120 °C (Table 1). A low chemical yield was observed without 

the ligand (entry 1). Pyridine derivatives considerably facili-

tated the reaction and benzylated product 3aa was produced in 

moderate yield (entries 2–4). Pyridine oxide (L4) was not ef-

fective for the present catalysis (entry 5). Next, we investigat-

ed monophosphine ligands (entries 6–8). Among them, L7 

afforded product 3aa in high yield. To confirm the effective-

ness of the monodentate ligands, we evaluated several biden-

tate ligands (entries 9–11). N,N-ligand, 2,2'-bipyridyl (L8), 

1,10-phenanthroline (L9), and BINAP (L10) afforded product 

3aa in only low chemical yield. These results led us to further 

Table 1. Conditions Screening
a 

 

aConditions: 1a (0.23 mmol), 2a (1.14 ml, 47 equiv). Yields 

were determined by 1H-NMR analysis using 1,2,4,5-

Tetramethylbenzene as an internal standard. bIsolated yield was 

shown. cA mixture of toluene (0.49 ml, 20 equiv) and benzene 

(0.65 ml, 0.20 M) was used. 

 

investigate the optimal amount of ligand L7 (entries 12–15). 

Although a range of 5-20 mol% of the ligand did not affect the 
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chemical yield, 30 mol% ligand decreased the yield. To 

demonstrate the mildness of the present catalysis, the reaction 

was performed under lower temperature. Previous catalytic 

dehydrogenative cross-coupling reactions of toluene deriva-

tives were generally performed at temperatures higher than 

120 °C.
20

 In contrast, our catalysis can be performed at 80 °C, 

and product 3aa was observed in 79% yield with a prolonged 

reaction time (entry 16). In addition, the amount of DTBP was 

reduced to 1.7 equivalents with no detrimental effects (entry 

17). During the reaction optimization process, we found that 

L7 was completely oxidized to phosphine oxide L11 within 

several minutes based on crude 
31

P-NMR, indicating that the 

actual ligand was L11.Thus, we evaluated L11 as a ligand. We 

envisioned that Fe(III) species would be reduced to afford 

Fe(II) species followed by Fenton-type reaction, generating 

tert-butyoxy radical and 
t
BuO-Fe(III) species. Thus we also 

investigate FeCl2 as a catalyst. Although combined use with 

FeCl3 afforded a yield comparable to that obtained using L7 

(entry 18), the FeCl2-L11 system exhibited superior catalytic 

performance, and the desired product was isolated in 83% 

yield (entry 19). It is noteworthy that only a trace amount of 

dibenzyl, an undesired homo-coupling product of toluene (2a), 

was observed under the optimized conditions (entry 19), while 

some dibenzyl was observed at 120 °C. The combination of 

FeCl2 with L7 was less effective (entry 20). Ligand could be 

reduced to 2.5 mol% without significant loss of the chemical 

yield (entry 21). Benzene could be used as a co-solvent and 

product 3aa was observed in 76% yield using 20 equivalents 

of toluene (entry 22). 

 

   As control experiments, each component was omitted from 

the standard conditions (Table 2). No product was observed in 

the absence of L11 or FeCl2 (entries 2 and 3). DTBP was also 

essential for promoting the reaction, presumably to generate 

the benzyl radical (entry 4).
21

 Single use of each component 

was also ineffective for promoting the reaction (entries 5–7). 

Although the reaction was not promoted at 80 °C in the ab-

sence of L11 (entry 3), moderate yield was observed at 120 

°C, a temperature at which the tert-butoxy radical would not 

be generated by heating without the assistance of FeCl2/L11. 

These results indicated that FeCl2/L11 facilitated the homolyt-

ic cleavage of DTBP, generating tert-butoxy radicals at low 

temperature. The superiority of L11 was further confirmed by 

the reaction at 80 °C (entries 9 and 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Control Experiments
a 

 

aConditions: 1a (0.23 mmol), 2a (1.14 ml, 47 equiv). Yields 

were determined by 1H-NMR analysis using 1,2,4,5-

Tetramethylbenzene as an internal standard. 

