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a b s t r a c t

A novel approach for the syntheses of lophocladines A and B has been developed. These compounds were
prepared in 4–6 steps with moderate to excellent overall yields. The key step involved the nucleophilic
substitution of 4-chloronicotinic acid with the carbanion generated from phenylacetonitrile. Subsequent
reduction of the cyano group, lactamization and oxidation furnished lophocladine A in 50% yield over 4
steps. Further amination with various amines led to lophocladine B and its C1 analogues in good yields. In
addition, the synthesized compounds were evaluated for their cytotoxicity against leukaemia cells.

� 2011 Elsevier Ltd. All rights reserved.
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Naphthyridine derivatives have prompted considerable scien-
tific interest because of their broad spectrum of application in
the pharmaceutical sciences, agriculture and chemical industry.1

In a number of studies, the 2,7-naphthyridine structural fragment
was found to be a component of various polycyclic alkaloids such
as the marine alkaloid ascididemine (1) (Fig. 1) which exhibits a
wide range of pharmacological activity.2a Recently, Gross et al. iso-
lated the marine algal alkaloids, lophocladines A (2) and B (3a),
from a red alga, Lophocladia sp.3 These 2,7-naphthyridines exhib-
ited different modes of biological activity as observed from their
preliminary screening. Lophocladine A showed affinity for the
NMDA (N-methyl-D-aspartic acid) receptor while also exhibiting
d-opioid receptor antagonist activities. On the other hand, lophocl-
adine B exhibited cytotoxicity towards human lung tumour cells
and breast cancer cells.3 Although these compounds were found
to be of biological interest,2b,2c synthetic accessibility has been lim-
ited.1,4 To date, only two groups have reported the total synthesis
of lophocladines A and B via a similar key step reaction, namely
cyclisation of enamines generated from 4-benzyl- or 4-methyl-3-
cyanopyridine5 and Bredereck’s reagent.6 Thus, despite the earlier
approaches, a new and more efficient synthetic route is desirable.

Addition of nucleophiles to the a- and c-position of p-electron
deficient N-heterocyclic compounds7 is an important method for
the synthesis of functionalized compounds and has been used in
ll rights reserved.
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a number of syntheses.8 An intermolecular version of this reaction
could provide a valuable route to further transformations such as
second ring fusion to the napthyridine ring system. Herein, we re-
port the application of this methodology for the synthesis of lop-
hocladines A and B.

At the outset, unprotected 4-chloronicotinic acid (4)9 was trea-
ted with a solution of 2-phenylacetonitrile under various condi-
tions. After some experimentation, we found that this reaction
required 1.5 equiv of 2-phenylacetonitrile and 2 equiv of potas-
sium tert-butoxide (KOtBu) in N-methylpyrrolidone (NMP) at
130 �C for 30 min and gave cleanly the desired product 5 in good
yield (65%). We also examined the use of microwave irradiation
(MW) for this reaction and found that the best result (85% yield)
was obtained using conditions at 110 �C and 30 W for 4 min. As a
consequence of this successful procedure, we turned our attention
to the preparation of nicotinate 6, as shown in Scheme 1. The most
effective conditions for the methylation of 5 were found to involve
lophocladine A (2) lophocladine B (3a)ascididemine (1)

Figure 1. Examples of naturally occurring bioactive compounds containing the 2,7-
naphthyridine ring system.
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Scheme 2. Base-mediated dearomatization of naphthyridone 8.

Figure 2. ORTEP structure of compound 9.

