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ABSTRACT: The endogenous amino acid, 5-aminolevulinic acid (5-ALA), has received significant attention as an imaging agent, 

including on-going clinical trials for image-guided tumor resection due to its selective uptake and subsequent accumulation of the 

fluorescent protoporphyrin IX in tumor cells. Based on the widely reported selectivity of 5-ALA, a new Positron Emission Tomog-

raphy imaging probe was developed by reacting methyl 5-bromolevuinate with [
13

N] ammonia. The radiotracer, [
13

N] 5-ALA, was 

produced in high radiochemical yield (65%) in 10 minutes, and could be purified using only solid phase cartridges. In vivo testing 

in rats bearing intracranial 9L glioblastoma showed peak tumor uptake occurred within 10 minutes of radiotracer administration. 

Immunohistochemical staining and fluorescent imaging was used to confirm the tumor location and accumulation of the tracer seen 

from the PET images. The quick synthesis and rapid tumor specific uptake of [
13

N] 5-ALA makes it a potential novel clinical appli-

cable radiotracer for detecting and monitoring tumors non-invasively. 

Brain tumors present additional challenges for diagnosis and 

treatment due to the intracranial location, involvement of the 

central nervous system and difficult to deliver imaging and 

therapeutic agents through the blood brain barrier. Gliomas 

make up 80% of malignant brain tumors and often result in 

poor prognosis and decreased life expectancy
1
. Diagnosing 

brain tumors heavily depends on invasive procedures of crani-

al biopsy or after tumor resection. Current first pass diagnostic 

imaging for brain tumors
2
 such as MRI and CT provide mostly 

anatomical and morphological details, but lack of molecular 

and functional information.  

The endogenous amino acid, 5-aminolevulinic acid (5-

ALA), is the first compound in the biological synthesis of 

heme in mammals
3
. It is found that enhanced uptake of 5-ALA 

in cancerous cells provides an accumulation of a fluorescent 

porphyrin known as Protoporphyrin IX (PpIX)
4
.  While the 

preferential accumulation of 5-ALA in tumors still remains an 

area of active investigation, the current proposed mechanisms 

include: increased 5-ALA entry through a disrupted blood 

brain barrier
5
, upregulation of beta

6
 and oligopeptide trans-

porters
7
 (PEPT1 and PEPT2), increased expressions of en-

zymes in the heme biosynthesis pathway and decreased 

amount of the enzyme ferrochetelase
8
. In particular, 5-ALA is 

useful for brain tumors because of its selective fluorescence in 

gilomas
9
. It is widely reported that PpIX is preferentially ac-

cumulated in glioblastoma cells with ratios of 20 to 50:1 com-

pared to normal brain cells
10,11

. Primary transportation through 

the blood brain barrier occurs through the choroid plexus
12

, 

however, leaky vascular may also be a factor when tumors are 

present in the brain
5
. Therefore, there are increasing interests 

and efforts in developing clinical applications of 5-ALA. For 

example, 5-ALA and its esters
13

 have found use in fluores-

cence-guided surgery to help visualize tumorous tissue in neu-

rosurgical procedures
11

. The use of 5-ALA as an intra-

operative imaging probe for determining tumor margins dur-

ing the resection of malignant gliomas has been found to in-

crease the rate of gross total resection to 65% compared to 

35% without 5-ALA
14

. The progression-free survival rate at 6 

months is also increased to 41% when using 5-ALA versus 

21% without
14,15

. In addition, 5-ALA shows promise for future 

therapeutic applications for cancer using photodynamic thera-

py (PDT). In this therapy technique, the preferential accumula-

tion of PpIX in tumors provides a substrate which when ex-

posed to UV light, results in reactive oxygen species that can 

ultimately kill cancer cells
16

. While the fluorescence of PpIX 

can be useful for therapeutic applications, imaging PpIX for 

diagnostic purposes is limited to superficial tumors or intra-

operative procedures due to poor light penetration through the 

skin
17,18

. 

Using a radiolabled version of 5-ALA for Positron Emission 

Tomography (PET) not only can overcome the limitations of 

optical detectability but also can potentially provide a highly 

tumor specific PET tracer compared to existing [
18

F] fluorode-

oxyglucose (FDG), which often has strong background signals 

due to the high uptake in brain parenchyma
19

. Furthermore, 5-

ALA PET scanning would be useful for pre-operative plan-

ning in conjunction to surgical resection procedures that use 5-

ALA to visualize tumors for fluorescence-guided surgery. 

Thus, an amino acid-based PET tracer may be more useful for 

imaging tumors in the brain
20-23

. Additionally, a 5-ALA based 

radioligand could also help determine the viability of a candi-

date for PDT when using 5-ALA as a photosensitizer. There is 

also evidence that the uptake of 5-ALA is variable in different 

tumor lines
24,25

. A PET ligand may be used to quantitate the 

rate of PpIX synthesis
26,27

. This information could potentially 

be used to non-invasively grade or differentiate brain tumors 

based on the PpIX metabolism. These wide arrays of potential 

applications lead us to seek a method to develop a radioactive 
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Scheme 1. Synthesis of the precursor, methyl 5-bromolevulinate 2, and radiochemical synthesis of [13N] 5-ALA 1. 

version of the naturally occurring amino acid that would be 

suitable for use with PET imaging. 