 

 

2. Mechanistic Studies 

2-1. Elucidation of the Role of Ligand 

To check the effect of Lewis base, Lewis basic product 3aa 

was added to the reaction conditions using p-xylene (2b) as a 

substrate without L11 at 120 °C (Scheme 2a). In the absence 

of 3aa, product 3ab was produced in 4% yield after stirring for 

1 h. In the presence of 1.0 equivalent of 3aa, the yield in-

creased, indicating that Lewis basic 3aa also facilitated the 

reaction rate and no catalyst deactivation by product 3aa oc-

curred. Next, we evaluated 3aa and L11 as a ligand to facili-

tate the reaction rate at lower reaction temperature (Scheme 

2b). Although 10 mol% 3aa facilitated the reaction (0% yield 

vs 36% yield), L11 was a more effective ligand, affording 

product 3ab in 92% yield.  

 

Scheme 2. Effect of Lewis Bases 
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   Next, we investigated the Lewis base effect of the C–H bond 

cleavage of toluene (Scheme 3). Without FeCl2 and L11, no 

homo-coupling dimer 4 was observed at 80 °C. On the other 

hand, 4 was detected at 120 °C, suggesting that tert-butoxy 

radicals could be thermally generated at 120 °C (Scheme 3a). 

In the presence of FeCl2 at 80 °C, no homo-coupling dimer 4 

was observed. In sharp contrast, homo-coupling dimer 4 was 

observed in the presence of both FeCl2 and L11, indicating 

that FeCl2/L11 facilitated the generation of tert-butoxy radi-

cals through a Fenton-type reaction (Scheme 3).
22

 We also 

confirmed that in the absence of FeCl2, no homo-coupling 

dimer 4 was observed using L11 and DTBP, indicating that 

the combined use of FeCl2 and L11 efficiently controls the 

generation of tert-butoxy radicals. 

 

Scheme 3.  Effect of Lewis Bases in C-H Bond Cleavage 

 

 

 

2-2. UV-Vis Spectrum Measurements 

To gain insight into in situ-generated iron species, we per-

formed UV-Vis spectrum measurements. Iron(III) chloride 

affords LnFeCl2
+
 and FeCl4

–
 species in a Lewis basic solvent 

such as acetonitrile (eq. 1).
23

  

 

 

 

   We first confirmed the characteristic absorptions derived 

from FeCl4
–
, as shown in Figure 1. When FeCl3 was dissolved 

in non-coordinative dichloroethane (DCE), no characteristic 

absorptions derived from FeCl4
–
 ions were observed (Figure 

1a). On the other hand, the characteristic absorptions derived 

from FeCl4
–
 ions were observed in acetonitrile at around 312 

and 360 nm, indicating the generation of an enhanced Lewis 

acidic LnFeCl2
+
 species (Figure 1b). The premixed solution of 

FeCl2 with DTBP in chlorobenzene provided similar absorp-

tions to the FeCl3 in acetonitrile, suggesting that 
t
BuO-FeCl2 

would also generate 
t
BuO-LnFeCl

+
 and 

t
BuO-FeCl3

–
 species 

(Figure 1c). 

 

 Figure 1. UV-Vis Spectroscopic Analysis of FeCl3 in different 

solvent (a) FeCl3 in DCE (black line). (b) FeCl3 in CH3CN (or-

ange line). (c) tBuO-FeCl2 in CH3CN (FeCl2 and DTBP were 

stirred in PhCl for 4 h at 120 °C. After removal of PhCl, resulting 

mixture was heated in CH3CN for 1 h at 80 °C) (purple line) 

 

   Due to the low solubility of 
t
BuO-FeCl2 prepared from FeCl2 

with DTBP in chlorobenzene, further studies were conducted 

using FeCl3 (Figure 2). As a control, phosphine oxide L11 and 

acylimidazole 1a in DCE were used respectively, and no ab-

sorption around 300-400 nm was observed (Figure 2a, 2b). 

