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INTRODUCTION

Heteroaromatics are an essential class of molecules in the realm of organic chemistry,
among which the nitrogen-heterocycles comprised of pyridine and pyrrole-frameworks have
garnered the attention of chemists for several years. The widespread attention stems from the
fact that substituted pyridine scaffolds constitute an essential structural feature in several
natural products and other multipurpose molecules which find their applications in different
fields of science ranging from biology to medicine to advanced materials.! Besides, pyridine-
based structures also find utility in several other fields such as asymmetric catalysis,?
supramolecular chemistry,’ and cancer therapy.* Likewise, the pyrrole moiety has been
identified in the structural frameworks of a wide array of natural products, unnatural products,
and drug molecules.’ The importance of pyrrole-based compounds can be substantiated by their
diverse applications in the field of materials chemistry pertaining to the development of
batteries, solar cells, and the exploration of diverse optoelectronic applications.® Interestingly,
pyrrole and pyridine nuclei occur ubiquitously in a plethora of structurally diverse FDA
approved pharmaceutical drugs, so much so that they are the most aromatic nuclei in these

drugs (Figure 1 and 2).
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Figure 1. A few drugs bearing pyridine nucleus
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Figure 2. A few drugs bearing pyrrole nucleus

Some of these marketed drugs along with their targets are listed in Figure 1 and 2. Some
renowned drugs bearing the pyridine moiety include nexium (esomeprazole) and aciphex
(rabeprazole) for the treatment of acid reflux and duodenal ulcers (Figure 1);’2 avandia
(rosiglitazone A) and actos (pioglitazone B) as antidiabetic drugs;’*¢ amrinone D (inocor) and
etoriocoxib E (arcoxia) for treating patients with acute heart failure and arthritis.”f Moreover,
some potent anticancer drugs such as gleevec,’¢ sorafenib (nexovar),”" crizotinib (xalkori),”
nilotnib,” and the anti-HIV drug altrazanavir (reyataz)’ also contain the pyridine moiety
(Figure 1). Similarly, few renowned drugs bearing the pyrrole moiety are atrovastatin, the best-
selling cholesterol lowering drug which functions by inhibiting the HMG-CoA reductase
enzyme;® ketorolac and tolmetin are nonsteroidal anti-inflammatory drugs (NSAIDs) used for
treating acute pain and inflammation;®-¢ sunitinib is a multi-targeted tyrosine kinase inhibitor
possessing antitumor and antiangiogenic activities, and pyrvinium is used for treating pinworm
infestation.8d-¢

On account of several multifaceted applications of substituted pyridines and pyrroles,
synthetic chemists have long endeavoured the discovery of various pathways to achieve these
important structural motifs. Several classical methods for the synthesis of pyridine are based
upon the condensation of ammonia with a host of different carbonyl compounds.!d? Few of
these are the [5+1] condensation of 1,5-diketones with ammonia,’® the [2+2+1+1] Hantzsch
pyridine synthesis,” and the Krohnke synthesis.’d Later on, several transition metal-mediated
annulation protocols were explored which have been highlighted by Gulevich et al. in their
review article, and the references cited therein.!? Few of these cascade catalytic strategies
involve oxidative Michael condensation of oximes with o,f-unsaturated carbonyl
compounds.'%-< Others exploit the transition metal-assisted coupling/condensation of diverse

substrates to form the azatriene intermediates, which eventually follow the 6mn-
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electrocyclization route affording pyridines.!%4-f These methods possess several advantages
over the conventional condensation-based strategies, as highly substituted unsymmetrical
pyridines can be prepared from eclectic starting materials with high regioselectivity.
Nevertheless, many of these protocols suffer from disadvantages such as, the requirement of
elevated temperatures and employ expensive metal catalysts. The past couple of decades have
witnessed a surge in the thermal and transition metal-assisted [4+2] hetero Diels-Alder reaction
involving 1-azadienes and alkynes,!'#-¢ though inverse electron demand Diels-Alder strategies
have also been explored.!'4-¢ Earlier, researchers utilized the transition metals to catalyze the
[2+2+2] cycloadditions of alkynes and nitriles,' " however, later on, they discovered that the
annulation can also be achieved under metal-free condtions.!!'! Similarly, many other strategies
follow greener protocols by employing other readily available catalytic systems in place of
metal-based catalysts, or requiring solvent free conditions.!? Researchers, have also managed
to reap additional benefits by incorporating metal-free reaction conditions to multicomponent
strategies for the synthesis of pyridines as delineated by Allais ef al. in their review, and the
references cited therein.!® Substituted pyridines synthesis have also been achieved under high
stereo- and regioselectivity via direct C—H functionalization of the pyridine nucleus.!?
Advancements in synthetic strategies for achieving pyrrole motifs follow similar trends akin to
the case of pyridines. Primeval strategies for the synthesis of pyrroles represent condensation-
based protocols such as the Knorr, Paal-Knorr, and Hantzsch reactions that gained immense
popularity. '* Subsequently, the late 20™ century marked an escalation in the transition metal-
catalysed cyclizations, and multicomponent tandem coupling reactions.!’

In the last couple of decades, visible light-mediated organic syntheses have gained
immense popularity in the wake of several advantages associated with this regime. Several
organic, as well as transition metal-based photocatalysts, have been developed to harness the
energy of abundant visible light and transform it into chemical energy, thereby enabling the
generation of carbon-centred radicals under mild catalytic conditions, and hence tap the novel
reactivity of these intermediates.!® Unprecedented Pd-catalyzed transformations have been
achieved under visible-light irradiation, although an exogenous photo-catalyst may or may not
be required.!” In the case of latter, the Pd-catalyst plays a dual role!®® in several elegant
reactions, for instance, the Cqy3-Cgpn Heck coupling reaction,!8b-¢ carbonylative cross coupling
reactions, '8¢ and others.!®" The successful underpinnings of these strategies can be attributed
to the fact that irradiation of Pd(0) catalyst induces a facile single electron transfer (SET)
oxidative addition of unactivated alkyl halide, and the subsequent photoexcitation of Pd(II)-
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alkyl complex restrains the undesired B-hydride elimination process, which otherwise plagues
the traditional reactions. '8

Recently, our group developed a cascade [4+2] Ru-catalyzed annulation strategy for
accessing fused isoquinolines, wherein, we noticed that one of the cyano groups, associated
with malononitrile moiety, was selectively hydrolyzed.!” We envisioned that the five-carbon
core of the y-ketomalononitrile (including this cyanide moiety) may act as a harbinger of
pyridine nucleus, if cross coupled with a suitable partner via a cascade [5+1] annulation
strategy. Thorough literature survey revealed that recently several protocols have been
developed for the synthesis of 5- and 6- membered nitrogen heterocycles. These studies are an
extension to the catalytic carbopalladation/carbonickelation of eclectic nitrile substrates with
suitable coupling partners such as arylboronic acids and arylhydrazines to obtain ketones and
imines,?® followed by intramolecular cyclization to afford diverse N-heterocycles.?! Few of
these recent works are highlighted in Scheme 1. For instance, in 2017 Wu’s group for the first
time utilized the nitrile N atom via Pd-catalyzed nucleophilic addition of arylboronic acids with
functionalized nitriles followed by an intramolecular cyclization to access biologically active
isoquinolines and isoquinolones [Scheme 1 (i)].2!2 Chen et al. reported a Ni(Il)-catalyzed
cascade coupling of arylboronic acids to ketonitriles into substituted pyrroles and pyridines
[Scheme 1 (ii)].?!¢ A commonality that can be discerned from the mechanisms is that the initial
step engages arylboronic acids in a traditional two-electron trans-metalation with electron-
deficient Pd(II)-catalysts. The high activation energy barrier associated with this step
predisposes the necessity of elevated temperatures.>? Recently, Xu et al. discovered a Mn(I1I)-
triggered radical pathway involving the cyclization of 3-isocyano-[1,1'-biphenyl]-2-
carbonitriles with arylboronic acids to access pyrrolopyridine derivatives [Scheme 1 (iii)].2?
Keeping in mind the natural propensity of Pd-catalyzed reactions to follow a facile SET
mechanistic pathway under visible-light irradiation, and arylboronic acids as readily available
radical progenitors,”* we envisaged the synthesis of 2,4,6-triaryl-3-cyanopyridines and 2,5-
diaryl-3-cyanopyrrole derivatives [Scheme 1 (iv)]. In our strategy, the starting materials vy-
ketomalononitriles and [-ketomalononitriles were readily prepared via the addition of
malononitrile to various chalcones and a-bromoacetophenones. Further, most arylboronic
acids are commercially available. This developed photocatalytic reaction proceeds at room
temperature without the usage of exogenous photosensitizer. The constructed pyridine and
pyrrole moiety having an inbuilt nitrile functionality can be further manipulated for various

applications. Therefore, our protocol bypasses the toxic chemical maneuvers and harsh reaction
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conditions generally associated with the introduction of a nitrile functionality in to aromatic
rings, consequently endows synthetic benefits in the form of functional group transformations

and derivatizations.

Scheme 1. Strategies for the Synthesis of Fused and Isolated Nitrogen-Heterocycles

from Substrates Containing Functionalized or Activated Cyano Groups

Earlier reports
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RESULT AND DISCUSSION

We embarked on our experimentation by selecting  2-(3-oxo-1,3-
diphenylpropyl)malononitrile (1) (0.25 mmol) and phenylboronic acid (a) (1 equiv) as the
rudimentary substrates; Pd(OAc), (5 mol %) as the precatalyst, 2,2"-bipyridine (10 mol %) as
the ligand, and PTSA-H,0 (1 equiv) as the additive. Toluene (2 mL) was employed as the
solvent, and the reaction mixture was irradiated by 20 W (2 x 10 W) white LEDs at room
temperature. The progress of the reaction was monitored via thin layer chromatography, which
indicated the formation of some new species in the mixture, in the form of a new fluorescent
blue spot in a 365 nm UV chamber. The new compound was isolated, characterized by standard
spectroscopic techniques (IR, 'H NMR, 3C NMR, and HRMS). Delightfully, the analysis
confirmed that the isolated compound was 2,4,6-triphenylnicotinonitrile (1a), and the yield was

estimated to be 33%. Subsequently, single crystal X-ray diffraction studies were performed on
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one of the derivatives (1f), which further validated the structure of the product (see the
Supporting Information, Figure S1).2° It is imperative to mention that the formation of 2,4,6-
triphenylnicotinonitrile (1a) is associated with the genesis of a new C-C, a C-N, a C=N and

two C=C bonds.

After successfully characterizing the desired product, further screening process was
carried out to find the optimal reaction condition, for which 2-(3-oxo-1,3-
diphenylpropyl)malononitrile (1) (0.25 mmol) was chosen as the model substrate and
phenylboronic acid (a) (1 equiv) as the addition partner. Firstly, different solvents were
screened by replacing toluene (33%) with p-xylene (35%), m-xylene (32%), cyclohexane
(00%), 1,2-DCE (42%), MeOH (00%), CH3CN (00%), DMF (00%) DMSO (00%), and H,O
(00%) (Table 1, entries 1-10). In conclusion, 1,2-DCE (42%), was found to be the most
effective out of the lot (Table 1, entry 5). Next, the catalyst and ligands were screened by
selecting alternatives to Pd(OAc), and 2,2'-bipyridine. Although the replacement of Pd(OAc),
with Pd(TFA), resulted in a relatively lower yield (38%; Table 1, entry 11), no product was
isolated when the former was replaced with PdCl, as the catalyst (Table 1, entry 12). Moreover,
the reaction completely failed in the absence of either PdA(OAc),, 2,2'-bipyridine or PTSA-H,0
(Table 1, entries 13—15). On the contrary, the yield of the isolated product enhanced to 56%
when the loadings of Pd(OAc),, 2,2'-bipyridine and PTSA-H,0 were increased from that of
the model reaction (Table 1, entry 16). Further increasing the amount of PTSA-H,0O from 2 to
5 equiv. did not significantly improve the isolated yield of the product (58%; Table 1, entries
16 and 17). After identifying Pd(OAc), (10 mol%) and 1,2-DCE as the suitable catalyst and
solvent, respectively, few ligands such as 1,10-phenanthroline (52%), L-proline (00%), PPh;
(trace), XPhos (00%), 1,1'-bis-2-naphthol (00%) were also screened in lieu of 2,2"-bipyridine
(Table 1, entries 18—22). Although the use of 1,10-phenanthroline as a ligand was able to
produce the desired product in an appreciable yield (Table 1, entry 18), nevertheless it was
unable to dethrone 2,2'-bipyridine as the favourable ligand, due to the higher yield of product
in case of latter. Further, experiments were carried out by replacing the additive, PTSA-H,0
with other acids such as acetic acid and trifluoroacetic acid which produced (1a) in low yields
(25% and 23%, respectively) (Table 1, entries 23—24). In contrast, the replacement of PTSA
with benzoic acid or sulfuric acid turned out to be futile as almost no significant amount of the
product obtained (Table 1, entries 25-26). Further fine-tuning of the reaction was achieved by
increasing the amount of phenylboronic acid progressively from 1 to 5 equivalents. Adding 2

and 3 equivalents of phenylboronic acid resulted in escalated yields of (1a) to 66% and 72%,
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respectively. Whereas, no further improvement was observed when 5 equiv. of the same were
used (Table 1, entries 27-29). Reaction carried out in the presence of 2 x 5 W green LEDs light
(42%) and 2 x 5 W blue LEDs light (51%) were also quite favorable to the product formation
(Table 1, entries 30 and 31). The overall yield (42%) was decreased when the reaction stops
after 12 h. (Table 1, entry 32). The reaction carried out in absence of LEDs is detrimental to
product formation and and only 22% of the desired product was obtained (Table 1, entry 33).
When the reaction was performed at a higher temperature (80 °C) in the absence of light the
yield did not improve significantly. Further, the thermal reaction gave number of other side
products causing difficulties during the separation. As measure the temperature in the vicinity
of the reaction was near to the room temperature (27-30 °C) as it was performed in a well-
ventilated room below a fan. Here, the white LEDs is accelerating the reaction by reducing
Pd(I) to an active exited state Pd(0) in the presence of bipyridine ligand and enhance the
subsequent formation of aryl palladium species (I) via redox trans-metalation. On the other
hand in the absence of LEDs there might be competitive trans-metalation with Pd(II) species
there by giving only 22% yield of the product at room temperature. After screening of various
reaction parameters, the optimized standard conditions for this transformation were established
to be the use of 2-(3-oxo0-1,3-diphenylpropyl)malononitrile (1) (0.25 mmol), phenylboronic
acid (a) (3 equiv), Pd(OAc), (10 mol %), 2,2"-bipyridine (20 mol %) and PTSA-H,0 (2 equiv)
in 1,2-DCE (2 mL) as the solvent under irradiation by 20 W (2 x 10 W) white LEDs at room
temperature (Table 1, entry 28).

