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An efficient asymmetric synthesis of 1,4-dihydropyridine derivatives is described. The key step is the
stereoselective Michael addition using t-butyl ester of L-valine as a chiral auxiliary to achieve good ee
(>95% for all the tested experiments) and moderate yield. With this method, (+)-4-(3-chlorophenyl)-6-
dimethoxymethyl-2-methyl-1,4-dihydropyridine-3,5-dicarboxylic acid cinnamyl ester was obtained
and was characterized as a promising N-type calcium channel blocker with improved selectivity over
L-type compared to its (�)- and racemic isomers.

� 2011 Elsevier Ltd. All rights reserved.
Table 1
Activity table of dihydropyridine derivatives. In vitro inhibition against N-type
(calcium influx using IMR-32 cells) and L-type (magnus method) calcium channels
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Compd N-type L-type eea (%)
IMR-32 Magnus
IC50, lM IC50, lM

Cilnidipine (1) 1.6 0.0011 Racemic
AJP2708 (2) 3.5 0.046 Racemic
3 3.0 8.1 Racemic
(+)-3 2.6 13.2 95.6b

(�)-3 2.6 1.8 97.1c

a Determined as 2-cyanoethyl ester (10) by chiral HPLC.
b Mean value of two independent experiments (96.0 and 95.2% ee).
1,4-Dihydropyridines (DHPs) have been considered as a privi-
leged pharmacophore to modulate calcium current at the volt-
age-dependent calcium channels (VDCCs), and widely used in
clinical.1 VDCCs mediate calcium influx into cells in response to
diverse physiological changes, such as triggering various physio-
logical events such as neuronal excitability, muscle contraction
and secretion of neurotransmitters, and they are generally classi-
fied into at least five subtypes based on their pharmacological
and functional properties: L- (CaV1.1–CaV1.4), P/Q- (CaV2.1),
N- (CaV2.2), R- (CaV2.3) and T-type (CaV3.1–CaV3.3).2

Cilnidipine (1), one of the marketed drugs possessing a DHP
pharmacophore, is a potent dual blocker for N/L-type VDCCs and
is currently used for the treatment of essential hypertension in
Japan and South Korea (Table 1). The N-type calcium channel dis-
tributes mainly on the endings of central and peripheral nerves to
control neuronal excitability and secretion of neurotransmittersis
(ex. glutamate, substance P or CGRP) in strong association with
the pathological process of neuropathic pain. Thus, blockade of
the N-type VDCC has been considered as a promising therapeutic
target to be a novel type of analgesic. Therefore, many efforts have
been made to discover efficacious small-molecule N-type VDCC
blockers to date.3
ll rights reserved.

m (T. Yamamoto).

c Mean value of two independent experiments (98.7 and 95.5% ee).
As previously reported,4 we have performed a structure–activ-
ity relationship study on APJ2708 (2), a 3-carboxylate DHP deriva-
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Scheme 1. Reagents and conditions: (a) 3-chlorobenzaldehyde, cat. piperidine, cat. AcOH, i-PrOH, 66.3%; (b) L-Val-O-tBu, benzene, reflux, 61.6%; (c) (i) 5, LDA, THF, �78 �C
then �35 �C, 71.5%; (ii) 1 M HCl aq, rt; (iii) AcONH4, EtOH, 50 �C, then 120 �C; (d) 1 M NaOH, MeOH, 83.7%.
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tive of 1, to find an effective and selective N-type calcium channel
inhibitor with the least influence on cardiovascular system. As a re-
sult of the structural optimization, 4-(3-chlorophenyl)-6-dimethyl-
acetal DHP derivative 3 was identified as an promising N-type
VDCC blocker showing significant analgesic potency with more
than 170-fold lower activity for L-type channel compared to that
of 2.4d

Here, when DHP derivative has non-identical ester groups in the
3- and 5-positions, the molecule is chiral, with the carbon at 4 po-
sition as the stereogenic center, which sometimes has critical effect
on its biological activities; for example, S-configuration is crucial
for potent inhibitory activity for L-type VDCC.5 Thus, the separation
of two enantiomers of racemic DHP derivative 3 could be an effec-
tive strategy to identify a compound with the improved selectivity
for the N-type VDCC over the L-type channels.

Several methods for synthesis of chiral DHPs have been reported,
including asymmetric induction,6 resolution of racemic mixture,7 or
chemoenzymatic method.8 Asymmetric Michael addition using a-
methylbenzylamine as chiral inducer was also reported by Ash-
worth et al.,9 but their procedure suffered from low d.e. (about
70%). We hypothesized that steric hindrance of the a-methylbenzyl-
amine was not enough to achieve sufficient stereoselectivity, and
applied novel approach to synthesis of highly enantioselective iso-
mer of compound 3. Our synthetic route was shown in the Scheme
1. The key of this method is using t-butyl ester of L-valine, which is
easily available and its bulky isopropyl group plays an effective role
as a driving force for the highly enantiomeric purity (>95% ee in all
the tested experiments) of the obtained chiral DHPs.

The experiments were performed as follows.10 2-Benzylidene-3-
oxo-butyric acid 2-cyanoethyl ester (5) was prepared using Knoeve-
nagel condensation of 3-oxo-butyric acid 2-cyanoethyl ester (4)
with the 3-chlorobenzaldehyde. The 4,4-dimethoxy-3-oxo-butyric
acid cinnamyl ester (6) and L-valine t-butyl ester was refluxed in
benzene to afford enamine 7, which was treated with LDA at
�78 �C followed by slow addition of 5 to conduct key stereoselective
step. The obtained crude 8 was dissolved in ethanol, and then
ammonium acetate was added to yield the mixture of DHP diester
(+)-10 and its hydrated intermediate 9, which was heated to convert
into (+)-10 by a single spot. The obtained (+)-10 showed 96.0% ee
based on the HPLC analysis using Daicel chiralcel OD-H column.
1 M sodium hydroxide solution was treated to the desired chiral
DHP dicarboxylic acid mono cinnamyl ester (+)-3 by 44.0% overall
yield from 6.11,12 The corresponding enantiomer (�)-3 was also pre-
pared with the same procedure using D-valine t-butyl ester.

The obtained (+)- and (�)-3 were characterized using IMR-32
human neuroblastoma cells for N-type VDCC13 and rat thoracic
aorta ring for L-type VDCC.14,15 As found in Table 1, two enantio-
mers showed different inhibitory activities for L-type VDCC: (�)-
3 was 7 times more potent than (+)-3 (1.8 and 13.2 lM, respec-
tively). For the N-type VDCC, these enantiomers both showed
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potent activities with no detectable difference (2.6 lM), implying
that the chirarity at the C4 position affects only on the binding at
the L-type VDCC, but not at the N-type channels.

In summary, novel asymmetric Michael addition was per-
formed using L- or D-valine t-butyl ester as a chiral auxiliary for
the preparation of enantioenriched 6-dimethoxymethyl-1,4-dihy-
dropyridine-3-carboxylic acid DHP derivatives. Among the two
synthesized enantiomers, (+)-3 was found as an effective blocker
for N-type VDCC with the improved selectivity over L-type chan-
nel, compared to its (�)- and racemic isomers. Thus, (+)-3 could
be considered as an interesting research tool to seek for a promis-
ing drug candidate to control severe to moderate pain states.
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