Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/molliq

New 1,3-diazabicyclo-[3.1.0]hex-3-ene photochromic azo dyes: Synthesis, characterization and spectroscopic studies

Nosrat O. Mahmoodi *, Meysam Pasandideh Nadamani, Tahereh Behzadi

University of Guilan, Department of Organic Chemistry, P.O. Box 1914, Rasht, Iran

ARTICLE INFO

Article history: Received 13 December 2012 Received in revised form 30 April 2013 Accepted 5 May 2013 Available online 20 June 2013

Keywords: Azo dye 1,3-Diazabicyclo-[3.1.0]hex-3-ene Ketoaziridine Photochromism Photoisomerization

1. Introduction

Photochromism is a vast field encompassing well known phenomena associated with reversible transformations of photoisomers having different absorptions upon irradiation with UV and visible light. This phenomena is not limited to the color or absorption spectra, as the changes are based on two different molecules with different physical and chemical properties [1,2]. There has been significant scientific interest in the photochromic compounds used in optical memories, photo-switches, data-storage systems, full color displays, molecular motors and mechanical machines. optoelectronic systems. liquid-crystalline actuators and responsive photonic crystals [3–8]. 1.3-Diazabicyclo-[3.1.0]hex-3-ene derivatives possess exclusive photochromic properties and display good photochromic properties both in the solid and solution states. 1,3-Diazabicyclo[3.1.0]hex-3-ene photochromic compounds can undergo reversible photocyclization between their closed-ring isomer and open-ring isomer under irradiation using a light source of appropriate wavelength [9-15]. Recently, we used a novel type of potentiometry with membrane sensors based on 6-(4-nitrophenyl)-2,4-diphenyl-3,5-diazabicyclo[3.1.0]hex-2-ene and 6-(4-nitrophenyl)-2-phenyl-4,4-dipropyl-3,5-diazabicyclo[3,1,0] hex-2-ene for detection of Sn(II) and Sr(II) ions at trace levels in real samples, respectively [16-18].

Azo dyes are an important class of organic colorants used in many practical applications [19,20]. The photochromism and thermochromism of aromatic azo dyes make them suitable as optical sensors and molecular memory storage [21–26]. Reversible *E/Z* isomerization of azobenzenes, a

E-mail address: mahmoodi@guilan.ac.ir (N.O. Mahmoodi).

ABSTRACT

Ten new 1,3-diazabicyclo-[3.1.0]hex-3-ene-based azo dyes (**3a**–**3k**) were synthesized via three-component reaction between [3-(x-phenyl)aziridin-2-yl](phenyl)methanone (x = 4-NO₂, 3-NO₂), NH₄OAc and azo-coupled *o*-vanillin or salicylaldehyde precursors (**1a**–**1e**) and characterized by UV–Vis, IR and ¹H NMR spectroscopic techniques. The synthesized azo dyes undergo ring opening in EtOH by irradiation with 254 nm UV light. The properties and photochromic structural behavior relationship (PSBR) of these dyes has been analyzed. The spectroscopic information show that the close-*E* photoisomer prevails in ordinary room light, however by irradiation with UV light the open-*Z* photoisomer is prominent.

© 2013 Elsevier B.V. All rights reserved.

representative family of photochromic molecules, is usually induced by alternating irradiation with ultraviolet (UV) and blue lights, which conduct *E* to *Z* and vice versa isomerization through azo π – π * and azo n– π * excitations, respectively [27,28]. Recently, several reports regarding synthesis of azo dyes bearing heterocyclic moieties such as thiophene, pyrrole and azoles have been published. These azo dyes were used for multiple optical and electronic applications such as second harmonic generation, optical switching, chemosensing, organic sensitized solar cells and memories [29–33].

In consideration of these characteristics, it is of interest to examine for the first time the coupling of the photoactive azo group and 1,3-diazabicyclo-[3.1.0]hex-3-ene to give single azo-1,3-diazabicyclo-[3.1.0]hex-3-ene dyes (**3a-3k**) and investigate their PSBR (Scheme 1).

2. Experimental

2.1. Materials and apparatus

All reagents were purchased from Fluka, Merck and Aldrich and used without further purification. [3-(4-Nitrophenyl)aziridin-2-yl](phenyl) methanone (**2a**), and [3-(3-nitrophenyl) aziridin-2-yl](phenyl) methanone (**2b**), were prepared as described previously [9]. Azo dyes precursors, **1a–1e**, were prepared according to the well known literature procedure [34].