Table 1. Optimization of the Reaction Conditions-

NC. _CN HO\B/OH Catalyst, Ligand P CN
0 Additive, Solvent N7
+ — X
O O @ 2 x 10 W White LEDs O O

™ (@) 24h (1a)
entry  catalyst (mol %) ligand (mol %) additive (equiv) solvent yield (%)°
1 Pd(OAc), (5) 2,2'-bipyridyl (10) PTSA-H,O (1) toluene 33
2 Pd(OAc), (5) 2,2'-bipyridyl (10) PTSA-H,O (1) p-xylene 35
3 Pd(OAc), (10) 2,2"-bipyridyl (10) PTSA-H,O (1) m-xylene 32
4 Pd(OAc), (5) 2,2'-bipyridyl (10) PTSA-H,O (1) cyclohexane 00
5 Pd(OAc), (5) 2,2'-bipyridyl (10) PTSA-H,O (1) 1,2-DCE 42
6 Pd(OAc), (5) 2,2'-bipyridyl (10) PTSA-H,O (1) MeOH 00
7 Pd(OAc), (5) 2,2'-bipyridyl (10) PTSA-H,O (1) CH;CN 00
8 Pd(OAc), (5) 2,2'-bipyridyl (10) PTSA-H,O (1) DMF 00
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1

2

3 9 Pd(OAc), (5) 2,2"-bipyridyl (10) PTSA-H,O0 (1) DMSO 00

4

s 10 Pd(OAc), (5) 2,2"-bipyridyl (10) PTSA-H,O (1) H,0 00

6 11 Pd(TFA), (5) 2,2-bipyridyl (10) PTSA-H,0 (1) 1,2-DCE 38

; 12 PACL, (5) 2,2'-bipyridyl (10) PTSA-H,0 (1) 1,2-DCE 00

9 13 2,2"-bipyridyl (10) PTSA-H,0 (1) 1,2-DCE 00

1? 14 Pd(OAC); (5) PTSA-H,0 (1) 1,2-DCE 00

12 15 Pd(OAc), (5) 2,2"-bipyridyl (10) 1,2-DCE 00

1 i 16 Pd(OAc), (10) 2,2"-bipyridyl (20) PTSA H,0 (2) 1,2-DCE 56

15 17 Pd(OAc), (10) 2,2"-bipyridyl (20) PTSA-H,0 (5) 1,2-DCE 58

16 18 Pd(OAc), (10) 1,10-phen (20) PTSA-H,O (2) 1,2-DCE 52

17

18 19 Pd(OAc), (10) L-proline (20) PTSA-H,0 (2) 1,2-DCE 00

19 20 Pd(OAc), (10) PPh; (20) PTSA-H,0 (2) 1,2-DCE trace

;‘1) 21 Pd(OAc), (10)  XPhos (20) PTSA‘H,0 (2)  1,2-DCE 00

2 22 Pd(OAc), (10) 1,1'-bi-2-naphthol (20) PTSA-H,O (2) 1,2-DCE 00

;i 23 Pd(OAc), (10) 2,2-bipyridyl (20) AcOH (2) 1,2-DCE 25

25 24 Pd(OAc), (10) 2,2"-bipyridyl (20) CF;COOH (2) 1,2-DCE 23

26 25 Pd(OAc), (10) 2,2'"-bipyridyl (20) PhCO,H 1,2-DCE trace

27

28 26 Pd(OAc), (10) 2,2-bipyridyl (20) H,SO, 1,2-DCE 00

29 27 Pd(OAc), (10) 2,2'-bipyridyl (20) PTSA-H,0 (2) 1,2-DCE 66¢

g? 28 Pd(OAc), (10) 2,2'-bipyridyl (20) PTSA-H,0 (2) 1,2-DCE 724

32 29 Pd(OAc), (10) 2,2"-bipyridyl (20) PTSA-H,0 (2) 1,2-DCE 73¢

2431 30 Pd(OAc), (10) 2,2"-bipyridyl (20) PTSA-H,0(2)  1,2-DCE 4

35 31 Pd(OAc), (10) 2,2"-bipyridyl (20) PTSA H,0 (2) 1,2-DCE 51¢

g? 32 Pd(OAc), (10) 2,2"-bipyridyl (20) PTSA-H,0 (2) 1,2-DCE 42

38 33 Pd(OAc), (10) 2,2"-bipyridyl (20) PTSA-H,O (2) 1,2-DCE 22

39 “Reaction condition: 2-(3-0xo0-1,3-diphenylpropyl)malononitrile (1) (0.25 mmol), phenylboronic acid (a) (0.25 mmol),

2(1) catalyst (mol %), ligand (mol %.), additive (equiv) at rt under 2 x 10 W white LEDs for 24 h. “Isolated yields. <2 equiv

42 of (a) was used. 93 equiv of (a) was used. ¢5 equiv of (a) was used./Reaction performed using 2 x 5 W green LEDs

43 light. €Reaction performed using 2 x 5 W blue LEDs light. #Yield after 12 h. ‘in the absence of LEDs.

44

45 . .. . ... . . . .

46 With the optimized reaction conditions in hand, this photoreaction was subjected to further
j; studies for the elucidation of substrate scope. Firstly, various y-keto-malononitriles bearing
49 electron-donating (EDGs) and electron-withdrawing groups (EWGs) were taken alongside
50

51 phenylboronic acid (a) in a series of different reactions to generate the corresponding
52 . . .- . .

53 triarylsubstituted cyanopyridines (Scheme 2). The unsubstituted y-keto-malononitrile (1)
g‘S‘ coupled with phenylboronic acid (a), to yield 3-cyano-2,4,6-triphenylpyridine in (1a) in 72%
56 yield (Scheme 2). Next, a series of y-keto-malononitriles containing unsubstituted benzoyl ring
57

58 alongside electron-rich phenyl ring bearing EDGs such as p-Me (2), p-OMe (3), p-OBu (4), p-
59 . . .

60 SMe (5), p-NMe, (6), and p-Ph (7) were chosen to couple with the phenylboronic acid (a). The
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corresponding products (2a, 74%), (3a, 72%), (4a, 73%), (5a, 61%), (6a, 68%), and (7a, 70%)
were obtained in good yields (Scheme 2). Moreover, when the phenyl ring bore EWGs such as
p-F (8), p-C1 (9), 0-Br (10), and m-NO, (11), the corresponding products (8a, 70%), (9a, 68%),
(10a, 65%), and (11a, 45%) were obtained in moderate to good yields (Scheme 2). Next, the
effect of substitution on benzoyl ring was studied by choosing suitable y-keto-malononitrile
substrates bearing an unsubstituted phenyl ring, and subjecting them to the optimized reaction
condition. Both the scenarios wherein the benzoyl ring possessed EDGs such as, p-Me (12)
and p-OMe (13), and EWGs such as, p-F (14), p-Cl (15), p-Br (16), p-NO; (17), and 0-NO,
(18), resulted in the desired products (12a, 72%), (13a, 71%), (14a, 69%), (15a, 66%), (164,
64%), (17a, 45%), and (18a, 42%) respectively (Scheme 2). It is interesting to note that akin
to the previous set of experiments, the presence of an electron-deficient benzoyl ring abated
the product formation. y-Keto-malononitriles bearing the naphthyl moiety, (19) and (20), when
chosen as substrates for the developed protocol, responded well to afford the respective
products 3-cyano-4-(a-naphthyl)-2,6-diphenylpyridine (19a) and 3-cyano-4-(a-naphthyl)-6-
(B-naphthyl)-2-phenylpyridine (20a) with 72% and 70% yields, respectively (Scheme 2). The
protocol was also tested with y-keto-malononitrile substrates bearing both substituted
benzoyl/phenyl moieties simultaneously with groups such as EDG p-Me/EWG p-Cl (21), EWG
p-CI/EDG p-OMe (22), EWG p-CI/EDG p-OH (23), and EWG p-NO,/EDG p-OMe (24). All
of these substrates coupled well with phenylboronic acid (a) to yield the respective substituted
cyanopyridines (21a, 69%), (22a, 75%), (23a, 41%) and (24a, 46%), respectively. Further,
substrates containing some di-substituted phenyl rings such as 2,6-dichlorophenyl (25), and the
3.,4-dimethoxyphenyl (26), reacted efficiently to give the products (25a, 64%) and (26a, 68%),
respectively, in good yields. The Michael adduct bearing 3,4-methylenedioxobenzoyl ring and
p-bromophenyl ring (27) reacted under the standard conditions to afford the desired pyridine
(27a, 63%). Besides, the cyclic y-keto substrate (28) underwent efficient transformation to the
product (28a) in 61% yield. Furthermore, Michael adducts bearing other aryl rings such as,
furan (29) or a thiophene (30), were also compatible with the protocol and afforded the products
(29a, 65%) and (30a, 68%), respectively, in good yields. To determine the efficiency of this
photoinduced process and also to expand the scope of this method, 2-(3-oxo-1,3-
diphenylpropyl)malononitrile (1) (1.37 gm, 5 mmol), and phenylboronic acid (a) were reacted
on a gram scale which provided 2,4,6-triphenylsubstituted nicotinonitrile (1a) in 60% yield

(Scheme 2).
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1
2
z Scheme 2. Substrate Scope for the Synthesis of 2,4,6-Triarylsubstituted Nicotinonitrile
5 Pd(OAc), (10 mol %)
6 HO.5-OH 2,2 bipyridyl (20 mol %)
7 @ PTSA-H,0 (2 equiv)
CN + -
8 2 x 10 W White LEDs
9 1,2-DCE (2 mL), rt, 24 h
(@)
10
11 R'=H, RZ = p-Me (2a, 74%) = p-Me (12a, 72%)
12 = p-OMe (3a, 72%) = p-OMe (13a, 71%)
13 pn  =p-OBu (4a, 73%) = p-F (14a, 69%)
= p-SMe (5a, 61%) = p-Cl (15a, 66%)
14 on  =PNMe; (6a, 68%) = p-Br (16a, 64%)
15 = p-Ph (7a, 70%) = p-NO, (17a, 45%)
16 = p-F (8a, 70%) = 0-NO, (18a, 42%)
17 N = p-Cl (9a, 68%)
(1a,72%) (60 %)° = o-Br (10a,65%)
18 = m-NO, (11a, 45%)
19
20 (]
2 O O g
N Ph
22 |
23 > eN
24
2 g
26 19a 72% (20a, 70%) (21a, 69%) ¢ (223, 75%) Opme
27
28 cl O,N F
29 O Ng_-Ph O Ny_-Ph O O N\
30 \ \
31 = CN = N =
Cl
; ) ) O
33 OMe
34 (23a, 41%) OH (24a, 46%) OMe (25a, 64%) (26a, 68%) OMe
O
35 e
36
37 N\ Ph
38 6N
39
40
2; (27a, 63%) Br (28a, 61%) ¢ (29a, 65%) (30a, 68%)
43 @Reaction conditions: (i) 1-30 (0.25 mmol), phenylboronic acid (a) (0.75 mmol), Pd(OAc), (0.025 mmol), 2,2'-bipyridyl (0.05
44 mmol), PTSA-H,0 (0.5 mmol), and 1,2-DCE (2 mL) at rt for 24 h. under 2 x 10 W white LEDs. “Yield reported for 1 gm
45 scale.
46
47 After successfully employing diverse y-ketomalononitriles (1-30) to the developed
48
49 strategy, the scope was further enhanced by reacting various arylboronic acids with 2-(3-oxo-
50 . . .. .
51 1,3-diphenylpropyl)malononitrile (1) under standard conditions (Scheme 3). The reaction was
gg successful with 2-napthylboronic acid (b), which had produced 2-(naphthalen-2-yl)-4,6-
54 diphenylnicotinonitrile (1b) in 66% yield. Arylboronic acids possessing electron-donating
55
56 groups such as p-Me (¢), o-Me (d), p-Et (e), p-Bu (f), p-OMe (g) and 3-Me-4-OMe (h) also
57 .- . . -
53 responded positively towards the protocol, and afforded the desired cyanopyridines (1¢, 73%),
Zg (1d, 43%), (1e, 75%), (1f, 77%), (1g, 79%), and (1h, 68%), respectively, in good yields.
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Arylboronic acids possessing electron-withdrawing groups such as p-F (i), p-Cl (j), m-Cl (k),
p-Br (I) and p-CF; (m), also underwent efficient addition/cyclization with the y-
ketomalononitrile (1) to afford the desired cyanopyridines (1i, 62%), (1j, 55%), (1k, 51%), (11,
52%), and (1m, 35%), respectively, albeit the yields were moderate to good in these cases.
Unfortunately, the developed protocol turned out to be unsuccessful in case of few boronic
acids such as p-CHO-phenylboronic acid (n), cyclohexylboronic acid (0), 2-thienylboronicacid
(p), and allylboronic acid (q).

Scheme 3. Substrate Scope for Arylboronic Acids

Pd(OAc), (10 mol %) R3IT N
HO\B/OH 2,2-bipyridyl (20 mol %) -
NC.__CN PTSA-H,0O (2 equiv)

Q A . Z CN

* ‘ 2 x 10 W White LEDs N ’

Ph Ph X X
3 1,2-DCE (2 mL), rt, 24 h Ph N Ph
(1) (b-q) (1b-1q)

N/
N/‘CN N/‘CN \‘ N/‘CN N/‘CN N/‘CN
Ph Ph
Ph” "pn PR S ph PSP pp” S py P S ph
(1b, 66%) (1c, 73%) (1d, 43%) (1e, 75%) (1f, 77%) (19, 79%)
OMe F Cl Br CF3
Me Cl
N/‘CN N/‘CN N/‘CN N/‘CN N/‘CN N/‘CN
A A
Ph Ph Ph Ph P 7"pn Ph” N VPh py” S pn ppT S ph
(1h, 68%) (1i, 62%) (1j, 55%) (1k, 51%) (11, 52%) (1m, 35%)
unsuccessful substrates
CHO
— =
S~
N/‘CN N/‘CN N/‘CN N/‘CN
N
PR " ph PR "ph Ph Ph Ph” " ph
(1n, 00%) (10, 00%) (1p, 00%) (19, 00%)

@Reaction conditions: (i) 2-(3-o0x0-1,3-diphenylpropyl)malononitrile (1) (0.25 mmol), arylboronic acids (b-q) (0.75 mmol),
Pd(OAc), (0.025 mmol), 2,2'-bipyridyl (0.05 mmol), PTSA-H,O (0.5 mmol), and 1,2-DCE (2 mL) at rt for 24 h. under 2 x 10
W white LEDs.