The mixed solution of FeCl3 with L11 did not provide the 

characteristic absorptions derived from FeCl4
–
 ions, suggesting 

that L11 would not generate LnFeCl2
+ 

species (Figure 2c). In 

contrast, the mixed solution of FeCl3 with 2-acylimidazole 1a 

provided absorptions derived from FeCl4
–
 ions (Figure 2d), 

suggesting that the combined use of both FeCl3 and 1a would 

generate LnFeCl2
+
 species. We also confirmed the generation 

of FeCl4
– 

species by ESI-mass analysis (Figure S11). Further-

more, the premixed solution of FeCl3 with acylimidazole 1a 

and L11 provided absorptions derived from FeCl4
–
 ions (Fig-

ure 2e), although the absorptions were weaker than that with-

out L11 (Figure 2d). These results indicated that L11 slightly 

disturbs the coordination of 1a to iron catalysts. This assump-

tion is also consistent with the findings that the use of an in-

creased amount of ligand L11 decreased the chemical yield 

(Table 1, entry 15).  

nm
240.00 300.00 350.00 400.00 450.00

A
b
s.

1.000

0.800

0.600

0.400

0.200

0.000

―    (a) FeCl3 in DCE 

―    (b) FeCl3 in CH3CN    

―    (c) tBuO-FeCl2 in CH3CN    
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Figure 2. UV-Vis spectrum of iron catalysts (a) phosphine oxide 

L11 in DCE (light blue line). (b) 2-acylimidazole 1a in DCE 

(pink line). (c) FeCl3 with L11 in DCE (blue line) (d) FeCl3 with 

2-acylimidazole 1a (red line) (e) FeCl3 with 2-acylimidazole 1a 

and L11 in DCE (green line) 

Scheme 4. Kinetic Isotope Effect  

 

 

 

2-3. Kinetic Isotope Effect Studies and Kinetic Studies 

To obtain mechanistic insight into the turnover-limiting step, a 

series of kinetic isotope effect (KIE) studies were performed 

(Scheme 4).
24 

A competitive KIE study using a mixture of 

2a/2a(d
8
) revealed a large KIE value (kH/kD = 5.94) (Scheme 

4A). On the other hand, no significant KIE was observed 

(kH/kD = 1.97), when the two parallel reactions were performed 

under optimized conditions using 2a or 2a(d
8
) (Scheme 4B). 

These results suggest that the C–H bond cleavage step of tolu-

ene has only minor contribution to the turnover-limiting and 

the overall rate of the reaction. In sharp contrast, relatively 

large KIE (kH/kD = 4.75) was observed from two parallel reac-

tions using 1a/1a(d
2
) (Scheme 4C), indicating that enolization 

of 2-acylimidazole has major contribution to the turnover-

limiting and occur in the turnover-limiting transition state.
7b,24f

 

   The initial-rate kinetic study of the reaction of 1a and 2a was 

performed next to gain further information about the reaction 

mechanism. The reaction profiles of the present catalytic de-

hydrogenative coupling are summarized in Table 3.  

 

 

Table 3. Kinetic Profile of the Catalytic Dehydrogenative 

Benzylation of 2-Acylimidazoles 1a 

 

 

The reaction rate displayed second-order dependency on the 

catalyst (FeCl2/L11), almost zeroth order dependency on 2-

acylimidazole 1a and DTBP. The nearly second-order kinetic 

dependence with respect to the catalyst suggests that two iron 

species would be involved in turnover-limiting step, enoliza-

tion of 2-acylimidazole.
25

 These result and UV-Vis spectro-

scopic analysis (Figure 2) and ESI-mass analysis (Figure S11) 

suggest that Lewis acid/Brønsted base dual activation of 2-

acylimidazole 1a by the two iron species would be operative, 

as depicted in Scheme 5.  

 

 

 

Scheme 5. Dual Activation Mode of 2-Acylimidazole by 

Two Iron Complex  

 

 

 

nm
240.00 300.00 350.00 400.00 450.00

A
b
s.