The absorption spectra of azo dyes were measured by Shimadzu UV-2100 spectrophotometer in the range 200–800 nm (EtOH, $c = 2 \times 10^{-4}$ M, cell path length 1 cm). A light at 254 nm from a low-pressure Hg lamp was used for the photoisomerization from the close-*E* form to the open-*Z*. The structure of all synthesized compounds was confirmed by ¹H and ¹³C NMR spectra, recorded on

^{*} Corresponding author. Fax: +98 131 3233262.

^{0167-7322/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.molliq.2013.05.026

Scheme 1. Synthesis of azo-1,3-diazabicyclo-[3.1.0]hex-3-ene dyes.

Bruker Avance 500 and 400 MHz spectrometers. IR spectra were recorded on a Shimadzu IR 470 spectrophotometer in the region of 400–4000 cm⁻¹ in KBr pellets. Melting points of all prepared compounds were determined on Mettler FP-5 melting point apparatus and are uncorrected. C. H. N. analyses were performed on a Vario-EL III elemental analyzer.

2.2. General procedure for the synthesis of photochromic azo dyes 3a-3k

Ketoaziridine **2a** or **2b** (0.268 g, 1 mmol) and NH₄OAc (0.77 g, 10 mmol) were dissolved in absolute EtOH (10 ml) and the solution was stirred vigorously for 10 min at r.t. To this, an azo aldehyde **1a–1e** (1 mmol) was added and the mixture stirred at r.t. The reaction was monitored by TLC (EtOAc:petrol, 2:6). The reaction was completed after 24 h and the product was collected by filtration, washed with EtOH and recrystallized from EtOH or MeOH.

2.3. Spectral data for the synthesis of dye derivatives

2-[6-(4-Nitrophenyl)-4-phenyl-1,3-diazabicyclo[3.1.0]hex-3-en-2-yl]-4-(phenylazo)phenol (Table 1, **3a**): Yield 78%, M.p 135–137 °C, ¹H NMR (500 MHz, CDCl₃) δ : 2.68 (s, 1H), 3.98 (s, 1H), 6.84 (s, 1H), 7.06 (d, 1H, J = 8.6 Hz), 7.43 (t, 1H, J = 7.18 Hz), 7.48 (t, 2H, J = 7.39 Hz), 7.56 (t, 4H), 7.64 (t, 1H, J = 7.3 Hz), 7.75 (d, 2H, J = 8.1 Hz), 7.87 (dd, 1H, J =8.6, 2.4 Hz), 7.99 (dd, 2H, J = 8.4, 1.03 Hz), 8.06 (s, 1H), 8.25 (d, 2H, J = 8.7 Hz). ¹³C NMR (500 MHz, CDCl₃) δ : 43.81, 57.61, 95.00, 118.05, 122.89, 123.77, 123.82, 124.31, 124.88, 127.91, 129.25, 129.44, 129.57, 130.54, 130.86, 133.29, 144.72, 147.01, 148.08, 152.94, 158.79, 171.90. IR (KBr, cm⁻¹): 1595, 1500, 1440, 1340, 1280. Anal. Calcd. for C₂₈H₂₁N₅O₃: C 70.73, H 4.45, N 14.73, found C 70.65, H 4.57, N 14.79.