We speculate that the electron withdrawing substituents present in arylboronic acids
may potentially impede the trans-metalation and the carbopalladation/migration of aryl group
to the electrophilic carbon center of the nitrile moiety (Scheme 7). Perhaps, this might be the
reason for the lower yields with electron withdrawing substituents. For an electron-deficient

aryl moiety, p-CHO-phenylboronic acid (n), the carbopalladation does not occur efficiently
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due to the poor migrating ability of such aryl moieties to electrophilic centres. The failure of
boronic acids having a sp*>-C-B bond viz. cyclohexylboronic acid (0) and allylboronic acid (q)
hints towards a putative two electron carbanion based-mechanism, wherein B-hydride
elimination reaction may be occurring.!f For thiophene based boronic acid, the adjacent S atom
may be depleting the electronic charge, built up at the C2-position by accepting electrons into
its vacant d-orbitals, leading to an inefficient carbopalladation. Moreover, strongly

coordinating sulfur atom in the thiophene ring is known to poison Pd(II) catalysts.

The synthetic utility of this photoreaction was further extended by investigating the
addition/cyclization of phenylboronic acids to few -ketomalononitriles under the optimized
reaction conditions to yield the substituted pyrroles (Scheme 4). To our delight, the reaction of
phenylboronic acid (a) with  unsubstituted [(-ketomalononitrile, 2-(2-0x0-2-
phenylethyl)malononitrile (31) produced the five membered N-heterocycle, 2,5-diphenyl-1H-
pyrrole-3-carbonitrile (31a) in 73% yield under the standard conditions. The formation of
pyrrole skeleton was confirmed by the 'H NMR, 3C NMR and HRMS analysis. Later, [3-
ketomalononitriles bearing EDGs such as, p-Me (32) and p-OMe (33), and EWGs such as, p-
CI (34), p-Br (35), and p-NO, (36) were selected alongside the phenylboronic acid (a) to
participate in our reaction strategy. Fortunately, the desired 2,5-diaryl-3-cyanopyrrol products—
(32a, 76%), (33a, 78%), (34a, 71%), (35a, 67%), and (36a, 55%) were obtained in good to
moderate  yields. A  bicyclic substrate, 2-(1-oxo0-1,2,3,4-tetrahydronaphthalen-2-
yl)malononitrile (37) and a 3-ketomalononitrile containing thiophene moiety (38), also coupled
successfully with phenylboronic acid (a), and subsequently cyclized to afford the
corresponding pyrrole derivatives (37a, 71%) and (38a, 69%) in good yields. Naphthalen-2-
ylboronic acid (b) reacted with 2-(2-oxo-2-phenylethyl)malononitrile (31) to yield 2-(B-
naphthyl)-5-phenyl-1H-pyrrole-3-carbonitrile (31b) in 74% yield. Additionally, a host of
phenylboronic acids possessing EDGs such as, o-Me (d), p-Et (e), p-Bu (f), and p-OMe (g),
and EWGs such as, p-F (i), p-Cl (j), and p-Br (I) were reacted with 2-(2-ox0-2-
phenylethyl)malononitrile (31) under standard conditions to afford the corresponding pyrroles—
(31d, 54%), (31e, 78%), (311, 75%), (31g, 80%), (31i, 60%), (31j, 55%), and (311, 52%) in

moderate to good yields.
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Scheme 4. Substrate Scope for 2,5-Diarylsubstituted-3-cyano Pyrroles®®

Pd(OAc), (10 mol %)
HO. -OH 2,2-bipyridyl (20 mol %)

PTSA-H,0 (2 equiv)

+ X
~~ "CN | Lo 2 x 10 W White LEDs
L 1,2-DCE (2 mL), 1t, 24 h

(31a, 73%) (65%)°  (32a, 76%) (33a, 78%) (34a, 71%) (35a, 67%)
HN\\ CN
Je
O,N S
(36a, 55%) (37a, 71%) (38a, 69%) (31b, 74%) (31d, 54%)
(31e, 78%) (31f, 75%) (319 80%) 31| 60%) (31] 55%) 31I 52%)

@Reaction conditions: (i) 2-(3-0x0-1,3-diphenylpropyl)malononitrile (1) (0.25 mmol), arylboronic acids (b-q) (0.75 mmol),
Pd(OAc), (0.025 mmol), 2,2'-bipyridyl (0.05 mmol),PTSA-H,0O (0.5 mmol), and 1,2-DCE (2 mL) at rt for 24 h. under 2 x 10
W white LEDs. . ?Yield reported for mmol scale.

Intermolecular competition reactions were performed in order to study the electronic
influence of the substituents present on the aroyl/aryl moieties of y-ketomalononitriles and
arylboronic acids. In our first experiment, an equimolar mixture of substrates (13) and (14),
composed of aroyl groups possessing an EDG, p-OMe and an EWG, p-F, respectively, were
reacted with phenylboronic acid (a) [Scheme 5 (i)]. The yields of the corresponding products
(13a, 25%) and (14a, 23%) were similar, which indicate that substrates possessing EDGs and
EWGs in the aroyl moiety (R!) show similar reactivity in our protocol. In the second
experiment, two y-ketomalononitrile substrates wherein the aryl moiety contains either an EDG
p-OMe (3), or an EWG p-Cl (9) were chosen to react with the phenylboronic acid (a) under
standard conditions. It was again observed that the electronic nature of the substituent R?
present on the phenyl moiety had minimal effect on the outcome of reaction, as evident from
the almost equal yields of products (3a, 21%) and (9a, 20%), respectively [Scheme 5 (ii)].
Finally, the effect of the electronic nature of substituents (R?) present on the phenyl ring of the

boronic acids were investigated. An equimolar mixture of electron-rich p-
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methoxyphenylboronic acid (g), and a relatively electron-deficient p-fluorophenylboronic acid
(i) was reacted with (1) to afford the respective cyanopyridines (1g, 29%) and (1i, 20%). This
suggests that presence of an EDG on the phenyl ring of arylboronic acid renders higher
compatibility with the protocol [Scheme 5 (ii1)].

Scheme 5. Intermolecular Competition Experiments

MeQO MeO O
©cn PhB(OH),
a) (0.25 | )
cN __ (@) (0.25 mmol) (i
Standard Conditions

(13) (0. 5 mmol) O 5 mmol)

‘%N

OCN l

PhB(OH),

CN (a) (0.25 mmol) CN . (i)
Standard Conditions O O
OMe cl OMe cl
) (0.5 mmol) (9) (0.5 mmol) (3a, 21%) (9a, 20%)

OMe F

O.,.OH HO\B/OH ONC CN O

Standard Conditions
N X
aaclenac]
(0.5 mmol) (0.5 mmol) (0.25 mmol) (19, 29 %) (1i, 20%)

Mechanistic Pathway

To wunderstand the mechanistic underpinnings of the photoreaction, few control
experiments were performed as highlighted by Scheme 6. Our initial experiment was
performed under normal laboratory conditions at room temperature. It was observed that the
reaction proceeded slowly, and only 22% yield of the desired product was obtained after 24 h
[Scheme 6 (i)]. In the next experiment, the reaction flask was wrapped carefully with an
aluminium foil, and the reaction was carried out in complete dark conditions. This time, even
less than 16% of the product was isolated [Scheme 6 (ii)]. Hence, it can be concluded that light
does accelerate the desired reaction. Later, a radical scavenger 2,2,6,6-tetramethylpiperidine-
1-oxyl (TEMPO) was added to the reaction mixture in varying quantities. Although the use of
2 equiv TEMPO resulted in poor yield (<20%), when 4 equiv TEMPO was added to the
reaction mixture, no desired product was obtained [Scheme 6 (iii)]. These results indicate that
a radical pathway may be operative. However, no TEMPO adducts were detected while

performing the HRMS analysis of the reaction mixture. Moreover, the alkylboronic acids such

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry

as cyclohexylboronic acid (0) and allylboronic acid (q) did not yield the desired products 1o
and 1q when subjected to standard conditions (Scheme 3).!¢" Surprisingly, these observations
refute the existence of a radical pathway. According to the literature reports, there is a
possibility that TEMPO may oxidize Pd(0) to Pd(Il), thereby inhibiting the reaction in the
forward direction.?¢

Scheme 6. Control Experiments
O Pd(OAc), (10 mol %)
O N HO.;.OH 2,2'-bipyridyl (20 mol %)
PTSA-H,O (2 equiv)
+
1,2-DCE (2 mL), 1t, 24 h

CN
O absense of LEDs
(1) (a)

O Pd(OAG), (10 mol %)
O N HO. . OH 2,2"-bipyridyl (20 mol %)
PTSA-H,O (2 equiv)
CN +
1,2-DCE (2 mL), rt, 24 h
O dark condition
(1) (a)
O Pd(0AG), (10 mol %)
O on HO. ,.OH 2,2"bipyridyl (20 mol %)
PTSA-H,0 (2 equiv)
CN +
1,2-DCE (2 mL), rt, 24 h

O M (@)

TEMPO (4 equiv): (1a, 00%)
TEMPO (2 equiv): (1a, <20%)

Based on these facts, the likelihood of conventional SET mechanism involving organic
radicals due to visible light irradiation is not obvious in our case, and a plausible reaction
mechanism is outlined in Scheme 7. Initially, Pd(OAc), combines with 2,2'-bipyridyl ligand
(L) to form a complex Pd(II)(bpy)(OAc), (detected by HRMS analysis of reaction mixture,
Figure S2). The protocol requires 3 equivalents of arylboronic acid with respect to the reacting
substrate. The requirement of excess boronic acid can be rationalized by the in sifu generation
of Pd(0) by the reduction of Pd(II)(bpy)(OAc),, which is also accelerated under visible
irradiation.?’” Another 2,2'-bipyridine ligand (L) combines with the in situ generated Pd(0)
species, which subsequently undergoes photoexcitation via MLCT to form an excited
palladium complex, [L,Pd(0)*] (detected by HRMS analysis of reaction mixture, Figure S3).
Although the next step, that is, transmetalation is not fully understood, we speculate that a
redox reaction may be occurring, wherein the excited palladium complex, [L,Pd(0)*] reduces
the phenylboronic acid (a).?® Concomitantly, transfer of aryl group (of boronic acid), and an
elimination of 2,2'-bipyridine ligand (L) occurs to give the intermediate (I) (detected by HRMS

analysis of reaction mixture, Figure S2). The redox step may involve the M—Z o-interaction
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between the palladium centre and the boron centre of boronic acid.?® The Pd(II) centre of
intermediate (I) then cordinates with the 7y-ketomalononitrile substrate (1) to give the
intermediate (II) (detected by HRMS analysis of reaction mixture, Figure S4). Next,
intramolecular carbopalladation of nitrile occurs via the insertion of the phenyl group to the
nitrile moiety followed by insertion of an acetate anion to the palladium centre which results
in the corresponding ketimine complex (IIT) (detected by HRMS analysis of reaction mixture,
Figure S5). Later, PTSA-H,0 protonates this intermediate to release 2-(imino(phenyl)methyl)-
5-0x0-3,5-diphenylpentanenitrile (IV) and coordination of PTSA to the Pd(II) centre forms the
intermediate (VIII) (detected by HRMS analysis of reaction mixture, Figure S6). The intial
Pd(Il) species is regenerated via the intermidecy of (IX) (detected by HRMS analysis of
reaction mixture, Figure S7) and continues the catalytic cycle. Finally, PTSA-H,O triggers the
intramolecular cyclization of IV, which is followed by dehydration to form the intermediate
VII (detected by HRMS analysis of reaction mixture, Figure S8 and Figure S9). Finally,
aromatization of the intermediate VII affords the desired product, 3-cyano-2.4,6-
triphenylpyridine (1a).

Pd(Il)(OAC),

2,2'-bypyridine (L)
PTSA

O/O m 2 PhB(OH), (a), L

/ )/' \

u), “&”) @ 2B(OH);,
hv 2 HOAc, Ph-Ph

3 O
AcO O/S\\
[ %ux [LoPOF PhB(OH), (a
AcO"H (1X) (OH); (a)
B hv AcOH
PTSA P HB(OH),
‘e Ph QA AcOH llgand exchange redox transmetalation L + OAC
E H CN LPd(Il)Ph
OHOK [0}
PH N
7
é \ NN / CN
& H,0 - - Pd PR
\ 7/ }\‘ / | \Ph
fr O e o
CN N/Pd\OAC
» ne. N CN
Ph N Ph ¢/(_F’h n
vy Ph OAc
) carbopalladation/
migration
Scheme 7. Proposed Mechanistic Pathway
CONCLUSION

In summary, we have devised an elegant strategy for the synthesis of 2.4,6-
triarylnicotinonitriles and 2,5-diaryl-1H-pyrrole-3-carbonitriles at ambient temperature via a

Pd-catalyzed reaction of arylboronic acid with y- and B-ketodinitriles under visible-light
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irradiation. The present one-pot synthetic protocol obviates the necessity of an external
photosensitizer, and provides a convenient access to the desired products in moderate to good
yields under mild reaction conditions. The desired products possess nitrile moiety which can

be later functionalized to generate useful molecules for diverse applications.
EXPERIMENTAL SECTION

General information:

All the reagents were commercial grade and purified according to the established
procedures. All the reactions were carried out in oven-dried glassware under a degassed
atmosphere. Highest commercial quality reagents were purchased and were used without
further purification unless otherwise stated. Reactions were monitored by thin layer
chromatography (TLC) on a 0.25 mm silica gel plates (60F,s4) visualized under UV
illumination at 254 nm. Organic extracts were dried over anhydrous sodium sulfate (Na,SOy).
Solvents were removed using a rotary evaporator under reduced pressure. Column
chromatography was performed to purify the crude product on silica gel 60—120 mesh using a
mixture of hexane and ethyl acetate as eluent. All the isolated compounds were characterized
by 'H, BC{'H} NMR and IR spectroscopic (HRMS-spectrometric) techniques. NMR spectra
for all the samples were recorded in deuterochloroform (CDCIs) or deuterated dimethyl
sulfoxide (DMSO-d6). 'H, 3C {'H} were recorded in 600 (150) or 400 (100) MHz spectrometer
and were calibrated using tetramethylsilane or residual undeuterated solvent for 'H NMR,
deuterochloroform for 3C NMR as an internal reference {Si(CH3),: 0.00 ppm or CHCl3: 7.260
ppm for 'H NMR, 77.230 ppm for '3C NMR or (CH3),SO: 2.50 ppm for '"H NMR, 39.50 ppm
for 1*C NMR}. 1F NMR was calibrated using hexafluorobenzene as internal standard. The
chemical shifts are quoted in ¢ units, parts per million (ppm). '"H NMR data is represented as
follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentat,
m = multiplet, br = broad, dd = doublet of doublet, tt = triplet of triplet), integration and
coupling constant(s) J in hertz (Hz). High resolution mass spectra (HRMS) were recorded on
a mass spectrometer using electrospray ionization-time of flight (ESI-TOF) reflection
experiments. FT-IR spectra were recorded in KBr or neat and reported in frequency of

absorption (cm™).