The molecule 5-ALA lends itself to very few practical in-

stallments of a PET radioisotope. Without altering the com-

pound, the only usable PET isotopes are 
11

C, 
13

N, and 
15

O. 

Ideally, 
11

C would be the best-suited isotope due to its exten-

sive use in the field of PET imaging and its longer half-life (20 

min). Unfortunately, at this time, there are no facile ways of 

synthesizing a 
11

C version of 5-ALA in high radiochemical 

yield. To date, only a 
11

C derivative of 5-ALA, 5-amino-4-

oxo-[6-
11

C]hexanoic acid ([
11

C] MALA) has been synthe-

sized
17

. This novel radiotracer was created by installing a 
11

C 

methyl group on an oxime precursor using tetrabutyl ammoni-

um fluoride and [
11

C] methyl iodide in DMSO. There were 

several drawbacks to this radiosythesis: the precursor was 

difficult to purify, the reaction results in a racemic mixture, the 

synthesis is multiple steps, preparatory HPLC is required, ra-

diochemical yield was low (4.4% uncorrected decay), and the 

resulting radiotracer is not a natural occurring amino acid. 

Non-radioactive MALA, was found to be an inhibitor of 5-

aminolevulinate dehydratase (Ki = 0.2 M), and thus can only 

be used to estimate the synthesis rate of PpIX
17,28

. Because of 

these factors and our previous experience working with the 

quick decaying 
13

N isotope
29

, we sought to produce the natu-

rally occurring [
13

N] 5-ALA radiotracer 1. Herein, we describe 

the radiochemical synthesis of [
13

N] 5-ALA 1 and demonstrate 

its use in tumor imaging in a rat model of glioma using the 9L 

glioma cell line. 

The precursor for [
13

N] 5-ALA 1, methyl 5-bromolevulinate 

2, was synthesized by reacting levulinic acid with bromine in 

methanol (Scheme 1). This reaction has been studied at great 

length in a variety of different solvents including ionic liq-

uids
30,31

. The reaction of bromine with levulinic acid typically 

produces a mixture of 3-bromo, 5-bromo, and 3,5-dibromo 

isomers depending on the solvent used. Using methanol as a 

solvent, the non-optimized reaction resulted in a 30% yield of 

the desired isomer after separation using silica column chro-

matography. The amount of methyl 5-bromolevulinate pro-

duced was sufficient for labeling studies. 

[
13

N] Ammonia is produced by bombarding water contain-

ing ethanol (0.25%) as a reductant
32

. After eluting the cyclo-

tron product through a QMA cartridge to remove residual [
18

F] 

fluoride, [
13

N] ammonia can be trapped on a CM cartridge in 

near quantitative recovery. The [
13

N] ammonia can be eluted 

off the CM cartridge in aqueous form by an increase in ionic 

strength. In a typical experiment, a 30 minute bombardment 

(60 µA) produced around 250 mCi (9.25 GBq) of [
13

N] am-

monia.  

For the production of [
13

N] 5-ALA 1, the [
13

N] ammonia 

was eluted off the cartridge with aqueous sodium acetate (1 

mL, 3 M) into a vial containing the precursor 2 (8 mg) dis-

solved in acetonitrile (250 µL) (Scheme 1). Heating the vial 

for 3 minutes at 50 ºC was sufficient for complete radioisotope 

incorporation, but to ensure no [
13

N] ammonia was present, the 

vial was purged with argon for 2 minutes to remove any vola-

tile unreacted [
13

N] ammonia. Due to time constraints and the 

lack of side products, the radiotracer was quickly purified us-

ing only cartridges to remove any remaining precursor. The 

crude reaction mixture was loaded by vacuum onto tC18 and 

HLB cartridges (Waters) into a waste vial. A small amount of 

[
13

N] 5-ALA 1 (<20 mCi or 0.74 GBq) was detected in the 

waste vial but the majority of radioactivity was retained on the 

two cartridges. Eluting 3 mL of an acidic solution through the 

Sep-Paks provided the radiotracer [
13

N] 5-ALA 1 in high radi-

ochemical yield (65% decay corrected) (Scheme 1).  Using 

acidic phosphate (0.2 M, pH = 5), acetic acid/sodium acetate 

(0.2 M, pH = 6), or HCl (10 mmol, pH = 2) for elution all pro-

vided similar yields (~100 mCi or 3.7 GBq). To ensure no 

particles were present, the purified solution was pressure fil-

tered through a 0.2 µm filter into a sterile vial and subsequent-

ly used immediately in studies. The total time from the end of 

bombardment to dose was 10 minutes. The dose formulation 

was intentionally made slightly acidic (pH = 6) to ensure di-

merization did not occur. It is well known that when non-

radioactive 5-ALA is formulated at neutral or basic pH, it can 

rapidly dimerize to 2,5-dicarboxyethyl-3,6-dihydropyrazine 

(DHPY) and further oxidize to produce 2,5-

dicarboxyethylpyrazine (PY)
33

. In an acidic formulation, the 

radiotracer shelf-life was longer than its decay.  