2-[6-(4-Nitrophenyl)-4-phenyl-1,3-diazabicyclo[3.1.0]hex-3-en-2yl]-4-(p-tolylazo)phenol (Table 1, **3b**): Yield 84%, M.p 181–183 °C, Close form, 81%, ¹H NMR (500 MHz, CDCl₃) δ : 2.43 (s, 3H), 2.67 (s, 1H), 3.97 (s, 1H), 6.83 (s, 1H), 7.05 (d, 1H, *J* = 8.7 Hz), 7.28 (d, 2H, *J* =8.15 Hz), 7.57–7.52 (m, 4H), 7.66–7.61(t, 3H, *J* =8.1 Hz), 7.85 (dd, 1H, *J* = 10.4, 2.04 Hz), 7.99 (d, 2H, *J* = 7.5 Hz), 8.00 (s, 1H), 8.25 (d, 2H, *J* = 8.6 Hz), 9.80 (s, 1H). ¹³C NMR (500 MHz, CDCl₃) δ : 21.86, 43.80, 57.59, 95.04, 118.00, 122.89, 123.46, 123.80, 124.29, 124.82, 127.93, 129.24, 129.55, 130.10, 130.58, 133.26, 141.36, 144.76, 147.07, 148.05, 151.02, 158.52, 171.84. After irradiation with UV light converted to the open form, 19%, ¹H NMR (500 MHz, CDCl₃) δ : 2.47 (s, 1H), 2.99 (s, 1H), 3.88 (s, 1H), 6.50 (s, 1H), 7.08 (d, 1H, *J* = 8.6 Hz), 7.34 (d, 2H, *J* = 8.1 Hz), 7.57–7.52 (m, 4H), 7.66–7.61 (m, 3H), 7.89 (dd, 1H, *J* =10.9, 2.27 Hz), 7.98 (d, 2H, *J* = 8.4 Hz), 8.00 (s, 1H), 8.31 (d, 2H, *J* = 8.6 Hz). ¹³C NMR (500 MHz, CDCl₃) δ : 21.86, 47.94, 57.15, 95.00, 118.27, 122.99, 123.46, 123.80, 124.39, 124.82, 127.76, 129.33, 129.51, 130.14, 130.58, 133.12, 141.36, 144.76, 146.91, 148.05, 151.02, 158.52, 171.84. IR (KBr, cm⁻¹): 1600, 1510, 1480, 1340, 1260. Anal. Calcd. for C₂₉H₂₃N₅O₃: C 71.15, H 4.74, N 14.31, found C 71.03, H 4.73, N 14.42.

4-(4-Chlorophenylazo)-2-[6-(4-nitrophenyl)-4-phenyl-1,3-diazabicyclo [3.1.0]hex-3-en-2-yl] phenol (Table 1, **3c**): Yield 70%, M.p 170–172 °C, Close form 81%, ¹H NMR (400 MHz, CDCl₃) δ : 2.64 (s, 1H), 3.96 (dd, 1H, J = 0.8, 2 Hz), 6.80 (s, 1H), 7.04 (d, 1H, J = 8.8 Hz), 7.43 (d, 2H, J = 8.8 Hz), 7.57–7.48 (m, 4H), 7.69–7.60 (m, 3H), 7.85 (dd, 1H, J = 1.6, 5.6 Hz), 7.97 (d, 2H, J = 8.4 Hz), 8.00 (s, 1H), 8.24 (d, 2H, J = 8.8 Hz), 9.90 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 43.38, 57.22, 94.54, 117.73,

Table 1Properties of photochromic azo compounds 3a-3k.

Entry	$\lambda_{max}(nm)(EtoH)$	m.p.(°C)	Color	Purification	Yield%
1a[35]	233, 335	128-129	Brown	EtOH/H ₂ O	78
3a	250, 347	135-137	Orange-green	EtOH	78
3f	250, 350	140-141	Yellow	EtOH	68
1b[35]	238, 340	150-152	Brown	EtOH/H ₂ O	87
3b	250, 355	181-183	Orange	MeOH	84
3g	250, 350	159-160	Yellow	MeOH	79
1c[36]	237, 346	213-215	Yellow	EtOH	90
3c	250, 360	170-172	Orange	MeOH	70
3h	250, 355	163-165	Orange	EtOH	63
1d	249, 386	172-173	Brown	EtOH/CHCI ₃	78
3d	255, 368	149-151	Yellow	EtOH	86
3i	251, 368	174-176	Pea green	EtOH	81
1e	240, 272, 379	102-104	Brown	EtOH/H ₂ O	73
3e	257, 368	156-158	Yellow	EtOH	83
3k	251, 368	147-149	Yellow	EtOH	80

