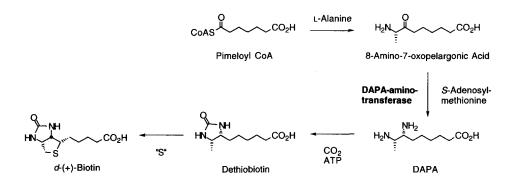


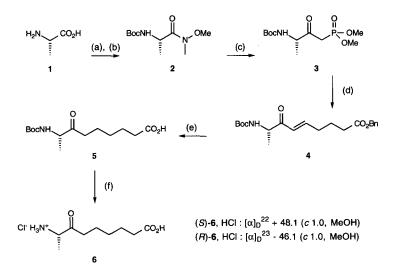
\$0957-4166(96)00098-5


First Synthesis of Both Enantiomers of the Biotin Vitamer 8-Amino-7-oxopelargonic Acid

Denis Lucet^a, Thierry Le Gall^a, Charles Mioskowski^{a*}, Olivier Ploux^b and Andrée Marquet^b

^aCEA-Saclay, Service des Molécules Marquées, Département de Biologie Cellulaire et Moléculaire, F-91191 Gif-sur-Yvette, France ^bLaboratoire de Chimie Organique Biologique, URA CNRS 493, Université Pierre et Marie Curie, Paris, France

Abstract : A short and efficient synthesis of both 8-amino-7-oxopelargonic acid enantiomers from D or L-alanine is presented. The key step of this first chemical synthesis is the nonracemizing Horner-Wadsworth-Emmons reaction of a β -ketophosphonate 3 and benzyl 4formylbutanoate. The growth-promoting effect of the enantiomers was tested on *Saccharomyces cerevisiae*. Copyright © 1996 Elsevier Science Ltd


The vitamin biotin, which is an essential cofactor for carboxylase-catalyzed reactions, is synthesized by a multistep pathway in microorganisms¹ and plants² (scheme 1). Although biotin biosynthesis has been studied over a considerable period, the chemical synthesis of 8-amino-7-oxopelargonic acid enantiomers has not yet been described^{3,4}.

In the course of studies on this pathway, and especially of the enzyme DAPA-aminotransferase⁵, both enantiomers of 8-amino-7-oxopelargonic acid were needed.

<u>Chemistry</u>: We report herein the first chemical synthesis of both 8-amino-7-oxopelargonic acid enantiomers from L or D-alanine as the starting chiral template. The synthesis of (S)-8-amino-7-oxopelargonic acid is described in scheme 2. The known β -ketophosphonate $3^{6,7}$ was prepared using a different route, involving the addition of the lithium salt of dimethyl methylphosphonate on the Weinreb amide 2 derived from Lalanine. We noticed that 3 partially racemized during silica gel chromatography and that it has to be used as crude material (NMR yield = 83% with dimethyl methylphosphonate as contaminating material) since it then displayed an enantiomeric excess greater than 96%⁸. The Horner-Wadsworth-Emmons (HWE) reaction of **3** with benzyl 4-formylbutanoate⁹ was then studied. Conditions milder than the usual methods have been used to perform the HWE reaction of substrates which racemize easily or are base-sensitive^{10,11,12}. Nevertheless, in our case the conventional method gave a satisfactory result : β -ketophosphonate **3** was first regioselectively deprotonated by 1 eq of NaH (THF, -15°C) and the aldehyde was then added. In this way, enantiomerically pure⁸ enone **4**¹³ was cleanly obtained. Interestingly, enone **4** did not racemize during silica gel chromatography, unlike L-serine-derived enones reported by Koskinen¹¹. (*S*)-8-amino-7-oxopelargonic acid hydrochloride was obtained by a two-step procedure involving a quantitative one-pot hydrogen chloride. Recrystallization from a EtOH/Et₂O system afforded (*S*)-8-amino-7-oxopelargonic acid¹⁵ as its HCl salt. It is noteworthy that the amine deprotection had to be conducted in strong acidic medium in order to avoid the self-condensation of the α -aminoketone leading to a pyrazine¹⁶.

