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ABSTRACT: We report a novel strategy to prepare valuable nitriles and ketones
through the conversion of esters under metal-free conditions. By using the I2/PCl3
system, various substrates including aliphatic and aromatic esters could react with
acetonitrile and arenes to afford the desired products in good to excellent yields. This
method is compatible with a number of functional groups and provides a simple and
practical approach for the synthesis of nitrile compounds and aryl ketones.

Nitriles and ketones are two important kinds of organic
intermediates which have played an important role in

organic synthesis, pharmaceuticals, agrochemicals, and materi-
als.1 Typical methods for the synthesis of nitriles include Kolbe
nitrile synthesis,2 Sandmeyer reactions,3 Rosenmund−von
Braun reactions,4 and the dehydration of amides with various
dehydration systems.5 Alternatively, the preparation of nitriles
from carboxylic acids,6 aldehydes,7 and alcohols8 has also been
reported. However, these methods usually require equivalent
toxic metal cyanides, harsh reaction conditions, or two or more
reaction steps. Esters are common chemicals that widely exist
in nature. The development of practical and efficient
transformations of esters to nitriles is highly demanded. To
the best of our knowledge, only a few examples of direct
conversion of esters to nitriles were reported. Unfortunately,
these methods require two reaction steps and at least 1 equiv
of metallic reagents such as dimethylaluminum amide and
diisobutylaluminum hydride or NaN(SiMe3)2.

9 With respect to
the synthesis of ketones, the Friedel−Craft acylation reaction is
the main route to prepare aromatic ketones.10 However, the
acylated reagents are usually limited to carboxylic acids, acyl
chlorides, and anhydrides. In 2000, Olah demonstrated the
only example where ester was used as the acylated reagent for
preparing aromatic ketones.11 Nevertheless, this method was
limited because of the large excess of trifluoromethanesulfonic
acid (5.0 equiv) and narrow substrate scope. Therefore,
seeking a simple, general, and practical way to synthesize
various nitriles and ketones from esters is attractive.
Molecular iodine is a simple and readily available chemical

which was used in various oxidation reactions, deprotecting
reactions, and other transformations.12 Recently, we are
interested in the applications of phosphorus compounds and
iodine in organic synthesis.13 As a part of our ongoing research,
we envisioned that, if nitriles and ketones could be prepared
from esters in the presence of I2 and PCl3, a cheap, simple, and
metal-free reaction for the synthesis of these products will be

developed. Herein, we report an iodine-promoted protocol,
which provides access to nitriles and ketones from esters in the
presence of air. Thus, by using the I2/PCl3 system, virous
nitriles including aliphatic and aromatic nitriles were generated
from the reaction of esters with acetonitrile (Scheme 1a). On
the other hand, acylation reactions also took place with arenes
to give the corresponding ketones in high yields (Scheme 1b).

We started our investigations using methyl benzoate (1a)
and acetonitrile as model substrates (Table 1). Thus, 1a (0.3
mmol), molecular iodine (0.15 mmol), PCl3 (0.3 mmol), and
CH3CN (0.6 mL) in a closed sealed tube were treated at 160
°C for 36 h. We were encouraged to observe 63% GC yield of
the product 2a was generated (entry 1). Further shortening the
reaction time gave slightly lower yield (entry 2). Interestingly,
only 38% yield of 2a was obtained when the reaction was
performed under a N2 atmosphere, which indicates that the
water in the air may have played an important role in this
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Scheme 1. Conversion of Esters to Nitriles and Ketones
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transformation (entry 3). After an extensive screening the
amount of PCl3 and I2, we found that PCl3 (0.8 equiv) and I2
(0.7 equiv) was the best choice (entries 4−9). Considering
CH3CN was used as both reagent and solvent, we further
optimized the amount of CH3CN. The results obtained
showed that neither decreasing nor increasing CH3CN could
significantly enhance the reaction efficiency (entries 10 and
11). Lower temperature dramatically reduced the desired
product (entry 12). As anticipated, no product or only a trace
amount of 2a was detected when the reaction was conducted
in the absence of PCl3 or I2 (entries 13 and 14). When PCl5
and P2O5 were used instead of PCl3, lower yields of 2a were
obtained (entries 15 and 16). Moderate amounts of water are
beneficial to the reaction (see entry 17 and Supporting
Information (SI)).
With optimized conditions in hand, we turned our attention

to examine the substrate scope. As shown in Table 2, methyl
benzoate derivatives bearing whether electron-rich or electron-
deficient substituent groups such as methyl, tert-butyl,
methoxy, fluoro, chloro, bromo, and trifluoromethyl groups
were well tolerated in these metal-free conditions (2b−2i).
Interestingly, the skeleton of herbicide cyhalofop-butyl 2j and
herbicide 2,6-dichlorobenzonitrile 2k were synthesized suc-
cessfully from the corresponding esters in good yields.14

