

CHEMISTRY A European Journal

WILEY-VCH

	Accepted	Article	
Title: Photoca rutheniu	alytic CO2 reduction un m CNC pincer complexe	der visible-light irradiatic s	n by
Authors : Yasu Yuda Uma	hiro Arikawa, Itoe Tabat i Seto, Shinnosuke Hori koshi	a, Yukari Miura, Hiroki T uchi, Eri Sakuda, and Ke	ajiri, eisuke
This manuscr Accepted Arti of the final V using the Dig published onl to this Accep the VoR from to ensure acc content of this	ipt has been accepted af cle online prior to editing ersion of Record (VoR). ital Object Identifier (DC ine in Early View as soor ted Article as a result on the journal website sh curacy of information. Th s Accepted Article.	ter peer review and appe g, proofing, and formal pu This work is currently o DI) given below. The Vo n as possible and may be of editing. Readers shou nown below when it is p the authors are responsib	ars as an ublication sitable by R will be different ild obtain published le for the
To be cited as:	Chem. Eur. J. 10.1002/che	em.201905840	
Link to VoR: ht	tp://dx.doi.org/10.1002/c	chem.201905840	

Photocatalytic CO₂ reduction under visible-light irradiation by ruthenium CNC pincer complexes

Yasuhiro Arikawa,*^[a] Itoe Tabata,^[a] Yukari Miura,^[a] Hiroki Tajiri,^[a] Yudai Seto,^[a] Shinnosuke Horiuchi,^[a] Eri Sakuda,^[a] and Keisuke Umakoshi^[a]

[a] Prof. Dr. Y. Arikawa, I. Tabata, Y. Miura, H. Tajiri, Y. Seto, Dr. S. Horiuchi, Prof. Dr. E. Sakuda, Prof. Dr. K. Umakoshi Division of Chemistry and Materials Science Graduate School of Engineering, Nagasaki University Bunkyo-machi 1-14, Nagasaki 852-8521 (Japan) E-mail: arikawa@nagasaki-u.ac.jp

Supporting information for this article is given via a link at the end of the document.

Abstract: Photocatalytic CO₂ reduction using a ruthenium photosensitizer, a sacrificial reagent (BI(OH)H) (1,3-dimethyl-2-(o-hydroxyphenyl)-2,3-dihydro-1*H*-benzo[d]imidazole), and a ruthenium catalyst were carried out. The catalysts contain a pincer ligand, 2,6-bis(alkylimidazol-2-ylidene)pyridine (CNC) and a bipyridine (bpy). Our photocatalytic reaction system resulted in HCOOH as a main product (selectivity 70 ~ 80%), a small amount of CO, and H₂. Comparative experiments (a coordinated ligand (NCMe vs. CO) and substituents (¹Bu vs. Me) of the CNC ligand in the catalyst) were performed. The TON_{HCOOH} of carbonyl-ligated catalysts are higher than those of acetonitrile-ligated catalysts, and the carbonyl catalyst with the smaller substituents (Me) reached TON_{HCOOH} = 5634 (24h), which is the best performance among the experiments.

To realize a sustainable society, we must address the problem of energy/resource depletion. One possible solution is the use of carbon dioxide (CO₂), which is abundant and ubiquitous in the atmosphere. However, to do so CO₂ has to be reduced to useful substances, because it is the final carbon oxidation product. Ideally, sunlight (especially visible light) could be used as the energy for the reduction. Against this background, CO₂ reduction by visible light has been actively studied in recent years.^[1]

Both homogeneous and heterogeneous^[2] systems for CO₂ reduction have been explored. Although the latter is more practical, at present the former system appears to be more effective. The homogeneous system generally consists of a photosensitizer, a sacrificial reagent, and a catalyst which can be easily adjusted. Recently, the non-noble metal based molecular catalyst have been extensively investigated^[1c, 3]. It has been proposed that the photosensitizer excited by visible light is reductively quenched by the sacrificial reagent to be a powerful reductant, and one electron is transferred from the reductant to the catalyst at a time.^[1] Finally, CO₂ is reduced on the catalyst. In this study, we investigated the CO2 reducing ability of ruthenium complexes having a 2,6-bis(alkylimidazol-2ylidene)pyridine (CNC) ligand as the catalyst under visible light $(\lambda \ge 500 \text{ nm})$ using a photosensitizer [Ru(dmbpy)₃](PF₆)₂ (dmbpy = 4,4'-dimethylbipyridine) and a sacrificial reagent BI(OH)H (1,3dimethyl-2-(o-hydroxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole) which is very effective against this photosensitizer.^[4] The performance of the catalyst was evaluated by the differences of

Figure 1. Structures of catalysts, photosensitizer, and sacrificial reagent in this study.