Due to the short half-life of 
13

N, the quality control on the 

amino acid was conveniently performed using radio thin layer 

chromatography. This is the type of analysis routinely used for 

the quality control of polar radiotracers.  For a more in-depth 

analysis, the polar nature of this amino acid requires the use of 

hydrophilic interaction chromatography to assay the quality of 

the dose produced
17

. The 5-ALA HCl salt standard lacks a 

significant chromophore and requires that low wavelengths 

(210 nm) be used. This also makes determining specific activi-

ty difficult. The only source of ammonia should be from the 

cyclotron target, we estimate the specific activity of [
13

N] 5-

ALA 1 is similar to [
13

N] ammonia (> 2 Ci/µmol or 74 

GBq/µmol) for the end of synthesis.  
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Figure 1. HPLC profiles of 5-ALA. (A) UV absorbance (210 nm) 

of unlabeled 5-ALA. (B) Radioactivity (mV) of [13N] 5-ALA. 

Studies reported by Hebeda et al showed 5-ALA was readi-

ly taken up in 9L glioma cells implanted in rats by using fluo-

rescence to detect PpIX
34

. Therefore, we chose to use the 9L 

cells to prepare the rat intracranial tumor model to test [
13

N] 5-

ALA in vivo using microPET imaging. The studies were con-

ducted in male rats with 9L cells surgically implanted into the 

right hemisphere of the brain. After 12 to 14 days, in which 

the 9L tumors typically grow to 3-5 mm in size, dynamic PET 

imaging was performed for 60 minutes followed by a CT scan 

to obtain the anatomic images.  

PET images (Figure 2) show that the 9L tumor takes up 

[
13

N] 5-ALA, resulting in observation of high signal intensity 

at the tumor region with a signal intensity ratio of 1.5 com-

pared to the symmetrical contralateral normal brain tissue in 

the left hemisphere (Figure 3). Peak uptake of [
13

N] 5-ALA in 

the tumor cells occurred within 10 minutes.  To confirm and 

validate the imaging results, the animals were sacrificed im-

mediately after the imaging experiments to collect the whole 

brains and snap frozen before storing in -80 ˚C. Each brain 

was then sectioned to 1 mm thick slices for fluorescent imag-

ing using the wavelength of PpIX to determine the distribution 

in the brain, followed by the H&E staining for tumor region 

identification.  Figure 4 shows PET, optical images and H&E 

staining of the brain slice from one of the animals.  H&E 

staining indicate the location of the 9L tumor and correspond-

ing PET image which correlates well with the high signal re-

gion in the PpIX fluorescent image.  

In conclusion, we have successfully synthesized [
13

N] 5-

ALA in high radiochemical yield and purity within 10 

minutes. The stability of the radiotracer was high for imaging 

experiments and no dimerization was observed. This rapid 

synthesis time and lack of HPLC purification makes the radio-

tracer [
13

N] 5-ALA suitable for additional imaging experi-

ments of other tumor cell lines. 

 

Figure 2. Summed coronal PET images (0-15 min) of a rat bear-

ing intracranial 9L glioma: (A) [13N] 5-ALA in the brain, (B) 

coregistered PET-CT, (C) CT template. The arrow indicates the 

location of the tumor. 

 
Figure 3. Ratio of [

13
N] 5-ALA uptake in the 9L tumor (right 

hemisphere) vs normal brain tissue (left hemisphere) (n = 3). 

 

Figure 4. (A) Transverse PET summed image (0-15 min) of the 

brain. (B) Post mortem brain slice. (C) Optical image of the brain 

slice shown in B. (D) Immunohistochemical (H&E) staining of 

the brain slice B. The circle indicates the location of the tumor. 
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Scheme 1. Synthesis of the precursor, methyl 5-bromolevulinate 2, and radiochemical synthesis of [13N] 5-

ALA 1.  
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Figure 1. HPLC profiles of 5-ALA. (A) UV absorbance (210 nm) of unlabeled 5-ALA. (B) Radioactivity (mV) of 
[13N] 5-ALA.  
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Figure 2. Summed coronal PET images (0-15 min) of a rat bearing intracranial 9L glioma (arrow): (A) [13N] 
5-ALA in the brain, (B) coregistered PET-CT, (C) CT template.  
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Figure 3. Ratio of [13N] 5-ALA uptake in the 9L tumor (right hemisphere) vs normal brain tissue (left 
hemisphere) (n = 3).  
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Figure 4. (A) Transverse PET summed image (0-15 min) of the brain. (B) Post mortem brain slice. (C) 
Optical image of the brain slice shown in B. (D) Immunohistochemical (H&E) staining of the brain slice B.  
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