123.47, 123.57, 123.73, 123.89, 124.47, 127.47, 128.82, 129.16, 129.26, 130.08, 132.91, 136.24, 144.26, 146.40, 147.66, 150.86, 158.63, 171.52. After irradiation with UV light converted to the open form, 19%, ¹H NMR (400 MHz, CDCl₃) δ : 2.98 (d, 1H, J = 2 Hz), 3.88 (dd, 1H, J = 0.4, 2.4 Hz), 6.50 (s, 1H), 7.07 (d, 2H, J = 8.8 Hz), 7.43 (d, 2H, J = 8.8 Hz), 7.57–7.48 (m, 4H), 7.69–7.60 (m, 3H), 7.85 (dd, 1H, J = 1.6, 5.6 Hz), 7.95 (d, 2H, J = 7.6 Hz), 8.00 (s, 1H), 8.32 (d, 2H, J = 8.8 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 48.20, 56.00, 96.47, 117.96, 123.47, 123.57, 123.73, 123.84, 124.47, 127.32, 128.88, 129.11, 129.26, 130.08, 132.73, 136.24, 144.26, 146.40, 147.66, 150.80, 158.60, 171.50. IR (KBr, cm⁻¹): 1600, 1520, 1480, 1340, 1280. Anal. Calcd. for C₂₈H₂₀N₅O₃Cl: C 65.95, H 3.95, N 13.73, found C 65.87, H 3.87, N 13.74.

2-Methoxy-4-(4-methoxyphenylazo)-6-[6-(4-nitrophenyl)-4-phenyl-1,3-diazabicyclo[3.1.0]hex-3-en-2-yl]phenol (Table 1, 3d): Yield 86%, M.p 149–151 °C, Close form, 70%, ¹H NMR (400 MHz, CDCl₃) δ: 2.69 (s, 1H), 3.89 (s, 3H), 3.91 (s, 1H), 4 (s, 3H), 6.90 (s, 1H), 7 (d, 2H, J = 9.2 Hz), 7.47 (d, 1H, J = 2 Hz), 7.50–7.63 (m, 6H), 7.80 (d, 2H, J = 9.2 Hz), 8 (d, 2H, I = 7.2 Hz), 8.21 (d, 2H, I = 8.8 Hz), 9.29 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 42.83, 55.58, 56.14, 57.19, 93.81, 102.1, 114.21, 118.85, 123.14, 123.82, 124.33, 127.5, 128.76, 129.09, 130.4, 132.67, 144.65, 146.18, 146.83, 147.42, 147.53, 148.74, 161.66, 171.50. After irradiation with UV light converted to the open form, 30%, ¹H NMR (400 MHz, CDCl₃) δ: 2.94 (s, 1H), 3.89 (s, 1H), 3.91 (s, 3H), 4.03 (s, 3H), 6.62 (d, 1H, I = 2.8 Hz), 7.03 (d, 2H, I = 8.8 Hz), 7.50–7.63 (m, 7H), 7.91 (d, 2H, I = 9.2 Hz), 8 (d, 2H, I = 7.2 Hz), 8.27 (d, 2H, I =8.4 Hz), 8.6 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 47.82, 55.58, 56.24, 56.99, 93.84, 101.21, 114.21, 119.33,123.86, 124.38, 125.54, 127.38, 128.85, 128.97, 130.79, 132.28, 144.48, 146.13, 146.48, 147.01, 147.61, 148.45, 161.61, 170.2. IR (KBr, cm⁻¹): 1595, 1510, 1500, 1465, 1340, 1285. Anal. Calcd. for C₃₀H₂₅N₅O₅: C 67.28, H 4.71, N 13.08, found C 67.18, H 4.86, N 13.07.

