
Pergamon 

S0957-4166(96)00098-5 

Tetrahedron: Asyrametry, Vol. 7, No. 4, pp. 985-988, 1996 
Copyright © 1996 Elsevier Science lad 

Printed in Great Britain. All rights reserved 
0957-4166/96 $15.00 + 0.00 

First Synthesis of Both Enantiomers 
of the Biotin Vitamer 8-Amino-7-oxopelargonic Acid 

Denis Lucet a, Thierry Le Gall a, Charles Mioskowski a*, Olivier Ploux b and Andr~e Marquet b 

aCEA-Saclay, Service des Mol6cules Marqu6es, D6partement de Biologie Cellulaire et Mol6culaire, 
F-91191 Gif-sur-Yvette, France 

bLaboratoire de Chimie Organique Biologique, URA CNRS 493, Universit6 Pierre et Marie Curie, Paris, France 

Abstract : A short and efficient synthesis of both 8-amino-7-oxopelargonic acid enantiomers 
from D or L-alanine is presented. The key step of this first chemical synthesis is the non- 
racemizing Horner-Wadsworth-Emmons reaction of a fl-ketophosphonate 3 and benzyl 4- 
formylbutanoate. The growth-promoting effect of thc cnantiomers was tested on Saccharomyces 
cerevisiae. Copyright © 1996 Elsevier Science Ltd 

The vitamin biotin, which is an essential cofactor for carboxylase-catalyzed reactions, is synthesized by a 

multistep pathway in microorganisms I and plants 2 (scheme 1). Although biotin biosynthesis has been studied 

over a considerable period, the chemical synthesis of 8-amino-7-oxopelargonic acid enantiomers has not yet been 

described3, 4. 
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In the course of  studies on this pathway, and especially of the enzyme DAPA-aminotransferase 5, both 

enantiomers of 8-amino-7-oxopelargonic acid were needed. 

Chemistry : We report herein the first chemical synthesis of both 8-amino-7-oxopelargonic acid 

enantiomers from L or D-alanine as the starting chiral template. The synthesis of (S)-8-amino-7-oxopelargonic 

acid is described in scheme 2. The known/ff-ketophosphonate 36, 7 was prepared using a different route, 

involving the addition of the lithium salt of dimethyl methylphosphonate on the Weinreb amide 2 derived from L- 

alanine. We noticed that 3 partially racemized during silica gel chromatography and that it has to be used as 
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crude material (NMR yield = 83% with dimethyl methylphosphonate as contaminating material) since it then 

displayed an enantiomeric excess greater than 96% 8. The Homer-Wadsworth-Emmons (HWE) reaction of 3 

with benzyl 4-formylbutanoate 9 was then studied. Conditions milder than the usual methods have been used to 

perform the HWE reaction of substrates which racemize easily or are base-sensitivelO, 11,12. Nevertheless, in our 

case the conventional method gave a satisfactory result : fl-ketophosphonate 3 was first regioselectively 

deprotonated by 1 eq of Nail  (TI-IF, -15°C) and the aldehyde was then added. In this way, enantiomerically pure 8 

enone 413 was cleanly obtained. Interestingly, enone 4 did not racemize during silica gel chromatography, unlike 

L-serine-derived enones reported by Koskinen I 1. (S)-8-amino-7-oxopelargonic acid hydrochloride was obtained 

by a two-step procedure involving a quantitative one-pot hydrogenation-hydrogenolysis leading to 514 and the 

cleavage of the Boc group using a AcOEt solution of hydrogen chloride. Recrystallization from a EtOH/Et20 

system afforded (S)-8-amino-7-oxopelargonic acid 15 as its HC1 salt. It is noteworthy that the amine deprotection 

had to be conducted in strong acidic medium in order to avoid the self-condensation of the ~-aminoketone 

leading to a pyrazine 16. 
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(S)-6, HCI : [(X]D 22 + 48.1 (C 1.0, MeOH) 

(R)-6, HCI : [C(]o 23 - 46.1 (c 1.0, MeOH) 

(a) NaOH / H20/ t -BuOH ; Boc20 ; ~ ; 12 h ; 75% (b) N-Methylpiperidine ; CIC(O)OMe / 
CH2CI 2 ; -25°C ; 15 min ; HN(OMe)Me / CH2CI 2 ; -25°C->rt ; 3 h ; 93% (c) LiCH2P(O)(OMe)2 
2.0 eq / THF ; -78°C ; 10 rain ; 83% ; 96% ee (d) 1) Nail 1.0 eq / THF ; -15°C ; 5 rain 2) 
CHO(CH2)3CO2Bn / THF ; -10°C ; 2.5 h ; 86% ; 96% ee (e) H 2 50 bar / AcOEt ; Pd-C 10% ; 
48 h ; 100% (f) HCIgas / AcOEt ; 30 rain ; EtOH/Et20 recryst. ; 88 % 

S c h e m e  2 

The same procedure was used to synthesize the (R) isomer starting from D-alanine. The overall yield of the 

synthesis is 58% from the commercially available L or D-Boc-alanine. Both compounds were prepared on a 500- 

mg scale. The non-racemizing character of the last two steps leading to 8-amino-7-oxopelargonic acid 

hydrochloride and the opposite specific rotations of these compounds allow us to think that we thus obtained 

both 8-amino-7-oxopelargonic acid enantiomers enantiomericaUy pure although direct e.e. determination was not 

successfull7. 

BioloQical studies : The growth-promoting effect of (S)-6, (R)-6 and rac-6, on Saccharomyces cerevisiae, 

was tested using the diffusion agar plate 18, 19. Plots of growth diameters versus concentrations on a 
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semilogarithmic scale were linear. The order of potencies is (S)-6>rac-6>(R)-6 as shown in Figure.  Assuming a 

potency of  1.00 for rac-6 the potency of  (S)-6 is 1.55 and that of (R)-6 is 0.77. Based on these data it is clear 

that the biologically relevant enantiomer is (S)-6, a result consistent with the known absolute configuration of 

(+)-biotin, and the reaction mechanism used by 8-amino-7-oxopelargonate synthase 20, the enzyme which forms 

8-amino-7-oxopelargonic acid. It is not clear at this point why (R)-6 can promote the growth of S. cerevisiae. A 

possibility is that compound 6 racemizes during incubation. Indeed, the fact that different values for the growth 

promoting activity of rac-6 have been reported in the literature 4, 21, 22 (compared to (+)-biotine), shows that this 

bioassay can not give a good estimate of the enantiomeric purity of 6. Therefore another assay, such as the in 

vitro transformation of  6 catalyzed by DAPA-aminotransferase, is needed for the complete assessment of the 

bioactivities of (R)- and (S)-6. 
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Figure.  G r o w t h  response  of  Saccharomyces cerevisiae to (S)-6, (R)-6 and  rac-6 
Aliquots of known concentration of the different compounds were loaded on paper disks over the agar 
plate and the diameter of the growth circles were manually determined after 15 h incubation 18, 19. Data 
were fitted to simple logarithmic function. Closed square (S)-6 ; open triangle rac-6 ; closed circle (R)-6. 
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