Figure 2. X-ray crystal structures of the cation part of $[(^{1Bu}CNC)Ru(bpy)(CO)](PF_6)_2$ (**3a**) (left) and $[(^{1Bu}CNC)Ru(bpy)(HOMe)](PF_6)_2$, (right). One of the two independent molecules of **3a** in the unit cell is shown. Thermal ellipsoids are set at 50% probability level. The counter PF₆ ions, crystallization solvents, and hydrogen atoms except for methanol protons in the methanol complex are omitted for clarity.

substituents on the CNC ligand and ligands on the ruthenium atom. In 2015, we have reported that the CNC ruthenium complexes can readily incorporate CO₂ from air.^[5a] This is the reason why we choose the CNC complexes as the catalyst. More recently, E. T. Papish et al. have reported several CO₂ reduction reactions using similar CNC complexes.^[6] In this report, their comparisons are included.

We prepared four types of the CNC complexes; tert-butyl and methyl substituents on the CNC ligand and CH_3CN and CO ligands on ruthenium (Figure 1). Although

WILEY-VCH

Figure 3. UV-vis absorption spectra of 2a, 2b, 3a, and 3b.

Table 1. The first reduction potentials of catalysts $\ensuremath{^{[a]}}$

Complex	$\boldsymbol{E}_{1/2}^{\mathrm{red}}(V)^{[\mathrm{b}]}$	$E_{\sf pc}(\lor)$	$\pmb{E}_{pa}\left(V ight)$
2a	-1.39	-1.42	-1.35
2b	-1.47	-1.51	-1.43
3a	-1.21	-1.24	-1.17
3b	-1.24	-1.28	-1.19

[a] Measured in MeCN (1.0 mM). All values of the first reduction peaks are reported versus Ag/AgCl. Values are measured by CV in 0.1 M $^{n}Bu_4NPF_6$ using Pt counter and glassy carbon working electrode. [b] Quasi-reversible.

The UV-visible (UV-vis) absorption spectra of **2** and **3** are shown in Figure 3. According to a literature,^[7] the lowest-energy transitions would contain $d_{\pi}(Ru) \rightarrow \pi^{*}(bpy)$ MLCT without $d_{\pi}(Ru) \rightarrow \pi^{*}(^{R}CNC)$ MLCT character. Compared to **2**, **3** display a

Table 2. The results of photocatalytic CO2 reduction for 24 h^{[a], [b]}

significant blue shift in the lowest-energy absorption bands, because complexes 3 have a carbonyl ligand which lower the $d_{\pi}(Ru)$ energy level due to π -back donation. It is clear that the [**Ru**-NCMe] (2a and 2b) absorb the irradiated light (\geq 500 nm), but not the [Ru-CO] (3a and 3b). Cyclic voltammetry (CV) was used to evaluate the efficacy of complexes 2 and 3 to reduce CO₂ (Table 1 and Figure S1). Their first reduction waves, which are guasi-reversible, would be attributed to the bpy-based redox (bpy⁻/bpy). Although the effect of substituent groups (^tBu vs. Me) of the CNC ligand on the redox potentials was small, the axial ligands (NCMe vs. CO) affected largely to their redox potentials. The reduction potentials of [Ru-CO] (3a and 3b) are more positive than those of [Ru-NCMe] (2a and 2b), which is reasonable because of the strong electron-withdrawing character of CO ligand. In any case, the electron transfer from the photosensitizer $[Ru(dmbpy)_3]^{2+}$ $(E_{1/2}(PS^-/PS) = -1.74 V vs.)$ Ag/AgNO₃)^[8] to their catalysts would be exergonic processes.