General Procedure for the Synthesis of 2-(3-Oxo-1,3-diarylpropyl)malononitriles (1-30).

Compounds (1-30) were synthesized by slightly modification of the literature

procedure.3?
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To an oven-dried 50 mL round bottom flask was added chalcone, 1,3-diphenyl-2-propen-
I-one (1.04 g, 5.0 mmol.), malononitrile (0.66 g, 10.0 mmol), K,CO;5 (1.38 g, 10.0 mmol) and
DCE (10 mL). The reaction mixture was stirred at room temperature for 12 h. Then the reaction
mixture was admixed with ethyl acetate (50 mL) and the organic layer was washed with water
(2 x 10 mL). The organic layer was dried over anhydrous Na,SO,, and solvent was evaporated
under reduced pressure. The crude product so obtained was purified over a column of silica gel
(hexane / ethyl acetate, 9:1) to give pure 2-(3-oxo-1,3-diaryllpropyl)malononitriles (1) (1.30 g,
95%).

General Procedure for the Synthesis of 2-(2-oxo-2-arylylethyl)malononitriles (31-38).

Compounds (31-38) were synthesized by slightly modification of the literature
procedures.3!2b
To an oven-dried 100 mL round bottom flask was added a-bromoacetophenone (1.97 g,
10.0 mmol) and malononitrile (0.66 g, 10.0 mmol) were dissolved in EtOH (20 mL) and cooled
in an ice bath. On the other hand, NaOH (0.4 g, 10.0 mmol) was dissolved in HO (20 mL),
cooled in an ice bath and added to the above reaction mixture over a period of 5 min. After
letting the reaction mixture stir for 30 min at 0 °C, H,O (20 mL) was added from which
colorless residue appeared which was filtered off and dried under a constant stream of air.
Recrystallization from EtOH to give 2-(2-oxo-2-arylylethyl)malononitriles (31) as a white
solid (1.39 g, yield 76%).

General Procedure for the Synthesis of 2,4,6-Triarylnicotinonitriles (1a—30a) from 2-(3-

Oxo-1,3-diarylpropyl)malononitriles (1-30) and Phenylboronic acid (a).

To an oven-dried 10 mL round bottom flask was added 2-(3-oxo-1,3-
diphenylpropyl)malononitrile (1) (68.5 mg, 0.25 mmol), phenylboronic acid (a) (90.6 mg, 0.75
mmol), Pd(OAc), (5.6 mg, 0.025 mmol), 2,2'-bipyridyl (7.8 mg, 0.05 mmol), PTSA-H,0 (95
mg, 0.5 mmol) and 1,2-DCE (2 mL). The reaction mixture was stirred at room temperature for
24 h, maintaining an approximate distance of ~6-8 cm from two 10W white LED bulbs (Flux
46 mw/cm2). After completion of the reaction (monitored by TLC analysis), the reaction
mixture was admixed with ethyl acetate (25 mL) and the organic layer was washed with
saturated sodium bicarbonate solution (1 x 5 mL). The organic layer was dried over anhydrous
Na,SO,, and solvent was evaporated under reduced pressure. The crude product so obtained

was purified over a column of silica gel using 2% ethyl acetate in hexane to give pure 2,4,6-

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry

triarylnicotinonitrile (1a) (60 mg, yield 72%). The identity and purity of the product was

confirmed by spectroscopic analysis.

General Procedure for the Synthesis of 2,5-diaryl-1H-pyrrole-3-carbonitriles (31a—38a)
from 2-(2-oxo0-2-arylethyl)malononitriles (31-38) and Phenylboronic acid (a)

To an oven-dried 10 mL round bottom flask was added 2-(2-oxo-2-
phenylethyl)malononitrile (31) (46 mg, 0.25 mmol), phenylboronic acid (a) (90.6 mg, 0.75
mmol), PdA(OAc), (5.6 mg, 0.025 mmol), 2,2'-bipyridyl (7.8 mg, 0.05 mmol), PTSA-H,0 (95
mg, 0.5 mmol) and 1,2-DCE (2 mL). The reaction mixture was stirred at room temperature for
24 h, maintaining an approximate distance of ~6-8 cm from two 10W white LED bulbs (Flux
46 mw/cm?). After completion of the reaction (monitored by TLC analysis), the reaction
mixture was admixed with ethyl acetate (25 mL) and the organic layer was washed with
saturated sodium bicarbonate solution (1 x 5 mL). The organic layer was dried over anhydrous
Na,SO, and solvent was evaporated under reduced pressure. The crude product so obtained
was purified over a column of silica gel using 5% ethyl acetate in hexane to give pure 2,5-
diaryl-1H-pyrrole-3-carbonitriles (31a) (45 mg, yield 73%). The identity and purity of the

product was confirmed by spectroscopic analysis.

Spectral Data

2,4,6-Triphenylnicotinonitrile (1a):3?

As a white solid (60 mg, 72% yield); Purified over a column of silica

O N O gel (2% EtOAc in hexane). 'H NMR (CDCl; 400 MHz): ¢ 8.19 (d, 2H,

» oy | /=76 H2),806(d, 2H, J = 7.8 Hz), 7.83 (s, 1H), 7.70 (d, 2H, J = 7.6
Hz), 7.60~7.55 (m, 6H), 7.53—7.48 (m, 3H); 3C {'H} NMR (CDCls, 100
O MHz): § 162.6, 159.3, 155.6, 138.2, 137.7, 136.9, 130.7, 130.2, 130.1,

129.6, 129.17, 129.16, 128.9, 128.7, 127.8, 118.8, 117.9, 104.5; IR (KBr, cm™'): 2924, 2858,
2215, 1727, 1571, 1530, 1488, 1372, 1276, 1171, 1073, 1025, 873, 748, 688, 616, 568, 485;
HRMS (ESI/Q-TOF) (m/z) calcd for Cp4H 7N, [M + H]*333.1386; found 333.1391.
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2,6-Diphenyl-4-(p-tolyl)nicotinonitrile (2a):

As a white solid (64 mg, 74% yield); Purified over a column of silica
O N O gel (2% EtOAc in hexane). 'H NMR (CDCl; 400 MHz): 6 8.19 (d, 2H,
| /\ oN J=7.8 Hz), 8.07 (d, 2H, J= 7.8 Hz), 7.82 (s, 1H), 7.62-7.52 (m, 8H),
7.39 (d, 2H, J = 8.0 Hz), 2.48 (s, 3H); *C{'H} NMR (CDCl;, 100
O MHz): § 162.5,159.2, 155.6, 140.3, 138.2, 137.8, 134.0, 130.6, 130.2,
Me 129.9, 129.6, 129.1, 128.8, 128.6, 127.7, 118.7, 118.1, 104.4,

21.6; IR (KBr, cm™): 2925, 2862, 2214, 1578, 1511, 1377, 1290, 1247, 1170, 1072, 1024, 971,
875, 828, 762, 693, 609, 572, 520; HRMS (ESI/Q-TOF) (m/z) caled for CosHyoN, [M + HJ*
347.1543; found 347.1558.

4-(4-Methoxyphenyl)-2,6-diphenylnicotinonitrile (3a):333

As a white solid (65 mg, 72% yield); Purified over a column of silica
‘ N O gel (2% EtOAc in hexane). 'H NMR (CDCl; 400 MHz): ¢ 8.18 (d, 2H,
| / J=17.8 Hz), 8.05 (d, 2H, J = 6.6 Hz), 7.80 (s, 1H), 7.67 (d, 2H, J = 8.4
O Hz), 7.59-7.49 (m, 6H), 7.09 (d, 2H, J = 8.8 Hz), 3.90 (s, 3H); 3C{'H}
NMR (CDCl;, 100 MHz): ¢ 162.7, 161.2, 159.2, 155.2, 138.3, 137.8,
130.6, 130.4, 130.2, 129.2, 129.1, 128.6, 127.7, 118.6, 118.3, 114.6,
114.3, 104.3, 55.6; IR (KBr, cm™'): 2924, 2861, 2218, 1669, 1582, 1514, 1459, 1373, 1253,
1175, 1027, 819, 758, 690, 563; HRMS (ESI/Q-TOF) (m/z) calcd for CysH9N,O [M + HJ*
363.1492; found 363.1497.

4-(4-Butoxyphenyl)-2,6-diphenylnicotinonitrile (4a):

As a white solid (73 mg, 73% yield); Purified over a column of silica

‘ N O gel (2% EtOAc in hexane). '"H NMR (CDCl; 400 MHz): 6 8.18 (d, 2H,
» | /=78H2),805(d,2H,7=7.6 Hz), 7.80 (s, 1H), 7.66 (d, 2H, /= 8.8
Hz), 7.59-7.49 (m, 6H), 7.08 (d, 2H, J = 8.4 Hz), 4.06 (t, 2H, J = 6.4
O Hz), 1.87-1.80 (m, 2H), 1.59—1.50 (m, 2H), 1.02 (t, 3H, J = 7.4 Hz);
OBu 13C{'H} NMR (CDCls;, 100 MHz): 162.7, 160.8, 159.2, 155.3, 138.3,

137.9, 130.6, 130.3, 130.2, 129.6, 129.1, 128.9, 128.6, 127.7, 118.5, 118.3, 115.1, 104.2, 68.1,
31.4,19.4,14.0; IR (KBr, cm™): 2919, 2857, 2213, 1660, 1574, 1529, 1455, 1373, 1237, 1179,
1074, 1024, 880, 816, 754, 684, 588, 546, 494; HRMS (ESI/Q-TOF) (m/z) calcd for C,5H,5sN,O
[M + H]J" 405.1961; found 405.1976.
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4-(4-(Methylthio)phenyl)-2,6-diphenylnicotinonitrile (5a):

A L)
N

Z > CN

SMe

As a white solid (57 mg, 61% yield); Purified over a column of silica
gel (2% EtOAc in hexane). '"H NMR (CDCl; 400 MHz): 6 8.18 (d, 2H,
J="17.4Hz), 8.04 (d, 2H, J= 7.6 Hz), 7.80 (s, 1H), 7.63 (d, 2H, J= 8.4
Hz), 7.58-7.50 (m, 6H), 7.42 (d, 2H, J= 8.4 Hz), 2.56 (s, 3H); BC{'H}
NMR (CDCl;, 100 MHz): 6 162.7, 159.4, 154.9, 141.9, 138.2, 137.8,
133.2, 130.7, 130.3, 129.6, 129.23, 129.17, 128.7, 127.8, 126.4, 118.5,

118.0, 104.3, 15.4; IR (KBr, cm™'): 2923, 2855, 2217, 1674, 1571, 1372, 1264, 1188, 1028,
812, 758, 690, 577, 497; HRMS (ESI/Q-TOF) (m/z) caled for CosH oN,S [M + H]* 379.1263;

found 379.1265.

4-(4-(Dimethylamino)phenyl)-2,6-diphenylnicotinonitrile (6a):3*

NMe2

As a white solid (63 mg, 68% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCl; 400 MHz): ¢ 8.17 (d, 2H,
J=172Hz), 8.03 (d, 2H, J= 7.4 Hz), 7.80 (s, 1H), 7.66 (d, 2H, J = 8.8
Hz), 7.58-7.48 (m, 6H), 6.85 (d, 2H, J = 8.8 Hz), 3.07 (s, 6H); 3C{'H}
NMR (CDCl;, 100 MHz): ¢ 162.9, 158.9, 155.6, 151.6, 138.6, 138.2,
130.4, 130.1, 130.0, 129.6, 129.1, 128.6, 127.7, 123.9, 118.8, 118.2,

103.8, 40.4; IR (KBr, cm™"): 2922, 2854, 2216, 1677, 1615, 1573, 1453, 1369, 1523, 1200,
1026, 815, 757, 692; HRMS (ESI/Q-TOF) (m/z) calcd for C,sH2,N5 [M + H]™ 376.1808; found

376.1820.

4-([1,1'-Biphenyl]-4-yl)-2,6-diphenylnicotinonitrile (7a):

IUve
N

=

Ph

CN

As a white solid (71 mg, 70% yield); Purified over a column of silica gel
(2% EtOAc in hexane). 'H NMR (CDCl; 400 MHz): ¢ 8.20 (d, 2H, J =
7.8 Hz), 8.06 (d, 2H, J= 7.8 Hz), 7.88 (s, 1H), 7.79 (s, 4H), 7.68 (d, 2H,
J=7.2Hz), 7.58-7.48 (m, 8H), 7.41 (t, 1H, J= 7.2 Hz); *C{'H} NMR
(CDCl;, 100 MHz): 6 162.7, 159.4, 155.2, 143.0, 140.3, 138.2, 137.8,
135.8, 130.8, 130.3, 129.6, 129.4, 129.20, 129.16, 128.7, 128.1,

127.9,127.8,127.4,118.8, 118.1, 104.4,; IR (KBr, cm™"): 2923, 2857, 2215, 1573, 1527, 1456,
1372, 1266, 1074, 1024, 838, 754, 689, 575; HRMS (ESI/Q-TOF) (m/z) calcd for C;oHy N,
[M + HJ" 409.1699; found 409.1698.
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4-(4-Fluorophenyl)-2,6-diphenylnicotinonitrile (8a):

o L
N

As a white solid (61 mg, 70% yield); Purified over a column of silica

gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): 6 8.11-8.09
7 (m, 2H), 797-7.95 (m, 2H), 7.71 (s, 1H), 7.62-7.59 (m, 2H),

O 7.49—7.43 (m, 6H), 7.21-7.17 (m, 2H); BC{'H} NMR (CDCl3, 100
F MHz): 6 163.9 (d, J=249.1 Hz), 162.7, 159.5, 154.6, 138.1,

137.6, 133.0 (d, J = 3.4 Hz), 130.9, 130.8 (d, J = 3.7 Hz), 130.4, 129.6, 129.2, 128.7, 127.8,

118.7,117.8,116.4 (d, J=21.8 Hz), 104.5; 'F NMR (CDC]l; + hexafluorobenzene): 6 —113.8

(s); IR (KBr, cm™): 2923, 2855, 2212, 1644, 1576, 1504, 1454, 1377, 1226, 1164, 1097, 1022,

876, 836, 751, 688, 548; HRMS (ESI/Q-TOF) (m/z) caled for Co4H;FN, [M + H]* 351.1292;

found 351.1304.