Moreover, the scope of this reaction could be expanded to
methyl 2-naphthoate and heterocyclic substrate as exemplified
by 2l and 2m. To our delight, when alkyl esters methyl
dodecanoate and methyl 2-phenylacetate were subjected into
the reaction, the desired products were isolated in 78% and
47% yields, respectively (2n and 2p). In the case of cyclic alkyl
ester, the reaction proceeded smoothly, providing 2o in 74%

yield. Surprisingly, secondary ester methyl 2-phenylpropanoate
was also amenable under this system (2q).
To demonstrate the generality of this reaction, the

conversion of esters to ketones was tested under the similar
reaction conditions. As shown in Table 3, the reaction of
methyl benzoate with mesitylene occurred smoothly whether
mesitylene was used as solvent or in equivalent (3a).
Substrates containing methyl, tert-butyl, methoxy, fluoro,
chloro, bromo, trifluoromethyl, and cyano groups gave the
corresponding ketones in good to excellent yields (3b−3j).
One ester group could survive in this system when dimethyl
terephthalate was used (3k). Moreover, methyl 2-naphthoate
was also suitable under this system (3l). Notably, thiophene-
and furan-derived esters also reacted with mesitylene to afford
3m and 3n in 74% and 40% yields, respectively. Alkyl esters
such as methyl 2-phenylacetate and hexanoyl chloride led to
the desired products in moderate yields (3o and 3p). When an
equivalent of phenol was used as arene, 70% yield of para-
substituted product was obtained (3q). Naphthalene also
reacted with methyl benzoate to give product 3r in high
regioselectivity.
Encouraged by the above results, n-hexyl, cyclohexyl, phenyl,

cinnamyl, and benzyl esters were subjected to the reaction. As
demonstrated in Table 4, under the optimized reaction
conditions, all the substrates were converted to the
corresponding nitrile 2a and ketone 3a in good to excellent
yields. These results indicated that this reaction has good
substrate compatibility.
To probe the practicality of this transformation, two gram-

scale reactions were performed. As shown in Scheme 2, methyl
benzoate 1a (6.0 mmol), I2 (3.0 mmol), and PCl3 (6.0 mmol)

Table 1. Optimization of the Reaction Conditionsa

entry PCl3 (equiv) I2 (equiv) CH3CN (mL) yield (%)b

1 1.0 0.5 0.6 63
2 1.0 0.5 0.6 59c

3 1.0 0.5 0.6 38c,d

4 1.0 0.1 0.6 24
5 1.0 1.0 0.6 66
6 1.0 0.7 0.6 62
7 0.8 0.5 0.6 42
8 0.8 0.7 0.6 65 (62)
9 0.5 0.7 0.6 60
10 0.8 0.7 0.3 52
11 0.8 0.7 1.2 66
12 0.8 0.7 0.6 39e

13 none 0.7 0.6 N.D.
14 1.0 none 0.6 trace
15 none 0.7 0.6 48f

16 none 0.7 0.6 22g

17 0.8 0.7 0.6 75h

aReaction conditions: 1a (0.3 mmol), CH3CN, PCl3, and I2 stirred in
a 25 mL sealed tube at 160 °C for 36 h. N.D. = Not detected. Isolated
yield in parentheses. bGC yield based on 1a using n-dodecane as an
internal standard. c22 h. dUnder N2.

e130 °C. fPCl5 was used instead
of PCl3.

gP2O5 was used instead of PCl3.
hH2O (0.6 mmol) was added

additionally under N2.

Table 2. Conversion of Methyl Esters to Nitrilesa

aReaction conditions: 1 (0.3 mmol), CH3CN (0.6 mL), PCl3 (0.24
mmol), and I2 (0.21 mmol) stirred in a sealed tube with air at 160 °C
for 36 h. Yield based on ester. bReactions were conducted under N2,
and H2O (0.6 mmol) was added additionally. cPCl3 (0.3 mmol) was
used. d120 °C. eI2 (0.3 mmol) was used.
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were stirred in mesitylene (12 mL) at 160 °C for 70 h. As
anticipated, 96% yield of product 3a was generated (eq 1).
Under the similar reaction conditions, the reaction of 1a with
acetonitrile produced the corresponding product 2a in 51%
yield (eq 2).
Some control experiments were performed to elucidate the

mechanism of this reaction. When HCl was used instead of

PCl3, 69% yield of benzoic acid was observed (eq 3) (Scheme
3). When we considered the reaction of benzoic acid with

PCl3, acid chloride may be the highly active species in the
acylation of arenes. We then subjected benzoyl chloride to the
reaction, and 99% (with 0.5 equiv of PCl3) and 31% (no PCl3)
yields of 3a were obtained, respectively (eq 4). To confirm the
carboxylic acid could directly react with acetonitrile to afford
the corresponding nitriles, benzoic acid was used instead of
methyl benzoate, and the product 2a was generated in 51%
yield (eq 5). However, whether benzoic acid or benzoyl
chloride was used, no product was detected in the absence of
I2. Conversely, moderate yields of 2a were observed in the
presence of I2 (eqs 5 and 6). These results indicated that
molecule I2 plays an important role in this transformation.
Although the detailed mechanism was unclear, on the basis

of the above results and previous reports,13,15 plausible
reaction pathways were proposed in Scheme 4. First, PCl3
reacted with H2O which existed in the air or solvent to give
HCl. In the presence of I2, HCl, and HI, methyl ester 1 then
could be converted to intermediate carboxylic acid A and acid
chloride B in situ, which were also detected by GC−MS.
Finally, the reaction of B with CH3CN or arene produced
nitrile 2 (see SI) or ketone 3 with the aid of I2. On the other
hand, molecular I2 reacts with CH3CN to form intermediate C.
Nucleophilic attacks of C from carboxylic acid A generated
intermediate D, which undergoes the rearrangement to form
intermediate E. Mumm rearrangement16 of E yielded
intermediate F. Further Mumm rearrangement of F gives the