Photocatalytic CO₂ reduction was performed in a glass tube containing DMA/TEOA (dimethylacetamide/triethanolamine) (5.0 mL, 4:1 v/v), catalyst 2 or 3 (10 μM), [Ru(dmbpy)₃](PF₆)₂ (50 μM), and BI(OH)H (0.10 M). The CO2-saturated solution was irradiated at $\lambda \ge 500$ nm using a 450 W high-pressure Hg lamp combined with a K₂CrO₄ solution filter. Formate was analyzed by capillary electrophoresis, while the gaseous products (CO and H₂) were analyzed by gas chromatography (GC-TCD). Table 2 summarizes the results of the photocatalytic reactions and total turnover numbers of the reduced products are shown in Figure 4. The time courses of obserbed products (TON) using 3b are shown in Figure 5. Use of com formation of formic acid as a main produ amount of CO (entry 1-4). Best perfor 5634 (24h) for 3b (entry 4). Even in the a a small amount of HCOOH and CO w decomposition of the photosensitizer generate other active catalysts (entry 5). of the catalyst (2 or 3) increased the total products (HCOOH and CO) more than a experiments in the absence of the photos

de/trie dmbr	ethanolamine v)3](PF6)2 (50) (5.0) μM).	()
atura	ted solution	was	
high-	pressure Hg	lamp	U
Form	ate was ana	lyzed	
gased	ous products	(CO	
natog	raphy (GC-	ICD).	
photo	catalytic read	ctions	
ea pr	oducts are s	nown	
a pro nnlevé	aucis(10N)	ed to	
ict wi	ith H ₂ and a	small	
mano			
abser	nce of the cat	alyst,	
vere	detected bed	ause	
[Ru(dmbpy)₃]²+ ۱	would	
^[1e] H	lowever, pres	sence	
amo	unt of the rec	luced	
about	TU TOIDS. C	ontrol	
ensiu	zer (entry 0),	uie	+
)			
)	H2		\mathbf{O}
(3)	556 (14)		\mathbf{O}
(4)	1438 (23)		
(4) (3)	1438 (23) 505 (11)		4
(4) (3) (4)	1438 (23) 505 (11) 1897 (24)		

				Product (µmol)			TON (selectivity %)		
Entry	Catalyst	Sensitizer	Sacrificial reagent	нсоон	со	H ₂	нсоон	со	H ₂
1	2a	[Ru(dmbpy) ₃] ²⁺	BI(OH)H	165	6.5	28	3296 (83)	129 (3)	556 (14)
2	2b	[Ru(dmbpy)₃] ²⁺	BI(OH)H	230	11	72	4593 (73)	224 (4)	1438 (23)
3	3a	[Ru(dmbpy)₃] ²⁺	BI(OH)H	190	6.5	25	3792 (86)	129 (3)	505 (11)
4	3b	[Ru(dmbpy) ₃] ²⁺	BI(OH)H	282	15	95	5634 (72)	300 (4)	1897 (24)
5	-	[Ru(dmbpy) ₃] ²⁺	BI(OH)H	21	3	8.9	-	-	-
6	3b	-	BI(OH)H	0	0.43	4.4	0	8.6 (9)	87 (91)
7	3b	[Ru(dmbpy) ₃] ²⁺	-	0	~ 0	1	0	~ 0	20 (100)
8 ^[c]	3b	[Ru(dmbpy)₃] ²⁺	BI(OH)H	0	0	15	0	0	307 (100)
9 ^[d]	3b	[Ru(dmbpy)₃] ²⁺	BI(OH)H	0	0	0	0	0	0

[a] In a typical run, a CO₂-saturated DMA/TEOA (4/1) solution containing the catalyst (10 μ M), sensitizer (50 μ M), and sacrificial reagent (0.1 M) was irradiated for 24h using a 450 W high-pressure Hg lamp combined with a K₂CrO₄ solution filter under CO₂ atmosphere. [b] Products (μ mol) values were averaged over three reactions. [c] Under Ar atmosphere. [d] Under dark. TON = mol number of the product/mol number of the catalyst.

10.1002/chem.201905840

WILEY-VCH

Figure 4. Total turnover number (TON) graphs of the reduced products (HCOOH, CO, and H_2) after 24 h.

Figure 5. Turnover numbers (TON) for formation of HCOOH, CO, and H_2 as a function of irradiation time during photocatalytic reaction of **3b**. Each data point is the average of three runs.

sacrificial reagent (entry 7), or CO₂ (entry 8) led to no formation of HCOOH. Catalyst **3b** can function both as a photosensitizer and a catalyst, but the performance was very low (TON_{CO} = 8.6) (entry 6). Even under Ar, H₂ was detected (TON_{H2} = 307) in our photocatalytic reaction conditions (entry 8).