4-(4-Chlorophenyl)-2,6-diphenylnicotinonitrile (9a):

A L
N

|
CN

CN

As a white solid (62 mg, 68% yield); Purified over a column of silica
gel (2% EtOAc in hexane). '"H NMR (CDCl; 400 MHz): ¢ 8.19-8.16

7 (m, 2H), 8.05-8.03 (m, 2H), 7.79 (s, 1H), 7.63 (d, 2H, J = 8.8 Hz),
‘ 7.56-7.51 (m, 8H); BC{'H} NMR (CDCls, 100 MHz): 0 162.7, 159.6,

¢ 154.4, 138.0, 137.6, 136.6, 135.4, 130.9, 130.4, 130.2,
129.6,129.5,129.2,128.8,127.8,118.6, 117.8, 104.3; IR (KBr, cm™'): 2923, 2858, 2216, 1677,
1573, 1529, 1485, 1370, 1263, 1172, 1089, 1015, 822, 752, 688, 492; HRMS (ESI/Q-TOF)
(m/z) calcd for C,4H;6CIN2 [M + H]" 367.0997; found 367.0999.

4-(2-Bromophenyl)-2,6-diphenylnicotinonitrile (10a):

As a white solid (66 mg, 65% yield); Purified over a column of silica
gel (2% EtOAc in hexane). '"H NMR (CDCl; 400 MHz): ¢ 8.20 (d, 2H,
| _ J=17.2Hz), 8.10 (d, 2H, J = 7.6 Hz), 7.79 (s, 2H), 7.59-7.48 (m, 7H),
7.45-7.44 (m, 1H), 7.41-7.37 (m, 1H); *C{'H} NMR (CDCl;, 100

MHz): 0 161.7,159.2,154.9,137.98,137.92,137.6, 133.6, 131.2, 130.8,

130.6, 130.4, 129.5, 129.2, 128.8, 127.9, 127.8, 122.3, 119.4, 117.0, 105.9; IR (KBr, cm™):
2923, 2855, 2219, 1572, 1532, 1470, 1404, 1262, 1078, 1374, 1024, 887, 755, 693; HRMS
(ESI/Q-TOF) (m/z) caled for CogH 6BrN, [M + H]* 411.0491; found 411.0474.
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4-(3-Nitrophenyl)-2,6-diphenylnicotinonitrile (11a):

As a white solid (42 mg, 45% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'TH NMR (CDCls, 400 MHz): 0 8.53 (s, 1H),
8.43-8.41 (m, 1H), 8.21-8.19 (m, 2H), 8.08-8.04 (m, 3H), 7.84 (s, 1H),
7.78 (t, 1H, J= 8.0 Hz), 7.58-7.53 (m, 6H); *C{'H} NMR (CDCl;, 100
MHz): 6 162.8, 159.9, 153.0, 148.8, 138.5, 137.8, 137.3, 134.9, 131.2,
130.6, 130.4, 129.6, 129.3, 128.8, 127.8, 124.8, 124.0, 118.5, 104.3; IR (KBr, cm™'): 2924,
2857,2218, 1713, 1576, 1528, 1460, 1350, 1263, 1178, 1082, 1031, 882, 805, 693, 521; HRMS
(ESI/Q-TOF) (m/z) caled for Cp4HcN3O, [M + H]" 378.1237; found 378.1248.
2,4-Diphenyl-6-(p-tolyl)nicotinonitriletrile (12a):3

Mo As a white solid (62 mg, 72% yield); Purified over a column of silica

‘ Ny O gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): o

| 6N 8.11-8.06 (m, 4H), 7.80 (s, 1H), 7.71-7.68 (m, 2H), 7.60-7.53 (m,

O 6H), 7.33 (d, 2H, J = 8.4 Hz), 2.44 (s, 3H); BC{'H} NMR (CDCl;,

100 MHz): 6 162.5, 159.3, 155.4, 141.1, 138.3, 137.1, 134.9, 130.2,

129.99, 129.87, 129.6, 129.1, 128.8, 128.6, 127.6, 118.4, 117.9, 104.1, 21.6; IR (KBr, cm™):

2923, 2856,2215, 1575, 1532, 1494, 1451, 1404, 1373, 1261, 1157, 1079, 1026, 881, 818, 766,

701, 620, 530; HRMS (ESI/Q-TOF) (m/z) calcd for CysH9N, [M + H]* 347.1543; found

347.1560.

6-(4-Methoxyphenyl)-2,4-diphenylnicotinonitrile (13a):

As a white solid (64 mg, 71% yield); Purified over a column of

MeO
O N O silica gel (2% EtOAc in hexane). 'H NMR (CDCl; 400 MHz): &
[ 8.16 (d, 2H, J = 8.8 Hz), 8.04 (d, 2H, J = 7.6 Hz), 7.75 (s, 1H),

Z > CN

7.68 (d, 2H, J = 7.6 Hz), 7.58-7.53 (m, 6H), 7.02 (d, 2H, J = 8.8
O Hz), 3.89 (s, 3H); *C{'H} NMR (CDCls, 100 MHz): 5 162.5,

161.9, 158.9, 155.4, 138.4, 137.2, 130.3, 130.2, 130.0, 129.6, 129.3, 129.2, 128.9, 128.7, 118.1,
117.9, 114.6, 103.6, 55.6; IR (KBr, cm'): 2923, 2856, 2211, 1575, 522, 1457, 1372, 1251,
1167, 1025, 879, 829, 761, 696, 542; HRMS (ESI/Q-TOF) (m/z) caled for CosHoN,O [M +
HJ* 363.1492; found 363.1500.
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2

2 6-(4-Fluorophenyl)-2,4-diphenylnicotinonitrile (14a):

Z = As a white solid (60 mg, 69% yield); Purified over a column of silica
7 ‘ Ng O gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): 6 8.22-8.18
g | NN (m, 2H), 8.06-8.04 (m, 2H), 7.77 (s, 1H), 7.70-7.68 (m, 2H),
1(1) O 7.59-7.55 (m, 6H), 7.20 (t, 2H, J = 8.6 Hz); *C{'H} NMR (CDCl;,
}g 100 MHz): & 164.6 (d, J = 249.7 Hz), 162.6, 158.2, 155.7,

:‘5‘ 138.1, 136.9, 133.9 (d, J = 3.0 Hz), 130.3, 130.1, 129.8 (d, J = 8.6 Hz), 129.5, 129.2, 128.8,
16 128.7,118.4,117.8, 116.2 (d, J= 21.7 Hz), 104.5; '°F NMR (CDCl; + hexafluorobenzene): o
1573 —113.8 (s); IR (KBr, cm™'): 2923, 2862, 2216, 1683, 1574, 1525, 1370, 1227, 1151, 1091, 1024,
;g 830, 752, 690, 618, 527, HRMS (ESI/Q-TOF) (m/z) caled for Co4HFN, [M + H]* 351.1292;
;; found 351.1298.

23 6-(4-Chlorophenyl)-2,4-diphenylnicotinonitrile (15a):

;g As a white solid (60 mg, 66% yield); Purified over a column of
;g “ ‘ N O silica gel (2% EtOAc in hexane). 'TH NMR (CDCls 400 MHz): &
;g | ; o 8.14 (d, 2H, J = 8.8 Hz), 8.04-8.02 (m, 2H), 7.79 (s, 1H),
30 7.69-7.67 (m, 2H), 7.59-7.55 (m, 6H), 7.49 (d, 2H, J = 8.4 Hz);
g; ‘ BC{'H} NMR (CDCl;, 100 MHz): 6 162.7, 158.4, 155.8, 138.0,
2431 137.0, 136.8, 136.1, 130.4, 130.2, 129.5, 129.4, 129.2, 129.0, 128.85, 128.75, 118.6, 117.8,
22 104.8; IR (KBr, em™): 2923, 2862, 2217, 1652, 1573, 1528, 1489, 1369, 1260, 1172, 1091,
37 1018, 824, 753, 690, 492; HRMS (ESI/Q-TOF) (m/z) calcd for C,4H;cCIN, [M + H]* 367.0997;
gg found 367.0998.

2(1) 6-(4-Bromophenyl)-2,4-diphenylnicotinonitrile (16a):

fé - As a white solid (65 mg, 64% yield); Purified over a column of
44 ‘ N O silica gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): 6
22 | NN 8.07-8.02 (m, 4H), 7.79 (s, 1H), 7.69—7.63 (m, 4H), 7.59-7.55 (m,
2573 O 6H); BC{'H} NMR (CDCl;, 100 MHz): ¢ 162.7, 158.1, 155.9,
Pt 138.0, 136.8, 136.6, 132.4, 130.4, 130.2, 129.5, 129.24, 129.22,
g; 128.8,128.7,125.5, 118.5, 117.7, 104.9; IR (KBr, cm™'): 2922, 2862, 2218, 1681, 1573, 1528,
53 1486, 1367,1272, 1169, 1071, 1004, 821, 753, 689, 622, 487; HRMS (ESI/Q-TOF) (m/z) calcd
gg for Co4H¢BrN; [M + H]" 411.0491; found 411.0499.

56

57

58
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6-(4-Nitrophenyl)-2,4-diphenylnicotinonitrile (17a):

ON As a white solid (42 mg, 45% yield); Purified over a column of
‘ Ny O silica gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): ¢
- CN 8.36 (s, 4H), 8.05-8.03 (m, 2H), 7.89 (s, 1H), 7.71-7.68 (m, 2H),
‘ 7.59-7.57 (m, 6H); BC{'H} NMR (CDCl;, 100 MHz): 6 162.9,
156.7, 156.4, 149.2, 143.5, 137.7, 136.5, 130.6, 130.5, 129.6,
129.4,128.9, 128.6, 124.4,119.6, 117.4, 106.1; IR (KBr, cm™"): 2923, 2862, 2220, 1607, 1453,
1406, 1272, 1094, 1039, 807, 692; HRMS (ESI/Q-TOF) (m/z) caled for C,4HsN;0, [M + H]*
378.1237; found 378.1245.
6-(2-Nitrophenyl)-2,4-diphenylnicotinonitrile (18a):

As a white solid (39 mg, 42% yield); Purified over a column of silica

O Ny O gel (2% EtOAc in hexane). 'H NMR (CDCls, 600 MHz): 6 7.96 (d,

NO, | AN 1H, J = 7.8 Hz), 793 (d, 2H, J = 7.5 Hz), 7.72-7.68 (m, 4H),

7.62—7.59 (m, 2H), 7.57-7.55 (m, 3H), 7.54-7.51 (m, 3H); BC{'H}

O NMR (CDCl;, 150 MHz): 6 162.4, 157.8, 155.9, 149.5, 137.4, 136.2,

134.0, 132.8, 131.2, 130.5, 130.44, 130.35, 129.5, 129.2, 128.9, 128.7, 124.9, 121.1, 117.4,

105.5; IR (KBr, cm™): 2922, 2856, 2216, 1694, 1567, 1522, 1453, 1340, 1235, 1159, 1076,

1028, 901, 850, 751, 695, 616, 483; HRMS (ESI/Q-TOF) (m/z) caled for Cp4H sN;O, [M +
H]* 378.1237; found 378.1254.

4-(Naphthalen-1-yl)-2,6-diphenylnicotinonitrile (19a):

As a white solid (68 mg, 72% yield); Purified over a column of silica
‘ N O gel (2% EtOAc in hexane). 'H NMR (CDCls, 400 MHz): 6 8.21-8.19
| any (m, 2H), 8.12 (d, 2H, J = 8.0 Hz), 8.03 (d, 1H, J = 8.0 Hz), 7.99 (d,
OO 1H, J=8.0 Hz), 7.89 (s, 1H), 7.68 (d, 1H, J = 8.4 Hz), 7.64 (d, 1H, J
=8.0 Hz), 7.61-7.56 (m, 5H), 7.54-7.51 (m, 4H); BC{'H}

NMR (CDCls;, 100 MHz): ¢ 162.1, 158.9, 155.1, 138.0, 137.6, 134.6, 133.9, 130.9, 130.8,
130.4, 130.2, 129.6, 129.2, 128.9, 128.8, 127.8, 127.44, 127.35, 126.7, 125.5, 125.0, 120.3,
117.3, 106.6; IR (KBr, cm™'): 2921, 2853, 2215, 1732, 1656, 1569, 1528, 1446, 1374, 1262,
1073, 1025, 906, 771, 692, 616, 533; HRMS (ESI/Q-TOF) (m/z) calcd for C,sH 9N, [M + H]*

383.1543; found 383.1548.
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4-(Naphthalen- 1-yl)-6-(naphthalen-2-yl)-2-phenylnicotinonitrile (20a):

o
N

=

CN

As a white solid (75 mg, 70% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCls, 400 MHz): 6 8.69 (s,
1H), 8.33 (d, 1H, J = 8.8 Hz), 8.16 (d, 2H, J = 7.8 Hz), 8.05-7.94
(m, 6H), 7.89 (d, 1H,J=7.8 Hz), 7.72 (d, 1H, J= 8.0 Hz), 7.68-7.52
(m, 8H); BC{'H} NMR (CDCl;, 100 MHz): 6 162.1, 158.8, 155.0,
138.1, 134.9, 134.7, 134.6, 133.9, 133.5, 130.4, 130.2,

129.6, 129.2, 128.9, 128.8, 127.89, 127.92, 127.6, 127.4, 127.3, 126.8, 126.7, 125.4, 125.0,
124.6, 120.4, 117.3, 106.6; IR (KBr, cm™'): 2921, 2850, 2218, 1679, 1564, 1529, 1385, 1336,
1233, 1168, 1026, 862, 763, 696, 628; HRMS (ESI/Q-TOF) (m/z) calcd for C5,H, N, [M + H]*
433.1699; found 433.1730.