Table 3. Conversion of Methyl Esters to Ketonesa

aReaction conditions: 1 (0.3 mmol), arene (0.6 mL), PCl3 (0.3
mmol), and I2 (0.15 mmol) were stirred in a sealed tube with air at
160 °C for 36 h. Yield based on ester. bMesitylene (1.2 mmol) and
DCE (0.3 mL) were used. cReactions were conducted under N2, and
H2O (0.6 mmol) was added additionally. dPCl3 (0.21 mmol) was
used. ePCl3 (0.45 mmol), mesitylene (0.1 mL), 48 h. f24 h. g130 °C.
hPhenol (1.2 mmol) and DCE (0.6 mL) were used. iNaphthalene
(1.8 mmol) and DCE (0.6 mL) was used.

Table 4. Substrate Applicability of Different Estersa

entry R = yield of 2a (%) yield of 3a (%)b

1 n-hexyl 58 70
2 cyclohexyl 41 74
3 phenyl 55 94
4 cinnamyl 62 88
5 Bn 68 98

aReaction conditions: for nitriles: 1 (0.3 mmol), CH3CN or arene
(0.6 mL), PCl3 (0.3 mmol), and I2 (0.15 mmol) were stirred in a
sealed tube at 160 °C for 36 h. Yield based on esters. bPCl3 (0.24
mmol) and I2 (0.21 mmol) were used.

Scheme 2. Gram-Scale Reactions

Scheme 3. Control Experiments
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intermediate G. Elimination of acetic acid from G afforded the
corresponding product 2. Therefore, the carbon atom of CN
originated from the carbonyl carbon of ester.
In summary, we have successfully demonstrated an iodine

promoted conversion of esters to valuable nitriles and ketones
under metal-free conditions. By using the I2/PCl3 system, a
variety of esters including aliphatic esters and aromatic esters
could react with acetonitrile or arenes to afford the
corresponding products in good to excellent yields. This
method is practical and easily scaled-up, which provides a
simple and efficient way for the preparation of nitriles and
ketones.

■ EXPERIMENTAL SECTION
General Information. Unless otherwise noted, all reactions were

carried out in closed sealed oven-dried Schlenk tubes under air.
Reagents and solvents were obtained from commercial suppliers and
used without purification. Flash column chromatography was
performed using 200−300 mesh silica gel. Visualization on TLC
was achieved by the use of UV light (254 nm). A FULI GC-9790II
equipped with an FID detector was used to analyze the reaction
mixtures. 1H NMR and 13C{1H} NMR spectroscopies were recorded
on a Bruker AV-II 500 MHz NMR spectrometer (1H 500 MHz,
13C{1H} 125.76 MHz) in CDCl3. The coupling constants J are given
in Hz. Chemical shifts for 1H NMR are referred to internal Me4Si (0
ppm). GC−MS was conducted on a Shimadzu GCMS-QP2010 plus
equipped with an EI ion source. High resolution mass spectra
(HRMS) (TOF) were measured using an electrospray ionization
(ESI) mass spectrometry.
Typical Procedure for Conversion of Methyl Esters to

Nitriles. Under air, a mixture of aryl ester 1 (0.3 mmol), CH3CN (0.6
mL), I2 (53.3 mg, 0.21 mmol), and PCl3 (21 μL, 0.24 mmol) was
stirred in a 25 mL closed sealed tube in an oil bath at 160 °C for the
indicated time. After the mixture was cooled down to the room
temperature, the mixture was quenched with Na2S2O3 aqueous
solution and was extracted with EtOAc three times. Then the
combined the organic layer was dried over MgSO4 and filtrated. The
filtrate was concentrated, and the residue was further purified by
column chromatography on silica gel to give the product nitriles 2.
Procedure for the Preparation of 2a on Gram Scale. Under

air, a mixture of aryl ester 1a (1.874 mL, 15.0 mmol), CH3CN (30
mL), I2 (2664.9 mg, 10.5 mmol), and PCl3 (1.05 mL, 12.0 mmol) was
stirred in a 100 mL closed sealed tube in an oil bath at 160 °C for 70
h. After the mixture was cooled down to the room temperature, the
mixture was quenched with Na2S2O3 aqueous solution and was
extracted with EtOAc three times. Then the combined organic layer
was dried over MgSO4 and filtrated. The filtrate was concentrated,
and the residue was further purified by column chromatography on
silica gel to give the product 2a in 0.788 g.

Yields were based on two parallel reactions, and the mass of the
product is the total mass of two parallel reactions!