Isotopic labeling experiment under ¹³CO₂ atmosphere was performed to determine the source of the carbon atoms in the produced formic acid. Before irradiation, in the ¹³C{¹H} NMR spectrum of a DMF-d₇/TEOA (4:1 v/v) solution consisting of catalyst **3b** (10 μ M), [Ru(dmbpy)₃](PF₆)₂ (50 μ M), and BI(OH)H (0.10 M), a signal assignable to ¹³CO₂ is observed at 125.2 ppm (Figure S3). Irradiation resulted in both decrease of the ¹³CO₂ signal and appearance of a signal at 167.2 ppm, which is assignable to an equilibrium mixture of H¹³COOH and H¹³COO^{-[4]}. The ¹H NMR spectra confirmed the formation of the labeled formic acid (8.56 ppm, a doublet signal, ¹J_{CH} = 185 Hz) along with trace amount of signal for the non-labeled formic acid (Figure S4). These results clearly show that the formic acid originated from the reduction of CO₂.

The similar CNC ruthenium complex. [(CNC^{OMe})RuCl(NCMe)₂]OTf, where a 4-methoxy group is introduced to the pyridyl moiety in CNC ligand, has been reported.^[6a,b] The use of this complex for the photocatalytic CO₂ reduction in CH₃CN with photosensitizer [Ir(ppy)₃] resulted in selective production of CO (TON_{CO} = 227 (selectivity 97%)), but in DMF with photosensitizer [Ru(bpy)₃]²⁺ production of formate was dominant (TON_{HCOOH} = 143 (selectivity 90%)). More recently, alternation of imidazole to benzimidazole moiety and coordination of a bpy ligand led to formation of CO (TONco = 55) without photosensitizer.^[6c] Interestingly, the low loading of the catalyst (1.0 nM) afforded TONco = 33,000. In contrast, our system shows high performance in the photocatalytic CO2 reduction, leading to production of formate.

Comparison of TON (24 h) of HCOOH based on differences in the axial ligands ([**Ru**-NCMe] vs. [**Ru**-CO]) showed that TON_{HCOOH} (24 h) of [**Ru**-CO] (3a and 3b) are higher than those of [**Ru**-NCMe] (2a and 2b), respectively. This may be due to the presence of the absorption band ($\lambda \ge 500$ nm) in [**Ru**-NCMe], which reduce the performance of the catalyst. Alternatively, differences in the substituents (R = 'Bu vs. Me) resulted in higher TON for the catalyst having Me substituents (2b and 3b), but with lower selectivity of HCOOH because of increment of H₂ production. The steric hindrance of the 'Bu substituents should account for the results.^[9] The bulkier substituents (^tBu) should prevent access of CO₂ to the metal center, whereas the smaller substituents (Me) should allow access of protons as well as CO₂ to the metal center, leading to lower selectivity of HCOOH.

In summary, we achieved $\text{TON}_{\text{HCOOH}} = 5634$ (selectivity 72%) (24h) by photocatalytic CO₂ reduction using visible light. Our ruthenium catalysts contain a CNC and a bpy ligands. The carbonyl complex with smaller substituents (Me groups) (**3b**) resulted in the best performance within the four complexes.

Acknowledgements

This work was supported by the JSPS, KAKENHI grant number JP17K05813, and by the priority research project of Nagasaki University. We are grateful to M. Sadamitsu at Nagasaki University for his technical assistance and Prof. Y. Sunada at The University of Tokyo for elemental analyses.

Keywords: photocatalytic CO₂ reduction • pincer ligand • ligand effect • carbonyl complexes • ruthenium

- a) Y. Kuramochi, O. Ishitani, H. Ishida, Coord. Chem. Rev. 2018, 373, 333-356; b) Y. Tamaki, O. Ishitani, ACS Catalysis 2017, 7, 3394-3409; c) H. Rao, L. C. Schmidt, J. Bonin, M. Robert, Nature 2017, 548, 74-77; d) N. Elgrishi, M. B. Chambers, X. Wang, M. Fontecave, Chem. Soc. Rev. 2017, 46, 761-796; e) Y. Yamazaki, H. Takeda, O. Ishitani, J. Photochem. Photobiol. C: Photochem. Rev. 2015, 25, 106-137; f) K. Kobayashi, K. Tanaka, Phys. Chem. Chem.I Phys. 2014, 16, 2240-2250; g) C. D. Windle, R. N. Perutz, Coord. Chem. Rev. 2012, 256, 2562-2570; h) M. Schulz, M. Karnahl, M. Schwalbe, J. G. Vos, Coord. Chem. Rev. 2012, 256, 1682-1705; g) H. Takeda, O. Ishitani, Coord. Chem. Rev. 2010, 254, 346-354; h) A. J. Morris, G. J. Meyer, E. Fujita, Acc. Che. Res. 2009, 42, 1983-1994.
- a) A. Nakada, R. Kuriki, K. Sekizawa, S. Nishioka, J. J. M. Vequizo, T. Uchiyama, N. Kawakami, D. Lu, A. Yamakata, Y. Uchimoto, O. Ishitani, K. Maeda, ACS Catalysis **2018**, *8*, 9744-9754; b) J. L. White, M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K.