(a) NaOH / H₂O / t-BuOH ; Boc₂O ; tt ; 12 h ; 75% (b) N-Methylpiperidine ; CIC(O)OMe / CH₂CI₂ ; -25°C; 15 min ; HN(OMe)Me / CH₂CI₂ ; -25°C->rt ; 3 h ; 93% (c) LiCH₂P(O)(OMe)₂ 2.0 eq / THF ; -78°C ; 10 min ; 83% ; 96% ee (d) 1) NaH 1.0 eq / THF ; -15°C ; 5 min 2) CHO(CH₂)₃CO₂Bn / THF ; -10°C ; 2.5 h ; 86% ; 96% ee (e) H₂ 50 bar / AcOEt ; Pd-C 10% ; 48 h ; 100% (f) HCl_{gas} / AcOEt ; 30 min ; EtOH/Et₂O recryst. ; 88 %

Scheme 2

The same procedure was used to synthesize the (R) isomer starting from D-alanine. The overall yield of the synthesis is 58% from the commercially available L or D-Boc-alanine. Both compounds were prepared on a 500-mg scale. The non-racemizing character of the last two steps leading to 8-amino-7-oxopelargonic acid hydrochloride and the opposite specific rotations of these compounds allow us to think that we thus obtained both 8-amino-7-oxopelargonic acid enantiomers enantiomerically pure although direct e.e. determination was not successful¹⁷.

<u>Biological studies</u>: The growth-promoting effect of (S)-6, (R)-6 and rac-6, on Saccharomyces cerevisiae, was tested using the diffusion agar plate^{18, 19}. Plots of growth diameters versus concentrations on a

semilogarithmic scale were linear. The order of potencies is (S)-6>rac-6>(R)-6 as shown in **Figure**. Assuming a potency of 1.00 for *rac*-6 the potency of (S)-6 is 1.55 and that of (R)-6 is 0.77. Based on these data it is clear that *the biologically relevant enantiomer is* (S)-6, a result consistent with the known absolute configuration of (+)-biotin, and the reaction mechanism used by 8-amino-7-oxopelargonate synthase²⁰, the enzyme which forms 8-amino-7-oxopelargonic acid. It is not clear at this point why (R)-6 can promote the growth of *S. cerevisiae*. A possibility is that compound 6 racemizes during incubation. Indeed, the fact that different values for the growth promoting activity of *rac*-6 have been reported in the literature⁴, ²¹, ²² (compared to (+)-biotine), shows that this bioassay can not give a good estimate of the enantiomeric purity of 6. Therefore another assay, such as the *in vitro* transformation of 6 catalyzed by DAPA-aminotransferase, is needed for the complete assessment of the bioactivities of (R)- and (S)-6.

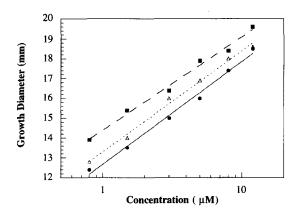


Figure. Growth response of Saccharomyces cerevisiae to (S)-6, (R)-6 and rac-6 Aliquots of known concentration of the different compounds were loaded on paper disks over the agar plate and the diameter of the growth circles were manually determined after 15 h incubation^{18, 19}. Data were fitted to simple logarithmic function. Closed square (S)-6; open triangle rac-6; closed circle (R)-6.

Acknowledgements. This study has been conducted under the BIOAVENIR programme financed by RHÔNE-POULENC and the CEA with the contribution of the "Ministère de l'Éducation nationale, de l'Enseignement Supérieur et de la Recherche". Alain Valleix is thanked for MS and HPLC measurements.