Benzonitrile (2a).17 Colorless oil, yield 62% (38.3 mg). Eluent:
Petroleum ether/EtOAc = 50/1. 1H NMR (500 MHz, CDCl3) δ
7.64−7.61 (m, 2H), 7.59−7.57 (m, 1H), 7.47−7.44 (m, 2H).
13C{1H} NMR (125.76 MHz, CDCl3) δ 132.8, 132.1, 129.2, 118.9,
112.4. GC−MS (EI, 70 eV) m/z = 103 (M+). HRMS (ESI-TOF) m/
z: [M + H]+ Calcd for C7H6N 104.0500, found 104.0490.

4-Methylbenzonitrile (2b).17 Colorless oil, yield 67% (47.0 mg).
Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500 MHz,
CDCl3) δ 7.57−7.53 (m, 2H), 7.28−7.26 (m, 2H), 2.42 (s, 3H).
13C{1H} NMR (125.76 MHz, CDCl3) δ 143.7, 132.1, 129.8, 119.2,
109.3, 21.9. GC−MS (EI, 70 eV) m/z = 117 (M+). HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C8H8N 118.0657, found 118.0747.

2-Methylbenzonitrile (2c).18 Yellow oil, yield 63% (44.2 mg).
Eluent: Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz,
CDCl3) δ 7.59 (d, J = 10.0 Hz, 1H), 7.49−7.46 (m, 1H), 7.32−7.31
(d, J = 5.0 Hz, 1H), 7.27−7.25 (m, 1H), 2.54 (s, 3H). 13C{1H} NMR
(125.76 MHz, CDCl3) δ 141.9, 132.7, 132.5, 130.2, 126.2, 118.1,
112.8, 20.5. GC−MS (EI, 70 eV) m/z = 117 (M+). HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C8H8N 118.0657, found 118.0732.

4-(tert-Butyl)benzonitrile (2d).19 Yellow oil, yield 82% (78.2 mg).
Eluent: Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz,
CDCl3) δ 7.59 (d, J = 5.0 Hz, 2H), 7.48 (d, J = 10.0 Hz, 2H), 1.33 (s,
9H). 13C{1H} NMR (125.76 MHz, CDCl3) δ 156.7, 132.0, 126.2,
119.2, 109.3, 35.3, 31.0. GC−MS (EI, 70 eV) m/z = 159 (M+).
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C11H14N 160.1126,
found 160.1169.

4-Methoxybenzonitrile (2e).17 White solid, yield 31% (24.8 mg).
Eluent: Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz,
CDCl3) δ 7.59 (d, J = 10.0 Hz, 2H), 6.96 (d, J = 5.0 Hz, 2H), 3.86 (s,
3H). 13C{1H} NMR (125.76 MHz, CDCl3) δ 162.9, 134.0, 119.3,
114.8, 104.0, 55.6. GC−MS (EI, 70 eV) m/z = 133 (M+). HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C8H8NO 134.0606, found
134.0774.

4-Fluorobenzonitrile (2f).17 White solid, yield 53% (38.4 mg).
Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500 MHz,
CDCl3) δ 7.73−7.69 (m, 2H), 7.22−7.18 (m, 2H). 13C{1H} NMR
(125.76 MHz, CDCl3) δ 165.1 (d, 1JC‑F = 256.6 Hz), 134,7 (d, 3JC‑F =
10.1 Hz), 118.1, 116.9 (d, 2JC‑F = 22.6 Hz), 108.6 (d, 4JC‑F = 3.8 Hz).
GC−MS (EI, 70 eV) m/z = 121 (M+). HRMS (ESI-TOF) m/z: [M
+ H]+ Calcd for C7H5FN 122.0406, found 122.0970.

4-Chlorobenzonitrile (2g).17 Colorless oil, yield 47% (39.0 mg).
Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500 MHz,
CDCl3) δ 7.64 (m, 2H), 7.53 (m, 2H). 13C{1H} NMR (125.76 MHz,
CDCl3) δ 139.6, 133.4, 129.7, 118.0, 110.8. GC−MS (EI, 70 eV) m/z
= 138 (M+). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C7H5ClN
138.0111, found 138.0657.

4-Bromobenzonitrile(2h).17 White solid, yield 52% (56.8 mg).
Eluent: Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz,
CDCl3) δ 7.64 (d, J = 15.0 Hz, 2H), 7.53 (d, J = 10.0 Hz, 2H).
13C{1H} NMR (125.76 MHz, CDCl3) δ 133.4, 132.7, 128.0, 118.1,
111.3. GC−MS (EI, 70 eV) m/z = 182 (M+). HRMS (ESI-TOF) m/
z: [M + H]+ Calcd for C7H5BrN 181.9605, found 181.9818.

4-(Trifluoromethyl)benzonitrile (2i).20 Colorless oil, yield 56%
(57.4 mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500
MHz, CDCl3) δ 7.83−7.81 (m, 2H), 7.78−7.76 (m, 2H). 13C{1H}
NMR (125.76 MHz, CDCl3) δ 134.6 (q, 2JC‑F = 34.0 Hz), 132.7,
126.2 (q, 3JC‑F = 3.8 Hz), 123.1 (d, 1JC‑F = 272.9 Hz), 117.5, 116.1.
GC−MS (EI, 70 eV) m/z = 171 (M+). HRMS (ESI-TOF) m/z: [M
+ H]+ Calcd for C8H5F3N 172.0374, found 172.1027.