4-(4-Chlorophenyl)-2-phenyl-6-(p-tolyl)nicotinonitrile (21a):

Cl

As a white solid (65 mg, 69% yield); Purified over a column of
silica gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): &
8.08 (d, 2H, J= 8.0 Hz), 8.04-8.02 (m, 2H), 7.75 (s, 1H), 7.62 (d,
2H,J=8.4 Hz), 7.57-7.53 (m, 5H), 7.32 (d, 2H, /= 8.0 Hz), 2.44
(s, 3H); BC{'H} NMR (CDCl;, 100 MHz): 6 162.6, 159.5, 154.2,

141.3, 138.1, 136.5, 135.5, 134.8, 130.3, 130.2, 129.9,

129.6, 129.5,128.7,127.7, 118.2, 117.9, 103.9, 21.6; IR (KBr, cm™"): 2923, 2860, 2212, 1658,
1575, 1531, 1486, 1455, 1370, 1266, 1174, 1089, 1016, 815, 753, 688, 628, 540, 495; HRMS
(ESI/Q-TOF) (m/z) caled for C,sH;sCIN, [M + H]* 381.1153; found 381.1170.

6-(4-Chlorophenyl)-4-(4-methoxyphenyl)-2-phenylnicotinonitrile (22a):

Cl
O N O
N

=

OMe

CN

As a white solid (74 mg, 75% yield); Purified over a column of
silica gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): ¢
8.05 (d, 2H, J = 8.8 Hz), 7.96-7.93 (m, 2H), 7.68 (s, 1H), 7.58 (d,
2H, J = 8.8 Hz), 7.49-7.47 (m, 3H), 7.40 (d, 2H, J = 8.4 Hz), 7.01
(d, 2H,J=8.8 Hz), 3.82 (s, 3H); 3C{'H} NMR (CDCl;, 100 MHz):
0162.7,161.3, 157.9, 155.4, 138.1, 136.9, 136.2, 130.4, 130.3,

129.5,129.3,128.9,128.7,128.5,118.3,118.1, 114.7, 104.5, 55.6; IR (KBr, cm'): 2923, 2856,
2216, 1727, 1574, 1514, 1459, 1373, 1177, 1259, 1089, 1025, 820, 689, 568, 514; HRMS
(ESI/Q-TOF) (m/z) caled for C,5sHgCIN,O [M + H]* 397.1102; found 397.1106.
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6-(4-Chlorophenyl)-4-(4-hydroxyphenyl)-2-phenylnicotinonitrile (23a):

Cl
N

Z

OH

CN

As a white solid (39 mg, 41% yield); Purified over a column of
silica gel (5% EtOAc in hexane). 'H NMR (DMSO-d® + CDCl;,
400 MHz): ¢ 10.07 (s, 1H), 8.30 (d, 2H, J = 8.4 Hz), 8.07 (s, 1H),
7.96-7.94 (m, 2H), 7.67 (d, 2H, J = 8.4 Hz), 7.57-7.54 (m, 5H),
6.96 (d, 2H, J = 8.8 Hz); *C{'H} NMR (DMSO-d¢ + CDCl;, 100
MHz): 6 161.7, 159.3, 156.8, 154.9, 137.9, 135.8, 135.5, 130.6,

129.9, 129.3, 129.2, 128.9, 128.3, 126.7, 118.3, 117.9, 115.6, 103.9; IR (KBr, cm™'): 3415,

2955, 2922, 2853, 2215,

1667, 1594, 1565, 1491, 1462, 1387, 1308, 1262, 1219, 1090, 1017,

807, 702; HRMS (ESI/Q-TOF) (m/z) caled for CayH;6CIN,O [M + H]* 383.0946; found

383.0949.

4-(4-Methoxyphenyl)-6-(4-nitrophenyl)-2-phenylnicotinonitrile (24a):

02N ! g
AN

Z >N

OMe

As a white solid (46 mg, 46% yield); Purified over a column of
silica gel (2% EtOAc in hexane). 'H NMR (CDCls, 400 MHz): 6
8.35 (s, 4H), 8.03-8.01 (m, 2H), 7.86 (s, 1H), 7.67 (d, 2H, J = 8.8
Hz), 7.58-7.56 (m, 3H), 7.10 (d, 2H, J = 8.8 Hz), 3.91 (s, 3H);
BC{'H} NMR (CDCls, 100 MHz): § 163.1, 161.6, 156.6, 155.9,
149.4,149.2,143.6, 137.8, 130.6, 130.4, 129.6, 128.8, 128.6, 124.3,

119.4,117.8, 114.8, 105.8, 55.7; IR (KBr, cm™'): 2923, 2854, 2218, 1727, 1602, 1568, 1513,
1352, 1296, 1260, 1180, 1111, 1023, 825,757, 691, 568, 511; HRMS (ESI/Q-TOF) (m/z) calcd
for C,sH gsN;O3 [M + H]" 408.1343; found 408.1347.
4-(2,6-Dichlorophenyl)-6-(4-fluorophenyl)-2-phenylnicotinonitrile (25a):

As a white solid (66 mg, 64% yield); Purified over a column of silica
gel (2% EtOAc in hexane). "TH NMR (CDCl;, 400 MHz): 6 8.24-8.20
(m, 2H), 8.13-8.10 (m, 2H), 7.69 (s, 1H), 7.59-7.57 (m, 3H),
7.54-7.52 (m, 2H), 7.43-7.39 (m, 1H), 7.22 (t, 2H, J = 8.8 Hz);
BC{'H} NMR (CDCl;, 100 MHz): § 164.7 (d, J=250.1 Hz), 161.8,

158.6, 151.4, 137.6, 134.8, 134.3, 133.6 (d, J = 3.1 Hz), 131.4, 130.5, 129.9 (d, J = 8.6 Hz),
129.4, 128.8 (d, J=8.3 Hz), 118.9, 116.4, 116.2 (d, J = 21.6 Hz), 106.1; '°F NMR (CDCl; +
hexafluorobenzene): 6 —112.9 (s); IR (KBr, cm™!): 2922, 2855, 2217, 1660, 1589, 1535, 1406,
1369, 1230, 1151, 1094, 1013, 840, 778, 689, 512; HRMS (ESI/Q-TOF) (m/z) calcd for
CyH4CLLEN, [M + H]" 419.0513; found 419.0514.
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4-(3,4-Dimethoxyphenyl)-2,6-diphenylnicotinonitrile (26a):

As a white solid (66 mg, 68% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'TH NMR (CDCls, 400 MHz): 6 8.21 (d, 2H,
J="1.8 Hz), 8.06 (d, 2H, J = 7.4 Hz), 7.85 (s, 1H), 7.59-7.54 (m, 6H),
7.33-7.26 (m, 2H), 7.07 (d, 1H, J = 8.4 Hz), 4.02 (s, 3H), 3.99 (s, 3H);
BC{'H} NMR (CDCl;, 100 MHz): ¢ 162.7, 159.2, 155.3, 150.8, 149.3,
138.3, 137.8, 130.6, 130.2, 129.6, 129.4, 129.2, 128.7, 127.7, 121.9,

118.6, 118.3, 112.0, 111.6, 104.3, 56.4, 56.2; IR (KBr, cm™"): 2927, 2840, 2213, 1665, 1571,
1515, 1452, 1376, 1321, 1256, 1180, 1140, 1077, 1020, 920, 858, 803, 756, 691, 594; HRMS
(ESI/Q-TOF) (m/z) caled for Cy6Hy1N,O, [M + H] 393.1598; found 393.1598.
6-(Benzo[d][1,3]dioxol-5-yl)-4-(4-bromophenyl)-2-phenylnicotinonitrile (27a):

Br

As a white solid (71 mg, 63% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): 6 8.02—8.00
(m, 2H), 7.72-7.69 (m, 4H), 7.66 (s, 1H), 7.56-7.53 (m, 5H), 6.93 (d,
1H, J = 8.0 Hz), 6.05 (s, 2H); BC{'H} NMR (CDCl;, 100 MHz): ¢
162.5, 158.8, 154.2, 150.2, 148.8, 138.0, 135.9, 132.4, 131.9, 130.42,
130.37, 129.5, 128.7, 124.8, 122.4, 117.84, 117.75, 108.8,

107.9, 103.6, 101.9; IR (KBr, cm™!): 2923, 2859, 2214, 1650, 1591, 1484, 1446, 1319, 1255,
1106, 1039, 935, 810, 690, 488; HRMS (ESI/Q-TOF) (m/z) caled for C,sH;,BrN,O, [M + H]*
455.0390; found 455.0417.
4-(4-Chlorophenyl)-2-phenyl-35,6-dihydrobenzo[h]quinoline-3-carbonitrile (28a):

As a white solid (59 mg, 61% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): ¢ 8.51-8.49
(m, 1H), 8.03 (d, 2H, J = 7.8 Hz), 7.57-7.51 (m, 5H), 7.42-7.38 (m,
2H),7.33 (d,2H,J=8.4 Hz), 7.26 (s, 1H), 2.91-2.87 (m, 2H), 2.79-2.76
(m, 2H); BC{!H} NMR (CDCl;, 100 MHz): § 159.6, 155.4, 152.3,
138.9, 138.1, 135.7, 134.2, 133.7, 131.1, 130.3, 130.1, 129.5, 1294,

128.7, 128.4, 128.0, 127.6, 126.9, 117.7, 105.9, 27.7, 25.5; IR (KBr, cm™!): 2924, 2854, 2221,
1598, 1544, 1489, 1391, 1240, 1177, 1086, 1018, 836, 757, 699, 589, 485; HRMS (ESI/Q-
TOF) (m/z) calcd for C,sH;sCIN, [M + H]* 393.1153; found 393.1139.
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4,6-Di(furan-2-yl)-2-phenylnicotinonitrile (29a):

CN

As a white solid (50 mg, 65% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): 6 8.14 (s, 1H),
7.93-7.91 (m, 2H), 7.71 (d, 1H, J= 3.6 Hz), 7.68 (s, 1H), 7.63 (s, 1H),
7.54-7.53 (m, 3H), 7.31 (d, 1H, J = 3.6 Hz), 6.66—6.64 (m, 1H),
6.60—6.59 (m, 1H); *C{'H} NMR (CDCl;, 100 MHz): ¢ 163.5,

152.9, 151.2, 148.4, 145.13, 145.07, 141.9, 138.0, 130.3, 129.5, 128.6, 118.6, 114.7, 113.1,
112.9, 112.6, 111.7, 98.5; IR (KBr, cm™!): 2923, 2853, 2214, 1639, 1510, 1465, 1372, 1261,
1028, 812, 756, 705; HRMS (ESI/Q-TOF) (m/z) caled for CaoH 3N,0, [M + HI* 313.0972;

found 313.0991.

2-Phenyl-4,6-di(thiophen-2-yl)nicotinonitrile (30a):

a

S |N\
ZCN
NS

As a white solid (58 mg, 68% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCls, 400 MHz): ¢ 8.02—7.99
(m, 2H), 7.92 (d, 1H, J=4.0 Hz), 7.78 (d, 1H, J= 3.6 Hz), 7.74 (s, 1H),
7.58-7.52 (m, SH), 7.24 (t, 1H, J = 4.4 Hz), 7.16 (t, 1H, J = 4.4 Hz);
BC{'H} NMR (CDCl;, 100 MHz): 6 163.3, 154.6, 146.9, 143.4, 137.69,

137.66, 130.6, 130.4, 129.9, 129.6, 129.3, 128.9, 128.65, 128.60, 127.4, 118.4, 115.9, 101.9;
IR (KBr, cm™1): 2921, 2852, 2215, 1639, 1591, 1552, 1513, 1495, 1462, 1377, 1289, 1266,
1111, 1069, 1012, 885, 798, 748, 723, 699; HRMS (ESI/Q-TOF) (m/z) calcd for C,0H 3N,S;
[M + H]J" 345.0515; found 345.0522.

2-(Naphthalen-2-yl)-4,6-diphenylnicotinonitrile (1b):

As a white solid (63 mg, 66% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCls, 400 MHz): 6 8.59 (s,
1H), 8.24-8.22 (m, 2H), 8.19-8.16 (m, 1H), 8.05-8.02 (m, 2H),
7.95-7.93 (m, 1H), 7.86 (s, 1H), 7.75-7.72 (m, 2H), 7.59-7.53 (m,
8H); 3C{'H} NMR (CDCl;, 100 MHz): 6 162.5, 159.4, 155.7, 137.7,
136.9, 135.5, 134.1, 133.1, 130.7, 130.1, 129.7, 129.2, 129.1, 128.9,

128.5, 127.9, 127.8, 127.4, 126.7, 126.6, 118.8, 118.0, 104.7; IR (KBr, cn™!): 2924, 2851,
2216, 1657, 1572, 1500, 1468, 1401, 1371, 1322, 1262, 1226, 1153, 1091, 1023, 873, 827, 761,
728, 701; HRMS (ESI/Q-TOF) (m/z) caled for CagH N, [M + H]* 383.1543; found 383.1548.
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4,6-Diphenyl-2-(p-tolyl)nicotinonitrile (1¢):3¢

As a white solid (63 mg, 73% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCl; 400 MHz): 6 8.19 (d, 2H,
J=17.6 Hz), 7.97 (d, 2H, J = 8.0 Hz), 7.80 (s, 1H), 7.69 (d, 2H, J=7.8
Hz), 7.58-7.51 (m, 6H), 7.37 (d, 2H, J= 8.0 Hz), 2.46 (s, 3H); BC{'H}
NMR (CDCl;, 100 MHz): 6 162.6, 159.2, 155.6, 140.5, 137.8, 137.1,
135.4, 130.6, 130.0, 129.5, 129.4, 129.2, 129.1, 128.9, 127.7,

118.6, 118.1, 104.3, 21.6; IR (KBr, cm™!): 2922, 2856, 2213, 1570, 1527, 1449, 1375, 1231,
1176, 1084, 1024, 874, 820, 755, 691, 490; HRMS (ESI/Q-TOF) (m/z) calcd for C,sH 9N, [M
+ H]* 347.1543; found 347.1545.

4,6-Diphenyl-2-(o-tolyl)nicotinonitrile (1d):

Me

As a white solid (37 mg, 43% yield); Purified over a column of silica gel
(2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): 6 8.16-8.14 (m,
2H), 7.86 (s, 1H), 7.72 (d, 2H, J= 7.8 Hz), 7.59-7.55 (m, 3H), 7.52-7.49
(m, 4H), 7.44-7.34 (m, 3H), 2.41 (s, 3H); BC{'H} NMR (CDCl3, 100
MHz): 0 164.5, 159.2, 154.6, 138.2, 137.8, 136.8, 136.4, 130.9, 130.7,

130.2, 129.73, 129.70, 129.24, 129.16, 128.8, 127.8, 126.1, 118.8, 117.1, 106.6, 20.1; IR (KBr,
em): 2922, 2856, 2215, 1570, 1529, 1488, 1455, 1372, 1260, 1166, 1072, 1029, 875, 747,
690, 620, 576, 453; HRMS (ESI/Q-TOF) (m/z) caled for CasH; N, [M + H]* 347.1543; found

347.1528.