Table 1
Synthesis of lophocladine B (3a) and its C1 analogues
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3a-g

POCl3
MeCN

100 oC, 2 h
(72%)

DMSO
120 oC

N-Nucleophiles

Entry R Product Yielda (%)

1 NH2 3a 48b

2 HN Ph 3b 95

3 HN 3c 96

4 HN 3d 98

5 N O 3e 98

6 N3 3f 97
7 MeONMe 3g 89

a Isolated yield.
b Two-step yield (see Supplementary data).
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(88%)
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0 °C, 5 h 
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Scheme 1. Synthesis of lophocladine A (2).
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the reaction in acetone with a stoichiometric amount of K2CO3 and
dimethyl sulfate (Me2SO4)10 at room temperature for 40 min. The
yields decreased slightly with the weaker bases NaHCO3 and
Na2CO3, due to incomplete methylation. For the next step, we
investigated the lactamization and subsequent oxidation of 7 to
lophocladine A. We first explored the reduction of 6 using catalytic
hydrogenation (Pd/C or PtO2), however, these methods failed to re-
duce the cyanide group, even under high pressures of H2 (75 psi),
and products of pyridine ring hydrogenation were observed. After
some experimentation, we found that 6 could be converted into 7
by using NaBH4 and CoCl2 in a solvent mixture of benzene and
MeOH.11 The cyclised product 7 was obtained in 72% yield. With
the naphthyridine framework in hand, we further oxidized com-
pound 7 into laphocladine A (2) using various reagents: 2,3-di-
chloro-5,6-dicyanobenzoquinone (DDQ), KOtBu/O2, and 1,8-
diazabicycloundec-7-ene (DBU)/O2. In general, the best results
were obtained using strong bases in the presence of O2 (KOtBu in
DMF at rt for 1 h, 87%; or DBU in dichloroethane at 80 �C for 2 days,
92%).

It should be noted that compound 5 was unstable and slowly
cyclised into 8 in a polar solvent such as dimethylsulfoxide (DMSO)
(Scheme 2).12 In general, nitrile 5 could be prepared in good yields,
despite being contaminated with the cyclised product 8 in <5%
yield. Transformation of 8 into lophocladine A (2) was possible
via palladium-catalyzed deoxygenation, however, preparation of
the O-triflate proved to be problematic. The reaction of 8 in the
presence of NaH in DMF at room temperature gave complete con-
version into an intermediate that was trapped with iodomethane
(MeI) to give N-methyl-1,4-dihydropyridine 9 in good yield
(91%).13 The structure of this dearomatized product was confirmed
by X-ray crystallographic analysis (Figure 2).14 Thus, the prepara-
tion of 6 was carefully carried out under controlled conditions to
avoid the formation of 9.

Having successfully developed a route for the synthesis of
lophocladine A (2), we subsequently synthesized lophocladine B
(3a) and its derivatives using the known chlorination/amination
method shown in Table 1. Chlorination of 2 was performed using
phosphorus oxychloride (POCl3) and the desired product 10 was
obtained in good yield (72%).15 In general, lophocladine derivatives
3b-g were prepared in excellent yields.



Table 2
Cytotoxic activities

Entry Compound IC50 (lM)a

MOLT-3 HL-60

1 2 > 150 > 150
2 3a 32 45

3b 3b 24 51
4b 3c 59 > 150
5 3d 27 43

6b 3e > 150 > 150
7 3f > 150 > 150
8 3g 80 > 150

9b 10 31 17
10 VP-16 0.04 1.3

a XTT assay. The IC50 values are given as the mean of three duplicate experiments.
b Compounds did not completely dissolve in the test medium.
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Lophocladines A, B and C1 analogues were evaluated for in vitro
cytotoxic activity against human acute promyelocytic leukaemia
(HL-60)16 and mouse acute lymphoblastic leukaemia (MOLT-3) cell
lines using an XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-
tetrazolium-5-carboxanilide] assay. As shown in Table 2, although
all the compounds were less potent than the reference compound
(etoposide, VP-16), the order of potency as a function of the naph-
thyridine C1 position was halogen, primary- and secondary-ami-
ne > tert-amine, suggesting that this position is also important for
enhanced cytotoxic activity.

In conclusion, we have developed a novel method for the prep-
aration of lophocladine A and B, as well as its C1 analogues and
have evaluated their cytotoxicity. Our strategy can be applied for
the synthesis of other C4 analogues using commercially available
heteroaromatic aldehydes to generate various cyano derivatives.
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