3,4-Difluorobenzonitrile (2j).21 White solid, yield 46% (38.4 mg).
Eluent: Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz,
CDCl3) δ 7.54−7.46 (m, 2H), 7.34−7.27 (m, 1H). 13C{1H} NMR
(125.76 MHz, CDCl3) δ 154.6−152.4 (dd, JC‑F = 12.6 Hz, 259.1 Hz),
151.4−149.3 (dd, JC‑F = 13.8 Hz, 254.0 Hz), 129.7−129.6 (m), 121.6
(d, JC‑F = 20.1 Hz), 118.9 (d, JC‑F = 18.9 Hz), 116.9, 109.0−109.0
(m). GC−MS (EI, 70 eV) m/z = 139 (M+). HRMS (ESI-TOF) m/z:
[M]+ Calcd for C7H3F2N 139.0234, found 139.0400.

Scheme 4. Plausible Reaction Pathways
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2,6-Dichlorobenzonitrile (2k).22 White solid, yield 65% (67.0 mg).
Eluent: Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz,
CDCl3) δ 7.51−7.43 (m, 3H). 13C{1H} NMR (125.76 MHz, CDCl3)
δ 138.5, 133.9, 128.2, 114.4, 113.3. GC−MS (EI, 70 eV) m/z = 172
(M+). HRMS (ESI-TOF) m/z: [M]+ Calcd for C7H3Cl2N 170.9643,
found 170.9635.
2-Naphthonitrile (2l).17 White solid, yield 54% (49.6 mg). Eluent:

Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz, CDCl3) δ
8.22(s, 1H), 7.92−7.88 (m, 3H), 7.66−7.59 (m, 3H). 13C{1H} NMR
(125.76 MHz, CDCl3) δ 134.7, 134.2, 132.3, 129.2, 129.1, 128.4,
128.1, 127.7, 126.4, 119.3, 109.4. GC−MS (EI, 70 eV) m/z = 153 (M
+). HRMS (ESI-TOF) m/z: [M]+ Calcd for C11H7N 153.0578, found
153.0898.
Thiophene-2-carbonitrile (2m).17 Colorless oil, yield 42% (27.4

mg). Eluent: Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz,
CDCl3) δ 7.63−7.61 (m, 2H), 7.14−7.12 (m, 1H). 13C{1H} NMR
(125.76 MHz, CDCl3) δ 137.5, 132.6, 127.7, 114.3, 109.9. GC−MS
(EI, 70 eV) m/z = 109 (M+). HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C5H4NS 110.0064, found 110.0234.
Dodecanenitrile (2n).22 Colorless oil, yield 78% (84.4 mg). Eluent:

Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz, CDCl3) δ 2.33
(t, J = 7.1 Hz, 2H), 1.68−1.62 (m, 2H), 1.47−1.41 (m, 2H), 1.31−
1.26 (m, 14H), 0.88 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (125.76
MHz, CDCl3) δ 119.9, 31.9, 29.6, 29.5, 29.3, 28.8, 28.7, 25.4, 22.7,
17.1, 14.1. GC−MS (EI, 70 eV) m/z = 181 (M+). HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C12H24N 182.1909, found 182.1959.
Cyclohexanecarbonitrile (2o).23 Colorless oil, yield 74% (48.4

mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500 MHz,
CDCl3) δ 2.65−2.61 (m, 1H), 1.88−1.83 (m, 2H), 1.76−1.66 (m,
4H), 1.54−1.41 (m, 4H). 13C{1H} NMR (125.76 MHz, CDCl3) δ
122.7, 29.5, 28.0, 25.2, 24.1. GC−MS (EI, 70 eV) m/z = 109 (M+).
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C7H12N 110.0970,
found 110.0929.
2-Phenylacetonitrile (2p).24 Colorless oil, yield 47% (33.0 mg).

Eluent: Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz,
CDCl3) δ 7.38−7.35 (m, 2H), 7.33−7.30 (m, 3H), 3.72 (s, 2H).
13C{1H} NMR (125.76 MHz, CDCl3) δ 130.0, 129.2, 128.1, 128.0,
118.0, 23.6. GC−MS (EI, 70 eV) m/z = 117 (M+). HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C8H8N 118.0657, found 118.0700.
2-Phenylpropanenitrile (2q).25 Yellow oil, yield 44% (34.6 mg).