2-(4-Ethylphenyl)-4,6-diphenylnicotinonitrile (1e):

As a white solid (67 mg, 75% yield); Purified over a column of silica
gel (2% EtOAc in hexane). '"H NMR (CDCls, 400 MHz): 6 8.19 (d, 2H,
J=17.8 Hz), 8.00 (d, 2H, J = 8.0 Hz), 7.80 (s, 1H), 7.70 (d, 2H, J= 7.6
Hz), 7.59-7.51 (m, 6H), 7.40 (d, 2H, J = 8.0 Hz), 2.77 (q, 2H, J= 7.6
Hz), 1.32 (t, 3H, J = 7.6 Hz); “C{'H} NMR (CDCl;, 100 MHz): ¢
162.6, 159.2, 155.6, 146.7, 137.8, 137.1, 135.6, 130.6, 130.0, 129.6,

129.14, 129.12, 128.9, 128.2, 127.7, 118.5, 118.1, 104.3, 29.0, 15.6; IR (KBr, cm™): 2923,
2864, 2214, 1572, 1529, 1448, 1374, 1261, 1184, 1075, 1024, 874, 832, 754, 693, 564, 488;
HRMS (ESIQ-TOF) (m/z) caled for CogHa N, [M + H]* 361.1699; found 361.1712.
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2-(4-(tert-Butyl)phenyl)-4,6-diphenylnicotinonitrile (1f):

As a white solid (74 mg, 77% yield); Purified over a column of silica
gel (2% EtOAc in hexane). '"H NMR (CDCls, 400 MHz): 6 8.19 (d, 2H,
J=17.6 Hz), 8.03 (d, 2H, J = 8.4 Hz), 7.81 (s, 1H), 7.69 (d, 2H, J=7.8
Hz), 7.60-7.56 (m, 5H), 7.53-7.51 (m, 3H), 1.41 (s, 9H); BC{'H}
NMR (CDCl;, 100 MHz): 6 162.4, 159.2, 155.6, 153.6, 137.8, 137.1,
135.4, 130.6, 130.0, 129.3, 129.2, 129.1, 128.9, 127.7, 125.7,

118.6, 118.1, 104.2, 35.1, 31.5; IR (KBr, cm™): 2924, 2857, 2222, 1576, 1531, 1456, 1379,
1262, 1102, 1024, 804, 766, 696, 555; HRMS (ESI/Q-TOF) (m/z) caled for CogHasN, [M + H]*
389.2012; found 389.2041.

2-(4-Methoxyphenyl)-4,6-diphenylnicotinonitrile (1g):>°

OMe

As a white solid (71 mg, 79% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCl; 600 MHz): ¢ 8.18 (d, 2H,
J=17.8 Hz), 8.06 (d, 2H, J= 8.4 Hz), 7.77 (s, 1H), 7.68 (d, 2H, J=7.2
Hz), 7.58-7.51 (m, 6H), 7.08 (d, 2H, J= 8.4 Hz), 3.90 (s, 3H); BC{'H}
NMR (CDCl;, 150 MHz): 6 162.0, 161.4, 159.2, 155.7, 137.8, 137.1,
131.2, 130.7, 130.6, 130.0, 129.2, 128.9, 127.7, 118.3, 114.1,

103.8, 55.6; IR (KBr, cm™'): 2922, 2860, 2214, 1665, 1581, 1512, 1455, 1374, 1253, 1175,
1017, 819, 758, 691, 562; HRMS (ESI/Q-TOF) (m/z) calcd for CosHoN,O [M + H]* 363.1492;

found 363.1514.

2-(4-Methoxy-3-methylphenyl)-4,6-diphenylnicotinonitrile (1h):

As a white solid (64 mg, 68% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCl;, 600 MHz): ¢ 8.18 (d, 2H,
J=17.2Hz),7.92 (d, 1H, J= 8.4 Hz), 7.86 (s, 1H), 7.76 (s, 1H), 7.68 (d,
2H, J = 7.7 Hz), 7.57-7.51 (m, 6H), 6.98 (d, 1H, J = 8.4 Hz), 3.92 (s,
3H), 2.34 (s, 3H); 3C{'H} NMR (CDCls, 150 MHz): ¢ 162.4, 159.6,
159.2, 155.6, 137.9, 137.2, 131.9, 130.6, 130.2, 130.0, 129.1, 128.9,

128.6, 127.8, 127.1, 118.4, 118.2, 109.7, 103.9, 55.7, 16.6; IR (KBr, cm™!): 2923, 2856, 2213,
1574, 1532, 1496, 1453, 1373, 1247, 1173, 1131, 1027, 879, 811, 759, 690, 578; HRMS
(ESI/Q-TOF) (m/z) caled for C,6Hy N,O [M + H]" 377.1648; found 377.1655.
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2-(4-Fluorophenyl)-4,6-diphenylnicotinonitrile (1i):

As a white solid (54 mg, 62% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCl;, 400 MHz): 6 8.22-8.19
(m, 2H), 8.12-8.08 (m, 2H), 7.86 (s, 1H), 7.73-7.71 (m, 2H), 7.63-7.55
(m, 6H), 7.30-7.28 (m, 2H); 3C{'H} NMR (CDCl;, 100 MHz): 0 164.2
(d, J=249.0 Hz), 161.4, 159.4, 155.7, 137.6, 136.9, 134.3 (d, J = 3.2
Hz), 131.7 (d, J= 8.6 Hz), 130.8, 130.2, 129.2, 128.8, 127.7, 118.9,

117.9,115.8 (d, J=21.7 Hz), 104.4; 'F NMR (CDC]l; + hexafluorobenzene): 6 —113.8 (s); IR
(KBr, cm™): 2923, 2858, 2214, 1662, 1594, 1543, 1480, 1369, 1261, 1153, 1078, 1017, 879,
811,748, 686, 587; HRMS (ESI/Q-TOF) (m/z) calcd for CosH6FN, [M + HJ* 351.1292; found

351.1292.

2-(4-Chlorophenyl)-4,6-diphenylnicotinonitrile (1j):

As a white solid (50 mg, 55% yield); Purified over a column of silica
gel (2% EtOAc in hexane). '"H NMR (CDCl; 400 MHz): 6 8.18-8.16
(m, 2H), 8.01 (d, 2H, J = 8.4 Hz), 7.84 (s, 1H), 7.69-7.67 (m, 2H),
7.58-7.52 (m, 8H); 3C{!H} NMR (CDCls, 100 MHz): 6 161.3, 159.5,
155.8, 137.6, 136.8, 136.62, 136.59, 135.4, 130.95, 130.87, 130.2,
129.2,129.0, 128.9, 127.8, 119.0, 117.8, 104.4; IR

(KBr, cm™): 2923, 2856, 2216, 1578, 1529, 1454, 1381, 1262, 1091, 1028, 804, 757, 693;
HRMS (ESI/Q-TOF) (m/z) caled for C,4HsCIN, [M + H]* 367.0997; found 367.1006.
2-(3-Chlorophenyl)-4,6-diphenylnicotinonitrile (1K):

C

130.3, 130.2, 129.9,

As a white solid (46 mg, 51% yield); Purified over a column of silica gel
(2% EtOACc in hexane). 'H NMR (CDCls, 400 MHz): 6 8.17 (d, 2H, J =
7.6 Hz), 8.02 (s, 1H), 7.94 (d, 1H, J = 6.8 Hz), 7.85 (s, 1H), 7.69-7.68
(m, 2H), 7.58-7.57 (m, 3H), 7.54—7.49 (m, SH); 3C{'H} NMR (CDCl;,
100 MHz): 6 161.1, 159.5, 155.7, 139.9, 137.5, 136.8, 134.8, 130.9,

129.8, 129.2, 128.9, 127.8, 127.6, 119.3, 117.6, 104.6; IR (KBr, cm™"):

2923, 2857, 2214, 1662, 1571, 1529, 1457, 1375, 1262, 1168, 1083, 1030, 876, 801, 755, 688,
579; HRMS (ESI/Q-TOF) (m/z) calcd for C,4H;¢CIN, [M + H]" 367.0997; found 367.1003.
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2-(4-Bromophenyl)-4,6-diphenylnicotinonitrile (11):3°

As a white solid (53 mg, 52% yield); Purified over a column of silica gel
(2% EtOAc in hexane). 'H NMR (CDCl; 400 MHz): 6 8.17 (d, 2H, J =
7.2 Hz), 7.94 (d, 2H, J = 8.4 Hz), 7.84 (s, 1H), 7.71-7.67 (m, 4H),
7.58-7.56 (m, 3H), 7.53-7.51 (m, 3H); BC{'H} NMR (CDCl;, 100
MHz): 6 161.4, 159.5, 155.8, 137.5, 137.0, 136.8, 131.9, 131.2, 130.9,
130.2, 129.2, 128.8, 127.8, 125.0, 119.1, 117.8, 104.4; IR (KBr, cm™!):

2923,2855,2214, 1732, 1571, 1530, 1485, 1459, 1378, 1266, 1174, 1073, 1016, 825, 755, 692,
491; HRMS (ESI/Q-TOF) (m/z) calcd for C,4H;cBrN; [M + H]" 411.0491; found 411.0497.
4,6-Diphenyl-2-(4-(trifluoromethyl)phenyl)nicotinonitrile (1m):

As a white solid (35 mg, 35% yield); Purified over a column of silica
gel (2% EtOAc in hexane). 'H NMR (CDCls, 400 MHz): 6 8.19-8.15
(m, 4H), 7.89 (s, 1H), 7.83 (d, 2H, J = 8.0 Hz), 7.71-7.68 (m, 2H),
7.59-7.57 (m, 3H), 7.55-7.52 (m, 3H); 3C{'H} NMR (CDCls;, 100
MHz): ¢ 161.1, 159.6, 155.8, 137.4, 136.7, 130.9, 130.3, 130.0,
129.29, 129.27, 128.8, 128.4, 128.2, 128.0, 127.8, 125.7 (q, J =

3.8 Hz), 119.5,117.8, 104.8; IR (KBr, cm™1): 2923, 2855, 2216, 1675, 1571, 1534, 1492, 1450,
1392, 1262, 1165, 1109, 1068, 1021, 807, 761, 692, 597, 495; HRMS (ESI/Q-TOF) (m/z) calcd
for CsH6F3N, [M + H]* 401.1260; found 401.1266.

2,5-Diphenyl-1H-pyrrole-3-carbonitrile (31a):3

As a white solid (44 mg, 73% yield); Purified over a column of silica gel
(5% EtOAc in hexane). '"H NMR (DMSO-d¢, 600 MHz): 6 12.20 (s, 1H),
7.85(d, 2H, J=7.8 Hz), 7.81 (d, 2H, J = 7.8 Hz), 7.55 (t, 2H, J = 7.8 Hz),
7.45-7.42 (m, 3H), 7.30 (t, 1H, J= 7.2 Hz), 7.07 (s, IH); BC{'H}

NMR (DMSO-d%, 150 MHz): ¢ 139.6, 133.8, 130.7, 129.7, 128.9, 128.8, 128.6, 127.3, 126.5,
124.8, 117.6, 110.2, 90.2; IR (KBr, cm™): 3224, 3034, 2756, 2219, 1597, 1465, 1296, 1184,
1071, 1027, 908, 808, 760, 688, 595, 535, 490; HRMS (ESI/Q-TOF) (m/z) calcd for C;7H3N;

[M + H]* 245.1073;

found 245.1077.
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2-Phenyl-5-(p-tolyl)-1H-pyrrole-3-carbonitrile (32a):

As a white solid (49 mg, 76% yield); Purified over a column of silica
gel (5% EtOAc in hexane). 'H NMR (DMSO-d¢, 600 MHz): § 12.14
(s, IH), 7.83 (d, 2H, J="7.8 Hz), 7.69 (d, 2H, J= 8.4 Hz), 7.54 (t, 2H,
J=17.8 Hz), 7.43 (t, I1H, J=17.5 Hz), 7.24 (d, 2H, J= 7.8 Hz), 7.00 (s,
1H), 2.31 (s, 3H); BC{'H} NMR (DMSO-d¢, 150 MHz): ¢

139.4, 136.8, 134.0, 129.8, 129.4, 129.0, 128.6, 128.0, 126.5, 124.8, 117.8, 109.6, 90.1, 20.8;
IR (KBr, cm™): 3258, 2905, 2864, 2218, 1601, 1455, 1263, 1075, 1036, 803, 755, 692, 430;
HRMS (ESI/Q-TOF) (m/z) calcd for C1gH;sN, [M + H]* 259.1230; found 259.1241.
5-(4-Methoxyphenyl)-2-phenyl-1H-pyrrole-3-carbonitrile (33a):

As a white solid (53 mg, 78% yield); Purified over a column of silica
gel (5% EtOAc in hexane). 'H NMR (DMSO-d®¢, 400 MHz): 6 12.07
(s, 1H), 7.83 (d, 2H, J=17.6 Hz), 7.73 (d, 2H, J = 8.8 Hz), 7.53 (t, 2H,
J=17.8Hz),7.42 (t, IH,J=7.4 Hz), 7.00 (d, 2H, J= 8.8 Hz), 6.92 (s,
1H), 3.78 (s, 3H); BC{'H} NMR (DMSO-d¢, 100 MHz): ¢

158.7, 139.0, 133.9, 129.8, 128.9, 128.4, 126.4, 126.3, 123.5, 117.8, 114.2, 108.9, 89.9, 55.2;
IR (KBr, cm™): 3221, 2922, 2835, 2219, 1606, 1527, 1461, 1295, 1266, 1156, 1126, 1043,
939, 830, 805, 761, 692, 573, 515 HRMS (ESI/Q-TOF) (m/z) calcd for C;gH;sN,O [M + H]*
275.1179; found 275.1187.

5-(4-Chlorophenyl)-2-phenyl-1H-pyrrole-3-carbonitrile (34a):

As a white solid (49 mg, 71% yield); Purified over a column of silica
gel (5% EtOAc in hexane). 'H NMR (DMSO-d¢, 400 MHz): § 12.24
(s, 1H), 7.84-7.81 (m, 4H), 7.54 (t, 2H, J= 7.6 Hz), 7.48 (d, 2H, J =
8.4 Hz), 7.44 (t, 1H,J="7.4 Hz), 7.09 (s, 1H); BC{'H} NMR (DMSO-

d®, 100 MHz): 6 140.0, 132.6, 131.8, 129.7, 129.6, 129.0,
128.84, 128.78, 126.6, 126.5, 117.6, 110.8, 90.4; IR (KBr, cm™!): 3226, 2928, 2853, 2221,
1599, 1473, 1299, 1263, 1171, 1092, 1024, 832, 805, 762, 687, 603, 495; HRMS (ESI/Q-TOF)
(m/z) calcd for C;7H,CIN, [M + H]* 279.0684; found 279.0697.