WILEY-VCH

Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, *Chem. Rev.* **2015**, *115*, 12888-12935; c) R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, *Chem. Rev.* **2014**, *114*, 9824-9852.

- a) H. Takeda, C. Cometto, O. Ishitani, M. Robert, ACS Catal., 2017, 7, 70-88; b) A. Rosas-Hernández, C. Steinlechner, H. Junge, M. Beller, Green Chem., 2017, 19, 2356-2360; c) D. Hong, Y. Tsukakoshi, H. Kotani, T. Ishizuka, T. Kojima, J. Am. Chem. Soc., 2017, 139, 6538-6541; d) T. Ouyang, H.-J. Wang, H.-H. Huang, J.-W. Wang, S. Guo, W.-J. Liu, D.-C. Zhong, T.-B. Lu, Angew. Chem. Int. Ed., 2018, 57, 16480-16485; e) Z. Guo, G. Chen, C. Cometto, B. Ma, H. Zhao, T. Groizard, L. Chen, H. Fan, W.-L. Man, S.-M. Yiu, K.-C. Lau, T.-C. Lau, M. Robert, Nature Catal., 2019, 2, 830-830; f) H. Shirley, X. Su, H. Sanjanwala, K. Talukdar, J. W. Jurss, J. H. Delcamp, J. Am. Chem. Soc., 2019, 141, 6617-6622.
- [4] Y. Tamaki, K. Koike, O. Ishitani, *Chem. Sci.* **2015**, 6, 7213-7221; BI(OH)H is more effective than BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1*H*-benzo[*d*]imidazole) for the formation of formic acid, because BI(OH)H donates two electrons and two protons in a step-by-step process. The reductive quenching rate constant of the excited photosensitizer [Ru(dmbpy)₃]²⁺ by BI(OH)H is 1.17×10^{9} M⁻¹s⁻¹.
- [5] a) Y. Arikawa, T. Nakamura, S. Ogushi, K. Eguchi, K. Umakoshi, *Dalton Trans.* **2015**, *44*, 5303-5305; b) T. Nakamura, S. Ogushi, Y. Arikawa, K. Umakoshi, *J. Organomet. Chem.* **2016**, *803*, 67-72.
- [6] a) C. M. Boudreaux, N. P. Liyanage, H. Shirley, S. Siek, D. L. Gerlach, F. Qu, J. H. Delcamp, E. T. Papish, *Chem. Commun.* 2017, *53*, 11217-11220; b) R. R. Rodrigues, C. M. Boudreaux, E. T. Papish, J. H. Delcamp, *ACS Appl. Energy Mater.* 2019, *2*, 37-46; c) S. Das, R. R. Rodrigues, R. W. Lamb, F. Qu, E. Reinheimer, C. M. Boudreaux, C. E. Webster, J. H. Delcamp, E. T. Papish, *Inorg. Chem.* 2019, *58*, 8012-8020.
- [7] L.-H. Chung, K.-S. Cho, J. England, S.-C. Chan, K. Wieghardt, C.-Y. Wong, *Inorg. Chem.* 2013, *52*, 9885-9896.
- [8] Y. Tamaki, K. Watanabe, K. Koike, H. Inoue, T. Morimoto, O. Ishitani, Faraday Discuss. 2012, 155, 115-127.
- [9] see ref. 6c; Similar steric effect in the photocatalytic CO₂ reduction has been observed using the analogous CNC complex with Me or Ph substituents. The performance of the complex with smaller substituents (Me groups) is better than that of the other complex (Ph groups).

WILEY-VCH

Entry for the Table of Contents

Photocatalytic CO_2 reduction using a ruthenium photosensitizer, a sacrificial reagent, and a ruthenium catalyst were carried out. The catalysts contain a pincer ligand, 2,6-bis(alkylimidazol-2-ylidene)pyridine (CNC) and a bipyridine (bpy). Our photocatalytic reaction system resulted in HCOOH as a main product (selectivity 70 ~ 80%). The carbonyl catalyst with the smaller substituents (Me) reached TON_{HCOOH} = 5634 (24h).