1.000

0.800

0.600

0.400

0.200

0.000

―    (a)    L11 in DCE    

―    (b)    1a in DCE 

― (c) FeCl3 + L11 in DCE 

―    (d)    FeCl3 + 1a in DCE 

― (e) FeCl3 + L11 + 1a    in DCE 
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2-4. Enolate-Radical Pathway vs Radical-Radical Pathway 

To elucidate whether C–C bond formation proceeded with 

radical-enolate coupling or radical-radical coupling, we con-

ducted a series of control experiments (Scheme 6).
26

 When the 

premixed catalyst prepared from FeCl2 with DTBP was sub-

jected to the reaction with benzaldehyde (5), aldol product 6 

was observed in 22% yield with a small amount of dehydrated 

product, suggesting in-situ enolate formation of 1a (Scheme 

7a). Cyclopropyl-substituted 2-acylimidazole 1b as a substrate 

for the radical clock experiment afforded the benzylated prod-

uct 3ba in 79% yield without any ring-opened products 

(Scheme 7b).
27

 In addition, no dimerization of 1a was ob-

served using premixed catalyst prepared from FeCl2 with 

DTBP, suggesting that an enolate-radical coupling pathway 

would be operative rather than a radical-radical coupling 

pathway (Scheme 7c). 

 

 

Scheme 6. Enolate-Radical Pathway vs Radical-Radical 

Pathway 

 

 

Scheme 7. Detection of 2-Acylimidazole-Derived Enolate 

 

 

2-5. Proposed Catalytic Cycle  

Mechanistic insights based on the obtained results are summa-

rized as follows. 

1. Ligand L11 facilitates the generation of tert-butoxy 

radicals from iron(II) and DTBP, achieving efficient C–

H bond cleavage of toluene under mild conditions. 

2. Lewis basic 2-acylimidazoles generate the FeCl2
+
 and 

FeCl4
–
 species. 

3. The turnover-limiting step is enolization of 2-

acylimidazole and dual activation by iron species is 

achieved in enolization. 

4. Enolate-radical coupling is operative in the C–C bond 

forming step. 

 

   Based on a series of mechanistic studies, a plausible catalyt-

ic cycle is depicted in Figure 3. First, iron(III) species I would 

be generated from FeCl2 and DTBP through a Fenton-type 

reaction with the assistance of L11. 2-Acylimidazole 1a coor-

dinates to the iron catalyst, affording Fe(III)
+
 and Fe(III)

–
 spe-

cies II. The enolization step involves two iron species as a 

Lewis acid/Brønsted base cooperative catalyst, affording eno-

late form III and radical form IV.
26

 Benzyl C–H bond 

(PhCH2–H: BDE = 89.8 ± 0.6 kca/mol) cleavage is achieved 

by tert-butoxy radicals (
t
BuO–H: BDE = 105.7 ± 0.7 kcal/mol) 

whose generation is controlled by Fe(II)/L11, not by thermal 

heating.
27

 The benzyl radical V couples with enolate III rather 

than radical intermediate IV to afford intermediate VI. Oxida-

tion of iron(II) was again facilitated by L11, providing product 

3aa with regeneration of the active iron species I. 
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Figure 3. Proposed Catalytic Cycles 

3. Reaction Scope 

We investigated the scope of the iron-catalyzed dehydrogena-

tive coupling (Table 4). Product 3aa was isolated in 64% yield 

using reduced amount of toluene (15 equivalents) under 3 

mol% catalyst. The gram-scale reaction also proceeded with-

out any detrimental effects and product 3aa was isolated in 

3.94 g. Various xylenes were applicable to the present cataly-

sis (3ab–3ad). The reactions of 4- and 3-bromotoluenes af-

forded the products in high yield (3ae and 3af), although 2-

bromotoluene afforded the product 3ag in moderate yield, 

presumably due to the steric hindrance. Other arylhalides, 

chloro- and iodo-toluenes, afforded the product in high yield 

(3ah and 3ai). Electron-rich methylarene was applicable, alt-

hough the chemical yield was moderate (3aj). Base-sensitive 

substrates having p-acetoxy and methoxycarbonyl groups af-

forded the product at high temperature without L11 (3ak and 

3al). 2,5-Dimethyl thiophene was incorporated into 2-

acylimidazole in high yield (3am). A secondary benzylic sub-

strate including 3-chloro-1-phenylpropane, which has addi-

tional electrophilic sites, selectively reacted at a benzylic posi-

tion (3an and 3ao). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Substrate Scope of Alkylarenes
a 

 

aConditions: 1 (0.23 mmol), 2 (1.14 ml), 24 h. Isolated yields were 

shown. bReaction time was 8 h. c3 mol% catalyst and 15 equiv of 
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toluene was used for 48 h. d3.94 g of 3aa was isolated. eReaction 

was performed at 90 °C. fReaction was performed at 120 °C using 

3.3 equiv of DTBP without L11 gYield was determined by 1H-

NMR analysis using 1,2,4,5-Tetramethylbenzene as an internal 

standard. 