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry Page 36 of 52

5-(4-Bromophenyl)-2-phenyl-1H-pyrrole-3-carbonitrile (35a):

As a white solid (54 mg, 67% yield); Purified over a column of silica
gel (5% EtOAc in hexane). 'H NMR (DMSO-d¢, 400 MHz): § 12.24
(s, 1H), 7.83 (d, 2H, J=7.2 Hz), 7.76 (d, 2H, J= 8.8 Hz), 7.61 (d, 2H,
J=8.8Hz), 7.54 (t,2H, J=7.6 Hz), 7.44 (t, 1H, J=7.4 Hz), 7.10 (s,
1H); BC{'H} NMR (DMSO-d®, 100 MHz): 6 140.0, 132.6,

131.7, 129.9, 129.6, 128.9, 128.8, 126.7, 126.6, 120.3, 117.5, 110.8, 90.4; IR (KBr, cm™):
3225, 2921, 2856, 2223, 1600, 1471, 1384, 1303, 1264, 1174, 1076, 1022, 807, 751, 692, 491;
HRMS (ESI/Q-TOF) (m/z) calced for C;H,BrN, [M + H]" 323.0178; found 323.0181.
5-(4-Nitrophenyl)-2-phenyl-1H-pyrrole-3-carbonitrile (36a):

As a white solid (40 mg, 55% yield); Purified over a column of silica
gel (5% EtOAc in hexane). 'H NMR (DMSO-d¢, 400 MHz): 6 12.51
(s, 1H), 8.28 (d, 2H, J = 9.2 Hz), 8.07 (d, 2H, J = 8.8 Hz), 7.85 (d,
2H,J=17.2Hz),7.57 (t,2H,J=7.6 Hz), 7.48 (t, 1H,J="7.4 Hz), 7.41
(s, 1H); BC{'H} NMR (DMSO-d®, 100 MHz): 6§ 145.7, 141.5,
136.9, 131.5, 129.2, 129.0, 126.8, 125.1, 124.3, 117.1, 113.81, 113.78, 91.2; IR (KBr, cm™):
3224, 2926, 2746, 2219, 1595, 1464, 1298, 1183, 1072, 1027, 908, 805, 763, 687, 595, 535,
494; HRMS (ESI/Q-TOF) (m/z) caled for C17H{,N30, [M + H]* 290.0924; found 290.0947.
2-Phenyl-4,5-dihydro-1H-benzo[g]indole-3-carbonitrile (37a):

As a white solid (48 mg, 71% yield); Purified over a column of silica gel
(5% EtOAc in hexane). '"H NMR (DMSO-d¢, 400 MHz): 6 12.26 (s, 1H),
7.85(d,2H,J="7.2 Hz), 7.75 (d, 1H, J=7.6 Hz), 7.54 (t, 2H, J= 7.8 Hz),
7.42 (t, 1H, J=7.4 Hz), 7.28-7.23 (m, 2H), 7.12 (t, 1H, J= 7.4 Hz), 2.93
(t,2H, J=17.6 Hz), 2.74 (t, 2H, J = 7.6 Hz); 3C{'H} NMR (DMSO-

d®, 100 MHz): ¢ 138.5, 134.4, 129.9, 129.3, 129.0, 128.4, 128.3, 127.7, 127.4, 126.7, 126.4,
126.0, 123.3, 120.6, 117.0, 88.7, 28.5, 19.9; IR (KBr, cm™"): 3228, 3033, 2765, 2221, 1599,
1455, 1286, 1187, 1080, 1026, 918, 801, 765, 678, 585, 532, 498; HRMS (ESI/Q-TOF) (m/z)
calcd for C19H; 5N, [M + H]* 271.1230; found 271.1238.
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2-Phenyl-5-(thiophen-2-yl)-1 H-pyrrole-3-carbonitrile (38a):

As a white solid (43 mg, 69% yield); Purified over a column of silica gel
(5% EtOAc in hexane). '"H NMR (DMSO-d®, 400 MHz): 6 12.36 (s, 1H),
7.83 (d, 2H, J= 7.6 Hz), 7.56—7.49 (m, 4H), 7.44 (t, I1H, J=7.4 Hz), 7.12
\_g (t, 1H,J=4.4Hz), 7.12 (t, I1H, J= 7.4 Hz), 6.84 (s, 1H); 3C{'H}

NMR (DMSO-d®, 100 MHz): ¢ 139.3, 133.4, 129.5, 129.0, 128.7, 128.4, 127.9, 126.5, 125.0,
123.9, 117.4, 110.1, 90.0; IR (KBr, cm™): 3225, 2998, 2753, 2219, 1598, 1455, 1297, 1186,
1101, 1028, 918, 828, 762, 686, 594, 537, 490; HRMS (ESI/Q-TOF) (m/z) calcd for C;sH;{N,S
[M + H]" 251.0637; found 251.0642.
2-(Naphthalen-2-yl)-5-phenyl-1H-pyrrole-3-carbonitrile (31b):

As a white solid (54 mg, 74% yield); Purified over a column of silica
gel (5% EtOAc in hexane). 'H NMR (DMSO-d¢, 600 MHz): 6 12.37
(s, 1H), 8.39 (s, 1H), 8.08 (d, 1H, J=9.0 Hz), 7.98 (t, 3H, J= 8.4 Hz),
7.85 (d, 2H, J=17.2 Hz), 7.61-7.56 (m, 2H), 7.45 (t, 2H, J = 7.8 Hz),
7.31(t, 1H, J="7.5Hz), 7.13 (s, 1H); *C{'H} NMR (DMSO-

d®, 150 MHz): ¢ 139.5, 134.1, 132.8, 132.6, 130.8, 128.9, 128.6, 128.2, 127.8, 127.4, 127.2,
127.0, 126.9, 125.5, 124.9, 124.3, 117.8, 110.5, 90.7; IR (KBr, cm™'): 3225, 2924, 2855, 2224,
1582, 1459, 1377, 1263, 1178, 1100, 1026, 808, 753, 694; HRMS (ESI/Q-TOF) (m/z) calcd
for C,1H 5N, [M + H]* 295.1230; found 295.1234.
5-Phenyl-2-(o-tolyl)-1H-pyrrole-3-carbonitrile (31d):

As a white solid (35 mg, 54% yield); Purified over a column of silica gel
(5% EtOAc in hexane). '"H NMR (DMSO-d®, 600 MHz): 6 12.25 (s, 1H),
7.75 (d, 2H, J = 7.8 Hz), 7.42-7.39 (m, 5H), 7.35-7.34 (m, 1H), 7.27 (t,
1H, J=7.2 Hz), 7.07 (s, 1H), 2.34 (s, 1H); 3C{'H} NMR (DMSO-d®, 150
MHz): 6 140.3, 136.8, 132.9, 130.9, 130.6, 130.5, 129.8, 129.3, 127.1,
125.9, 124.3, 117.2, 108.6, 92.3, 19.8; IR (KBr, cm™): 3259, 2924, 2862, 2218, 1601, 1456,
1265, 1175, 1036, 806, 756, 692, 446; HRMS (ESI/Q-TOF) (m/z) calcd for CigH;sN, [M + H]*
259.1230; found 259.1234.
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2-(4-Ethylphenyl)-5-phenyl-1H-pyrrole-3-carbonitrile (31e):

As a white solid (53 mg, 78% yield); Purified over a column of silica gel
(5% EtOAc in hexane). '"H NMR (DMSO-d¢, 600 MHz): 6 12.14 (s, 1H),
7.80 (d, 2H, J="7.8 Hz), 7.76 (d, 2H, J= 8.4 Hz), 7.42 (t, 2H, J= 7.5 Hz),
7.38 (d, 2H, J = 8.4 Hz), 7.29 (t, 1H, J = 7.5 Hz), 7.05 (s, 1H), 2.66 (q,
2H,J=17.6 Hz), 1.21 (t, 3H, J= 7.8 Hz); 3C{'H} NMR (DMSO-d®,

150 MHz): 6 144.6, 139.9, 133.5, 130.8, 128.8, 128.4, 127.3,127.2, 126.6, 124.8, 117.8, 110.1,
89.8,28.0, 15.6; IR (KBr, cm™): 3227, 2960, 2923, 2866, 2223, 1602, 1500, 1459, 1301, 1183,
1122, 1001, 833, 805, 759, 690, 512; HRMS (ESI/Q-TOF) (m/z) calcd for C19H;7N, [M + HJ*
273.1386; found 273.1387.

2-(4-(tert-Butyl)phenyl)-5-phenyl-1H-pyrrole-3-carbonitrile (31f):

As a white solid (56 mg, 75% yield); Purified over a column of silica
gel (5% EtOAc in hexane). '"H NMR (DMSO-d¢, 600 MHz): 6 12.14 (s,
1H), 7.80 (d, 2H, J = 7.8 Hz), 7.77 (d, 2H, J = 8.4 Hz), 7.56 (d, 2H, J =
8.4 Hz), 7.43 (t, 2H, J = 7.5 Hz), 7.29 (t, 1H, J = 7.5 Hz), 7.05 (s, 1H),
1.32 (s, 9H); BC{'H} NMR (DMSO-d®, 150 MHz): ¢ 151.3, 139.9,
133.5,130.8, 128.8, 127.2, 126.9, 126.4, 125.7, 124.7, 117.8, 110.0, 89.8, 34.5, 31.0; IR (KBr,
cm™'): 3247, 2924, 2860, 2219, 1602, 1537, 1383, 1264, 1457, 1183, 1104, 1022, 834, 807,
755, 690, 526; HRMS (ESI/Q-TOF) (m/z) caled for Co;Hy N, [M + HJ* 301.1699; found
301.1697.

2-(4-Methoxyphenyl)-5-phenyl-1H-pyrrole-3-carbonitrile (31g):38

As a white solid (55 mg, 80% yield); Purified over a column of silica
gel (5% EtOAc in hexane). '"H NMR (DMSO-d¢, 400 MHz): 6 12.05 (s,
1H), 7.80 (d, 4H, J= 7.6 Hz), 7.42 (t, 2H, J= 7.6 Hz), 7.28 (t, IH, J =
7.4 Hz), 7.11 (d, 2H, J = 8.8 Hz), 7.01 (s, 1H), 3.83 (s, 3H); BC{'H}

NMR (DMSO-d®, 100 MHz): § 159.5, 139.9, 133.1, 130.8, 128.7, 128.0,

127.1, 124.6, 122.3, 117.9, 114.4, 109.8, 89.2, 55.3; IR (KBr, cm™): 3217, 2921, 2839, 2223,
1606, 1528, 1463, 1291, 1246, 1176, 1116, 1033, 937, 830, 806, 760, 690, 574, 516; HRMS
(ESI/Q-TOF) (m/z) caled for C1gH;5N,O [M + H]* 275.1179; found 275.1179.
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2 2-(4-Fluorophenyl)-5-phenyl-1 H-pyrrole-3-carbonitrile (31i):

Z As a white solid (39 mg, 60% yield); Purified over a column of silica gel
7 (5% EtOAc in hexane). 'TH NMR (DMSO-d®, 400 MHz): 6 12.19 (s, 1H),
8

9 7.89-7.86 (m, 2H), 7.80 (d, 2H, J = 7.8 Hz), 7.45-7.38 (m, 4H), 7.30 (t,
I IH, J = 7.4 Hz), 7.05 (s, 1H); 13C{'H} NMR (DMSO-d¢, 100 MHz): 6
g 162.1 (d, J=245.0 Hz), 138.6, 133.7, 130.7, 128.8, 128.77,

14 128.74,127.3,126.2 (d,J=3.2 Hz), 124.8,117.5,115.9 (d,J=21.8 Hz), 90.2; IR (KBr, cm™!):
15

16 3228, 2923, 2855, 2220, 1603, 1529, 1494, 1458, 1247, 1182, 1100, 1024, 835, 807, 756, 689,
" 511; HRMS (ESI/Q-TOF) (m/z) caled for C1;H,FN, [M + H]* 263.0979; found 263.0974.

;g 2-(4-Chlorophenyl)-5-phenyl-1H-pyrrole-3-carbonitrile (31j):38

21 As a white solid (38 mg, 55% yield); Purified over a column of silica
22

23 gel (5% EtOAc in hexane). 'TH NMR (DMSO-d®, 600 MHz): § 12.26 (s,
24

25 1H), 7.86 (d, 2H, J = 8.4 Hz), 7.80 (d, 2H, J= 7.8 Hz), 7.63 (d, 2H, J =
;? 8.4 Hz), 7.44 (t, 2H, J = 7.5 Hz), 7.31 (t, 1H, J = 7.5 Hz), 7.09 (s, 1H);
28 BC{'H} NMR (DMSO-d¢, 150 MHz): ¢ 138.2, 134.2, 133.2, 130.6,

29

30 129.1, 128.8, 128.5,128.2, 127.5, 124.9, 117.5, 110.4, 90.6; IR (KBr, cm™): 3226, 2923, 2854,
31

32 2223,1597, 1463, 1299, 1268, 1181, 1092, 1014, 830, 809, 760, 689, 604, 495; HRMS (ESI/Q-
gi TOF) (m/z) caled for C;7H;,CIN, [M + H]" 279.0684; found 279.0692.

35 2-(4-Bromophenyl)-5-phenyl-1H-pyrrole-3-carbonitrile (311):

36

37 As a white solid (42 mg, 52% yield); Purified over a column of silica
38

39 gel (5% EtOAc in hexane). 'H NMR (DMSO-d¢, 600 MHz): 6 12.26 (s,
j? 1H), 7.80 (d, 4H, J = 8.4 Hz), 7.76 (d, 2H, J = 9.0 Hz), 7.44 (t, 2H, J =
42 7.8 Hz), 7.31 (t, 1H, J= 7.5 Hz), 7.09 (s, 1H); PC{'H} NMR (DMSO-
43

44 d®, 150 MHz): 6 138.2, 134.2, 131.9, 130.6, 128.8, 128.4, 127.5, 124.93,
45

46 124.87,121.8, 117.5, 110.5, 90.6; IR (KBr, cm™"): 3227, 2923, 2855, 2223, 1600, 1461, 1387,
2; 1301, 1262, 1184, 1074, 1022, 807, 761, 690, 492; HRMS (ESI/Q-TOF) (m/z) calcd for
49 C17H12BI'N2 [M + H]Jr 3230178, found 323.0171.
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