Eluent: Petroleum ether/EtOAc = 30/1. 1H NMR (500 MHz,
CDCl3) δ 7.40−7.31 (m, 5H), 3.90 (q, J = 7.3 Hz, 1H), 1.64 (d, J =
7.3 Hz, 3H). 13C{1H} NMR (125.76 MHz, CDCl3) δ 137.1, 129.2,
128.1, 126.7, 121.6, 31.3, 21.5. GC−MS (EI, 70 eV) m/z = 131 (M+).
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C9H10N 132.0813,
found 132.0799.
Typical Procedure for Conversion of Methyl Esters to

Ketones. Under air, a mixture of aryl ester 1 (0.3 mmol), arene (0.6
mL), I2 (38.1 mg, 0.15 mmol), and PCl3 (27 μL, 0.3 mmol) was
stirred in a 25 mL closed sealed tube in an oil bath at 160 °C for the
indicated time. After the mixture was cooled down to the room
temperature, the mixture was quenched with Na2S2O3 aqueous
solution and was extracted with EtOAc three times. Then the
combined organic layer was dried over MgSO4 and filtrated. The
filtrate was concentrated, and the residue was further purified by
column chromatography on silica gel to give the product 3.
Procedure for the Preparation of 3a on Gram Scale. Under

air, a mixture of aryl ester 1a (0.75 mL, 6.0 mmol), mesitylene (12
mL), I2 (761.4 mg, 3.0 mmol), and PCl3 (0.525 mL, 6.0 mmol) was
stirred in a 50 mL closed sealed tube in oil bath at 160 °C for 70 h.
After the mixture was cooled down to the room temperature, the
mixture was quenched with Na2S2O3 aqueous solution and was
extracted with EtOAc three times. Then the combined organic layer
was dried over MgSO4 and filtrated. The filtrate was concentrated,
and the residue was further purified by column chromatography on
silica gel to give the product 3a in 1.29 g.
Yields were based on two parallel reactions, and the mass of the

product is the total mass of two parallel reactions!
Mesityl(phenyl)methanone (3a).26 Yellow oil, yield 98% (131.8

mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500 MHz,

CDCl3) δ 7.80 (d, J = 7.7 Hz, 2H), 7.58−7.55 (m, 1H), 7.45−7.42
(m, 2H), 6.89 (s, 2H), 2.33 (s, 3H), 2.08 (s, 6H). 13C{1H} NMR
(125.76 MHz, CDCl3) δ 200.8, 138.5, 137.4, 136.9, 134.2, 133.6,
129.4, 128.8, 128.4, 21.2, 19.4. GC−MS (EI, 70 eV) m/z = 224 (M+).
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H17O 225.1279,
found 225.1283.

Mesityl(p-toly)methanone (3b).27 Yellow oil, yield 83% (118.6
mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500 MHz,
CDCl3) δ 7.70 (d, J = 7.7 Hz, 2H), 7.24 (d, J = 7.9 Hz, 2H), 6.89 (s,
2H), 2.41 (s, 3H), 2.33 (s, 3H), 2.08 (s, 6H). 13C{1H} NMR (125.76
MHz, CDCl3) δ 200.4, 144.5, 138.3, 137.2, 135.0, 134.2, 129.6, 129.5,
128.3, 21.8, 21.2, 19.3. GC−MS (EI, 70 eV) m/z = 238 (M+). HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C17H19O 239.1436, found
239.1452.

Mesityl(o-tolyl)methanone (3c).26 Yellow solid, yield 90% (128.6
mg). Eluent: Petroleum ether/EtOAc = 40/1. 1H NMR (500 MHz,
CDCl3) δ 7.41−7.35 (m, 2H), 7.32−7.30 (m, 1H), 7.16 (t, J = 7.4
Hz, 1H), 6.88 (s, 2H), 2.70 (s, 3H), 2.33 (s, 3H), 2.10 (s, 6H).
13C{1H} NMR (125.76 MHz, CDCl3) δ 202.7, 140.0, 138.5, 138.5,
137.0, 134.4, 132.2, 132.2, 131.9, 128.5, 125.9, 21.8, 21.2, 19.4. GC−
MS (EI, 70 eV) m/z = 238 (M+). HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C17H19O 239.1436, found 239.1513.
(4-(tert-Butyl)phenyl)(mesityl)methanone (3d).28 Yellow oil, yield

94% (158.0 mg). Eluent: Petroleum ether/EtOAc = 40/1. 1H NMR
(500 MHz, CDCl3) δ 7.74 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.4 Hz,
2H), 6.89 (s, 2H), 2.33 (s, 3H), 2.09 (s, 6H), 1.34 (s, 9H). 13C{1H}
NMR (125.76 MHz, CDCl3) δ 200.5, 157.4, 138.3, 137.2, 134.8,
134.2, 129.4, 128.3, 125.7, 35.2, 31.1, 21.2, 19.4. GC−MS (EI, 70 eV)
m/z = 280 (M+). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C20H25O 281.1905, found 281.1907.

Mesityl(4-methoxyphenyl)methanone (3e).26 Yellow oil, yield
76% (115.8 mg). Eluent: Petroleum ether/EtOAc = 30/1. 1H NMR
(500 MHz, CDCl3) δ 7.66−7.61 (m, 2H), 6.78−6.71 (m, 4H), 3.70
(s, 3H), 2.19 (s, 3H), 1.96 (s, 6H). 13C{1H} NMR (125.76 MHz,
CDCl3) δ 199.2, 164.0, 138.2, 137.2, 134.1, 131.8, 130.5, 128.3, 114.0,
55.5, 21.2, 19.3. GC−MS (EI, 70 eV) m/z = 254 (M+). HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C17H19O2 225.1385, found 225.1390.