 

   Next, we examined various 2-acylimidazoles (Table 5). A 

cyclopropyl-substituted substrate afforded product 3ba in high 

yield without forming ring-opened products. A benzyl-

substituted substrate was selectively benzylated in high yield 

(3ca). Terminal alkene survived under the optimized condi-

tions (3da). A sterically congested substrate was applicable to 

the present catalysis (3ea). Although protecting group-free 

hydroxy groups terminated the catalysis, TBS-protected hy-

droxy groups had no detrimental effects (3fa). α-Phenyl and 3-

thienyl 2-acylimidazole afforded the products 3ga and 3ha in 

moderate yield. N-Boc glycine-attached substrate was smooth-

ly converted to benzylated product 3ia. It is noteworthy the 

further functional group tolerance was demonstrated using 

complex molecules, such as important pharmaceuticals, indo-

methacin, febuxostat and telmisartan, attached-2-

acylimidazoles (3ja-3la).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Substrate Scope of 2-Acylimidazoles
a 

 
aConditions: 1 (0.20 mmol), 2 (1.0 ml, 47 equiv), 24 h. Isolated 

yields were shown. bReaction was performed at 100 °C. cReaction 

concentration was 0.10 M. 

   Conventional alkylation of carbonyls using alkyl halides for 

the construction of an all-carbon quaternary center, is difficult 

due to the steric repulsion of bulky coupling partners.
14

 The 

present dehydrogenative catalysis enabled the construction of 

all-carbon quaternary centers (Scheme 8). Coupling cumene 

and 2-bromocumene with 2-acylimidazole 1g afforded 8 and 9, 

respectively, in moderate yield. α,α-Disubstituted 2-

acylimidazole 1m was also applicable (10). Furthermore, the 

construction of contiguous all-carbon quaternary centers was 

achieved (11), and this is the first example of the construction 

of contiguous all-carbon quaternary centers in catalytic dehy-

drogenative coupling of carbonyls.  
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Scheme 8. Construction of All-Carbon Quaternary Center
a
 

 
aConditions: 1 (0.20 mmol), 2 (1.0 ml), 24 h. Isolated yields were 

shown. b1.7 equiv of DTBP was used. cReaction was performed at 

120 °C without L11 

 

 

Scheme 9. Chemoselective Dehydrogenative Cross Cou-

pling in the Presence of Other Enolizable Carbonyls 

 

   Key to the present catalysis is the combined use of an iron 

catalyst with Lewis basic 2-acylimidazoles, enabling efficient 

enolization of 2-acylimidazole through dual iron species (see, 

section 2-2). We envisioned that 2-acylimidazole would be 

chemoselectively activated even in the presence of more acidic 

carbonyls. Malonate diester exhibits quite high acidity (diethyl 

malonate; pKa = 16.4 in DMSO, propiophenone; pKa = 24.4 in 

DMSO).
29

 Furthermore, the bidentate coordinative nature of 

the malonate diester makes chemoselective enolization of a 

less acidic functionality extremely difficult. Thus, we first 

checked the coordination ability of 2-acylimidazole and malo-

nate diester using the UV-Vis spectrum (Figure 4). As de-

scribed in section 2-2, a mixed solution of FeCl3 and 2-

acylimidazole 1a provided FeCl4
–
 ion characteristic absorp-

tions around 312 and 360 nm, suggesting the generation of the 

LnFeCl2
+
 species (Figure 4b). In contrast, the mixed solution of 

FeCl3 with diethyl malonate did not provide the characteristic 

absorptions derived from FeCl4
–
 ions (Figure 4c) and similar 

absorption as the FeCl3 solution (Figure 4a) was observed. In 

addition, the premixed solution of FeCl3 with 2-acylimidazole 

1a and diethyl malonate provided characteristic absorptions 

derived from FeCl4
–
 ions (Figure 4d), suggesting that 2-

acylimidazole could preferentially coordinate with LnFeCl2
+ 

species even in the presence of bidentate coordinative diethyl 

malonate. 