2-Methoxy-4-(2-methylphenylazo)-6-[6-(4-nitrophenyl)-4-phenyl-1, 3-diazabicyclo[3.1.0] hex-3-en-2-yl]phenol (Table 1, 3e): Yield: 83%, M.p. 156–158 °C, Close form, 72%, ¹H NMR (400 MHz, CDCl₃) δ: 2.49 (s, 3H), 2.7 (s, 1H), 3.91 (t, 1H, J = 1.6 Hz), 4.01 (s, 3H), 6.90 (s, 1H), 7.23 (td, 1H, J = 8, 1.6 Hz), 7.27–7.36 (m, 2H), 7.50–7.65 (m, 7H), 7.68 (dd, 1H, J = 2, 0.8 Hz), 7.98–8.02 (m, 2H), 8.22 (d, 2H, J = 8.8 Hz), 9.65 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 17.22, 43, 56.12, 57.36, 93.98, 104.6, 115.34, 116.91, 123.23, 123.86, 126.42, 127.42, 128.78, 129.12, 130.24, 130.41, 131.16, 132.77, 137.41, 144.59, 146.54, 147.58, 147.93, 148.76, 150.55, 171.44. After irradiation with UV light converted to the open form, 28%, ¹H NMR (400 MHz, CDCl₃) δ: 2.73 (s, 3H), 2.96 (d, 1H, J = 1.6 Hz), 3.89 (t, 1H, J = 2.4 Hz), 4.03 (s, 3H), 6.63 (d, 1H, J)I = 2.8 Hz), 7.27–7.36 (m, 3H), 7.50–7.65 (m, 8H), 7.98–8.02 (m, 2H), 8.27 (d, 2H, I = 8.8 Hz), 8.66 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 17.52, 47.82, 56.19, 56.95, 93.73, 101.88, 115.52, 119.51, 132.86, 125.53, 126.49, 127.36, 128.91, 129.01, 130.31, 130.63, 131.16, 132.41, 137.32, 144.75, 146.54, 146.9, 147.64, 148.45, 150.84, 170.3. IR (KBr, cm⁻¹): 1600, 1510, 1450, 1340, 1260. Anal. Calcd. for C₃₀H₂₅N₅O₄: C 69.35, H 4.85, N 13.48, found C 69.52, H 4.89, N 13.37.

2-[6-(3-Nitrophenyl)-4-phenyl-1,3-diazabicyclo[3.1.0]hex-3-en-2-yl]-4-(phenylazo)phenol (Table 1, **3f**): A similar procedure as applied for **3a** was practical but instead of **2a** same amount of **2b** was utilized. Yield 68%, M.p 140 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.70 (s, 1H), 3.98 (s, 1H), 6.84 (s, 1H), 7.07 (d, 1H, J = 8.7 Hz), 7.43 (t, 1H, J = 7.2 Hz), 7.48 (t, 2H, J = 7.34 Hz), 7.56 (t, 3H), 7.64 (t, 1H, J = 7.4 Hz), 7.72 (d, 1H, J = 7.6 Hz,), 7.76 (d, 2H, J = 7.4 Hz), 7.88 (dd, 1H, J = 8.6, 2.2 Hz), 8.01 (d, 2H, J = 7.3 Hz), 8.09 (s, 1H), 8.21 (dd, 1H, J = 1.22, 9.39 Hz), 8.26 (s, 1H), 10 (s, 1H). ¹³C NMR (500 MHz, CDCl₃) δ : 43.61, 57.36, 94.98, 118.06, 121.89, 122.91, 123.33, 123.79, 123.86, 124.94, 129.27, 129.41, 129.56, 130.00, 130.57, 130.79, 133.28, 133.36, 139.66, 146.99, 149.00, 152.99, 158.82, 171.96. IR (KBr, cm⁻¹): 1600, 1560, 1540, 1470, 1340, 1270. Anal. Calcd. for C₂₈H₂₁N₅O₃: C 70.73, H 4.45, N 14.73, found C 70.76, H 4.57, N 14.81.

2-[6-(3-Nitrophenyl)-4-phenyl-1,3-diazabicyclo[3.1.0]hex-3-en-2-yl]-4-(p-tolylazo)phenol (Table 1, **3g**): Yield 79%, M.p 160 °C, ¹H NMR (500 MHz, CDCl₃) δ : 2.43 (s, 3H), 2.69 (s, 1H), 3.98 (s, 1H), 6.83 (s, 1H), 7.06 (d, 1H, J = 8.7 Hz), 7.28 (d, 2H, J = 8.1 Hz), 7.57–7.54 (t, 3H), 7.64 (t, 1H, J = 6.7 Hz), 7.66 (d, 2H, J = 8.1 Hz), 7.72 (d, 1H, J = 7.67 Hz), 7.85 (dd, 1H, J = 8.6, 2.19 Hz), 8.01 (d, 2H, J = 7.3 Hz), 8.07 (s, 1H), 8.22 (d, 1H, J = 8.1 Hz), 8.26 (s, 1H), 9.92 (s, H). ¹³C NMR (500 MHz, CDCl₃) δ : 21.85, 43.60, 57.34, 95.03, 118.00, 121.90, 122.89, 123.30, 123.52, 123.84, 124.83, 129.24, 129.54, 130.00, 130.06, 130.61, 133.23, 133.39, 139.70, 141.00, 147.00, 149.00, 151.00, 158.54, 171.89. IR (KBr, cm⁻¹): 1600, 1580, 1520, 1480, 1340, 1260. Anal. Calcd. for C₂₉H₂₃N₅O₃: C 71.15, H 4.74, N 14.31, found C 71.08, H 4.81, N 14.22.