REFERENCES AND NOTES

- a) Eisenberg, M. A. Escherichia coli and Salmonella typhimurium; Neidhardt, F. C. Ed.; American Society for Microbiology : Washington DC, 1987; Vol. 1, pp. 544-550. b) Marquet, A.; Frappier, F.; Guillerm, G.; Azoulay, M.; Florentin, D.; Tabet, J.-C. J. Am. Chem. Soc. 1993, 115, 2139-2145.
- 2. Baldet, P.; Gerbling, H.; Axiotis, S.; Douce, R. Eur. J. Biochem. 1993, 217, 479-485.
- 3. For a synthesis of 8-amino-7-oxopelargonic acid which gives no evidence of optically active product, see Suyama, T.; Kaneo, S. Japanese Patent 1963, 19716; Chem. Abstr. 1964, 60, 4013g. Moreover, the last step of this synthesis involves the cleavage of a phthalimido protecting group using concentrated HCl at reflux and one of us (O.P.) showed²⁰ that rac-8-amino-7-oxopelargonic acid underwent a 3-deuterium exchange at the α -carbonyl position using 6M DCl at reflux, indicating that racemisation occured under these conditions.
- 4. Eisenberg, M. A.; Maseda, R. *Biochemistry* 1970, 9, 108-113. Although Eisenberg and coll. assumed that they prepared L-8amino-7-oxopelargonic acid from L-alanine, according to the methods of Suyama and Kaneo³, no optical activity was reported.

- 5. This enzyme catalyzes the conversion of 8-amino-7-oxopelargonic acid to 7,8-diaminopelargonic acid (DAPA).
- 6. Chakravarty, P. K.; Combs, P.; Roth, A.; Greenlee, W. J. Tetrahedron Lett. 1987, 28, 611-612.
- 7. Chakravarty, P. K.; Greenlee, W. J.; Parsons, W. H.; Patchett, A. A.; Combs, P.; Roth, A.; Busch, R. D.; Mellin, T. N. J. Med. Chem. 1989, 32, 1886-1890.
- E.e. was determined by ¹H NMR spectroscopy of the compound in presence of Eu(hfc)₃. By this technique, a 2% precision was assumed.
- 9. Prepared in 52% yield from benzyl 5-bromopentanoate (AgPF₆, DMSO, 60h, then Et₃N).
- Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183-2186.
- 11. Koskinen, A. M. P.; Koskinen, P. M. Synlett, 1993, 501-502.
- 12. Paterson, I.; Yeung, K.-S.; Smail, J. B. Synlett 1993, 774-776.
- 13. 4: ¹H NMR (300 MHz, CDCl₃) δ(ppm) 7.34-7.25 (5H, m, Ph), 6.91 (1H, dt, J = 7.0, 15.7 Hz, C(O)CH=CH), 6.14 (1H, dt, J = 15.7 Hz, C(O)CH=CH), 5.41 (1H, br dt, J = 7.0 Hz, NH), 5.07 (2H, stored of the construction of the constructi

- a) Farnum, D. G.; Carlson, G. R. Synthesis 1991, 191-192. b) Nakajima, M.; Loeschorn, C. A.; Cimbrelo, W. E.; Anselme J.-P. Org. Prep. Proc. Int. 1980, 12, 265-268.
- 17. ¹H NMR spectroscopy of 6 in CD₃CN in presence of Eu(hfc)₃ can not be used to determine the e.e. since no split signal was observed for a sample of the racemic compound; HPLC analysis of (R)-1-(1-naphthyl)ethyl isocyanate-derived adducts of methyl esters of synthesized (+) or (-)-6 led to inconsistent results with e.e. varying from 46 to 60%. Some racemisation may have occured during one of the steps required to carry out this analysis.
- 18. Genghof, D.S.; Partridge, C.W.H.; Carpenter, F.H. Arch. Biochem. 1948, 17, 413-420.
- Gaudry, M.; Ploux, O. Modern Chromatographic Analysis of Vitamins; De Leenheer, A. P.; Lambert, W.E.; Nelis, H.J. Eds.; M. Dekker : New York, 1992, 2nd ed., pp 441-467.
- 20. Ploux, O.; Marquet, A. Eur. J. Biochem. 1996 in press.
- 21. Oshugi, M.; Imanishi, Y. J. Nutr. Sci. Vitaminol. 1985, 31, 563-572.
- 22. Ploux, O.; Marquet, A. Biochem. J. 1992, 283, 327-331.

(Received in UK 14 February 1996)