Fluorophenyl)(mesityl)methanone (3f).29 Yellow oil, yield 82%
(119.0 mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500
MHz, CDCl3) δ 7.84−7.81 (m, 2H), 7.13−7.09 (m, 2H), 6.90 (s,
2H), 2.33 (s, 3H), 2.08 (s, 6H). 13C{1H} NMR (125.76 MHz,
CDCl3) δ 199.2, 166.1 (d, 1JC‑F = 255.3 Hz), 138.7, 136.5, 134.1,
133.1 (d, 4JC‑F = 2.7 Hz), 132.1 (d, 3JC‑F = 9.5 Hz), 128.4, 116.0 (d,
2JC‑F = 22.0 Hz), 21.2, 19.4. GC−MS (EI, 70 eV) m/z = 242 (M+).
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H16FO 243.1185,
found 243.1259.

Chlorophenyl)(mesityl)methanone (3g).30 Yellow oil, yield 81%
(125.8 mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500
MHz, CDCl3) δ 7.63 (d, J = 10.0 Hz, 2H), 7.29 (d, J = 10.0 Hz, 2H),
6.78 (s, 2H), 2.21 (s, 3H), 1.96 (s, 6H). 13C{1H} NMR (125.76
MHz, CDCl3) δ 198.3, 139.0, 137.7, 135.3, 134.7, 133.1, 129.7, 128.1,
127.4, 20.1, 18.3. GC−MS (EI, 70 eV) m/z = 259 (M+). HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C16H16ClO 259.0890, found
259.0907.

Bromophenyl)(mesityl)methanone (3h).31 Yellow oil, yield 90%
(163.6 mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500
MHz, CDCl3) δ 7.57 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H),
6.80 (s, 2H), 2.23 (s, 3H), 1.98 (s, 6H). 13C{1H} NMR (125.76
MHz, CDCl3) δ 199.7, 138.8, 136.3, 136.1, 134.2, 132.2, 130.9, 129.0,
128.5, 21.2, 19.4. GC−MS (EI, 70 eV) m/z = 303 (M+). HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C16H14BrO 303.0385, found
303.0379.

Mesityl(4-(trifluoromethyl)phenyl)methanone (3i).26 Yellow
solid, yield 63% (110.4 mg). Eluent: Petroleum ether/EtOAc = 50/
1. 1H NMR (500 MHz, CDCl3) δ 7.91 (d, J = 8.1 Hz, 2H), 7.71 (d, J
= 8.2 Hz, 2H), 6.92 (s, 2H), 2.35 (s, 3H), 2.07 (s, 6H). 13C{1H}
NMR (125.76 MHz, CDCl3) δ 199.7, 139.9, 139.1, 136.0, 134.8 (d,
2JC‑F = 32.7 Hz), 134.3, 129.7, 128.6, 125.9 (q, 3JC‑F = 3.8 Hz), 123.6
(d, 1JC‑F = 272.9 Hz), 21.2, 19.4. GC−MS (EI, 70 eV) m/z = 292 (M
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+). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H16F3O
293.1153, found 293.0990.
4-(2,4,6-Trimethylbenzoyl)benzonitrile (3j).32 White solid, yield

74% (110.6 mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR
(500 MHz, CDCl3) δ 7.89 (d, J = 7.9 Hz, 2H), 7.75 (d, J = 8.0 Hz,
2H), 6.92 (s, 2H), 2.34 (s, 3H), 2.06 (s, 6H). 13C{1H} NMR (125.76
MHz, CDCl3) δ 199.3, 140.2, 139.4, 135.6, 134.27, 132.8, 129.7,
128.6, 118.0, 116.7, 21.2, 19.4. GC−MS (EI, 70 eV) m/z = 249 (M+).
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H16NO 250.1232,
found 250.1795.
Methyl 4-(2,4,6-trimethylbenzoyl) benzoate (3k).33 White solid,

yield 65% (110.0 mg). Eluent: Petroleum ether/EtOAc = 30/1. 1H
NMR (500 MHz, CDCl3) δ 8.11 (d, J = 8.6 Hz, 2H), 7.86 (d, J = 8.2
Hz, 2H), 6.91 (m, 2H), 3.95 (s, 3H), 2.34 (s, 3H), 2.07 (s, 6H).
13C{1H} NMR (125.76 MHz, CDCl3) δ 200.2, 166.3, 140.5, 139.0,
136.3, 134.3, 130.1, 129.7, 129.3, 128.5, 52.5, 21.2, 19.4. GC−MS (EI,
70 eV) m/z = 282 (M+). HRMS (ESI-TOF) m/z: [M + H]+ Calcd
for C18H19O3 283.1334, found 283.1333.
Mesityl(naphthalen-2-yl)methanone (3l).34 White solid, yield