 

 

 

Figure 4. UV-Vis spectrum of iron catalysts (a) FeCl3 in DCE 

(black line). (b) FeCl3 with 2-acylimidazole 1a in DCE (red line) 

(c) FeCl3 with diethyl malonate in DCE (blue line) (d) FeCl3 with 

2-acylimidazole 1a and diethyl malonate in DCE (orange line) 

 

 

   Based on these results, we examined 1n bearing malonate 

diester as a challenging substrate for chemoselective reaction. 

First, to confirm the innate reactivity of the two functional 

groups, 1n was subject to the conventional benzylation condi-

tions using KO
t
Bu and benzyl bromide (Scheme 9a). Under 

conventional conditions, malonate diester was benzylated ex-

clusively and benzylated product 12 was observed with con-

comitant formation of di-benzylated product 13, clearly indi-

cating that the α-proton of the malonate functionality is innate-

ly much more acidic than the corresponding α-proton of 2-

acylimidazole. In stark contrast, the 2-acylimidazole function-

ality was chemoselectively benzylated under the optimized 

iron-catalyzed conditions (Scheme 9b). Chemoselective ben-

zylation of 1,4-diketone 1o was achieved under the optimized 

conditions and product 3oa was isolated in 51% yield (Scheme 

9c). An aryl methyl ketone functionality was also applicable 

(Scheme 9d).  
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―    (a)    FeCl3 in DCE 

―    (b) FeCl3 + 1a in DCE 

―    (c) FeCl3 + diethyl malonate in DCE    

― (d) FeCl3 + diethyl malonate + 1a in DCE 
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   We next applied the present catalytic dehydrogenative cou-

pling reaction to other substrates (Scheme 10). Cyclohexane 

(14) and anisole (16) could be used as alkylating agents, alt-

hough the yields were not high.
30

 Catalytic cross-oxidative 

enolate coupling of two distinct carboxylic acid equivalents 

was one of the most challenging reactions.
26,31

 Acetonitrile is a 

fascinating carboxylic acid equivalent because it is readily 

available and transforms into versatile functional groups, alt-

hough the bond dissociation energy of the α-C–H bond is rela-

tively high (BDE = 96 kcal/mol).
32

 In previous reports, α-

radicals derived from alkyl nitriles efficiently coupled with sp
2
 

carbons, including those of tautomerized 1,3-ketoesters, under 

catalytic conditions.
33

 When acetonitrile was used instead of 

toluene under slightly modified conditions, the cross-coupling 

reaction with 1a proceeded smoothly and the cross-coupling 

product derived from distinct two carboxylic acid equivalents 

19 was isolated in 53% yield. 

 

Scheme 10. Dehydrogenative Cross Coupling using 2-

Acylimidazole 1a 

 

 

 

4. Transformation of the Product 

Finally, the utility of the present iron catalysis was demon-

strated by further elaboration of the 2-acylimidazole function-

ality (Scheme 11).
34

 The 2-acylimidazole functionality was 

efficiently transformed into the corresponding carboxylic acid 

upon treatment with MeOTf followed by the addition of H2O 

and DBU, affording 20 in high yield. The use of BnOH instead 

of H2O provided benzyl ester 21 in high yield. 

 

 

Conclusion 

In conclusion, we developed a highly chemoselective iron-

catalyzed dehydrogenative cross-coupling using 2-

acylimidazoles and alkylarenes. Mechanistic studies revealed 

the role of phosphine oxide L11, and dual activation of 2-

acylimidazoles by two iron species was also elucidated. Vari-

ous alkylarenes, aliphatic alkane, acetonitrile, and functional-

ized 2-acylimidazole can be used under mild conditions. Fur-

thermore, contiguous all-carbon quaternary centers were con-

structed through dehydrogenative cross-coupling for the first 

time. It is also noteworthy that 2-acylimidazole was chemose-

lectively activated, even in the presence of bidentate coordina-

tive and much more acidic malonate diester. 

 

 

 Scheme 11. Transformation of the 2-Acylimidazole   
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