95% (156.2 mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR
(500 MHz, CDCl3) δ 8.17 (s, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.93−
7.86 (m, 3H), 7.62−7.59 (m, 1H), 7.54−7.51 (m, 1H), 6.95 (s, 2H),
2.38 (s, 3H), 2.12 (s, 6H). 13C{1H} NMR (125.76 MHz, CDCl3) δ
200.8, 138.6, 137.0, 136.0, 134.8, 134.4, 132.7, 132.1, 129.8, 128.8,
128.7, 128.4, 127.9, 126.8, 124.3, 21.2, 19.5. GC−MS (EI, 70 eV) m/z
= 274 (M+). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C20H19O
275.1436, found 275.1441.
Mesityl(thiophen-2-yl)methanone (3m).26 Yellow oil, yield 74%

(102.4 mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500
MHz, CDCl3) δ 7.71 (d, J = 4.9 Hz, 1H), 7.34 (d, J = 3.2 Hz, 1H),
7.09−7.07 (m, 1H), 6.88 (s, 2H), 2.32 (s, 3H), 2.16 (s, 6H). 13C{1H}
NMR (125.76 MHz, CDCl3) δ 192.9, 145.1, 138.7, 137.0, 135.0,
134.7, 134.2, 128.4, 128.3, 21.2, 19.3. GC−MS (EI, 70 eV) m/z = 230
(M+). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C14H15OS
231.0844, found 231.0847.
Furan-2-yl(mesityl)methanone (3n).35 White solid, yield 40%

(51.4 mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500
MHz, CDCl3) δ 7.65 (s, 1H), 6.94−6.93 (m, 1H), 6.88 (s, 2H),
6.53−6.52 (s, 1H), 2.32 (s, 3H), 2.16 (s, 6H). 13C{1H} NMR (125.76
MHz, CDCl3) δ 187.8, 153.3, 147.6, 139.0, 135.9, 134.6, 128.4, 120.3,
112.5, 21.2, 19.2. GC−MS (EI, 70 eV) m/z = 214 (M+). HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C14H15O2 215.1072, found
215.1081.
1-Mesitylhexan-1-one (3o).36 Yellow oil, yield 40% (52.4 mg).

Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500 MHz,
CDCl3) δ 6.82 (s, 2H), 2.68 (t, J = 7.5 Hz, 2H), 2.27 (s, 3H), 2.18 (s,
6H), 1.73−1.67 (m, 2H), 1.36−1.34 (m, 4H), 0.92−0.89 (m, 3H).
13C{1H} NMR (125.76 MHz, CDCl3) δ 211.0, 139.9, 138.2, 132.5,
128.5, 44.9, 31.5, 23.1, 22.6, 21.0, 19.1, 14.0. GC−MS (EI, 70 eV) m/
z = 218 (M+). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H23O
219.1749, found 219.1832.
1-Mesityl-2-phenylethan-1-one (3p).37 Yellow oil, yield 53% (75.6

mg). Eluent: Petroleum ether/EtOAc = 50/1. 1H NMR (500 MHz,
CDCl3) δ 7.33−7.30 (m, 2H), 7.28−7.25 (m, 1H), 7.21−7.20 (m,
2H), 6.82 (s, 2H), 4.00 (s, 2H), 2.28 (s, 3H), 2.13 (s, 6H). 13C{1H}
NMR (125.76 MHz, CDCl3) δ 207.6, 139.2, 138.5, 133.3, 132.8,
129.9, 128.6, 128.5, 127.1, 51.8, 21.1, 19.2. GC−MS (EI, 70 eV) m/z
= 238 (M+). HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for
C17H18NaO 261.1255, found 261.1313.
(4-Hydroxyphenyl)(phenyl)methanone (3q).38 White solid, yield

70% (83.2 mg). Eluent: Petroleum ether/EtOAc = 40/1. 1H NMR
(500 MHz, CDCl3) δ 8.22−8.20 (m, 2H), 7.64−7.61 (m, 1H), 7.52−
7.49 (m, 2H), 7.44−7.40 (m, 2H), 7.28−7.25 (m, 1H), 7.24−7.20
(m, 2H). 13C{1H} NMR (125.76 MHz, CDCl3) δ 165.2, 151.0, 133.6,
130.2, 129.3, 129.5, 128.6, 125.9, 121.8. GC−MS (EI, 70 eV) m/z =
198 (M+). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C13H11O2
199.0759, found 199.0946.
Naphthalen-1-yl(phenyl)methanone (3r).39 White solid, yield

48% (66.8 mg). Eluent: Petroleum ether/EtOAc = 40/1. 1H NMR
(500 MHz, CDCl3) δ 8.11−8.09 (m, 1H), 8.02−8.00 (m, 1H), 7.94−

7.92 (m, 1H), 9.89−7.87 (m, 2H), 7.62−7.58 (m, 2H), 7.56−7.49
(m, 3H), 7.48−7.45 (m, 2H). 13C{1H} NMR (125.76 MHz, CDCl3)
δ 198.0, 138.4, 136.4, 133.8, 133.2, 131.3, 131.0, 130.4, 128.5, 128.4,
127.8, 127.3, 126.5, 125.7, 124.4. GC−MS (EI, 70 eV) m/z = 232 (M
+). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H13O 233.0966,
found 233.1073.
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