4-(4-Chlorophenylazo)-2-[6-(3-nitrophenyl)-4-phenyl-1,3-diazabicyclo [3.1.0]hex-3-en-2-yl] phenol (Table 1, 3h): Yield 63%, M.p 164 °C, Close form, 72%, ¹H NMR (400 MHz, CDCl₃) δ: 2.66 (s, 1H), 3.97 (s, 1H), 6.80 (s, 1H), 7.04 (d, 1H, J = 8.8 Hz), 7.42 (d, 2H, J = 8.8 Hz), 7.49 (d, 1H, J = 8.4 Hz), 7.58–7.52 (m, 2H), 7.63–7.61 (m, 1H), 7.68 (d, 2H, J =8.4 Hz), 7.85 (dd, 1H, J = 8.8, 2.4 Hz), 7.88 (d, 1H, J = 8.8 Hz), 7.98 (d, 2H, *I* = 7.2 Hz), 8.00 (s, 1H), 8.20 (d, 1H, *I* = 8 Hz), 8.24 (s, 1H), 10.00 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 43.19, 56.94, 94.51, 117.72, 121.49, 122.92, 123.51, 123.71, 123.75, 124.60, 128.84, 129.15, 129.22, 129.60, 130.00, 132.88, 132.89, 136.15, 139.22, 146.37, 148.57, 150.90, 158.67, 171.58. After irradiation with UV light converted to the open form, 28%, ¹H NMR (400 MHz, CDCl₃) & 2.90 (s, 1H), 3.89 (s, 1H), 6.40 (s, 1H), 7.07 (d, 1H, I = 8.8 Hz), 7.42 (d, 2H, I = 8.8 Hz), 7.49 (d, 1H, I = 8.4 Hz, 7.58–7.52 (m, 2H), 7.63–7.61 (m, 1H), 7.70 (d, 2H, I =6.4 Hz), 7.82 (d, 1H, I = 8.8 Hz), 7.88 (d, 1H, I = 8.8 Hz), 7.96 (d, 2H, J = 8 Hz), 8.25 (s, 1H), 8.34 (s, 1H), 8.52 (s, 1H), 10.26 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) &: 47.39, 56.43, 95.14, 117.90, 121.64, 123.11, 123.54, 123.83, 123.89, 125.59, 128.90, 129.00, 129.27, 129.80, 130.20, 132.42, 132.70, 136.00, 139.28, 146.24, 148.57, 151.14, 158.20, 170.26. IR (KBr, cm⁻¹): 1600, 1580, 1520, 1480, 1340, 1260. Anal. Calcd. for C₂₈H₂₀N₅O₃Cl: C 65.95, H 3.95, N 13.73, found C 65.88, H 3.98, N 13.65.

2-Methoxy-4-(4-methoxyphenylazo)-6-[6-(3-nitrophenyl)-4-phenyl-1,3-diazabicyclo [3.1.0]hex-3-en-2-yl]phenol (Table 1, 3i): Yield 81%, M.p 174–176 °C, Close form, 65%, ¹H NMR (400 MHz, CDCl₃) δ: 2.71 (s, 1H), 2.89 (s, 3H), 3.92 (s, 1H), 4 (s, 3H), 6.91 (s, 1H), 6.98 (d, 2H, J = 8.8 Hz), 7.47–7.64 (m, 5H), 7.67 (m, 2H), 7.78–7.81 (m, 2H), 8 (d, 2H, J = 7.2 Hz), 8.1 (d, 1H, J = 8 Hz), 8.22 (s, 1H), 9.35 (br, 1H). ¹³C NMR(100 MHz, CDCl₃) &: 42.63, 55.57, 56.14, 56.94, 93.8, 102.12, 114.18, 118.93, 121.56, 122.76, 123.2, 124.34, 128.77, 129.08, 129.52, 130.43, 132.64, 132.91, 139.55, 146.15, 146.87, 147.46, 148.52, 148.76, 161.61, 171.55. After irradiation with UV light converted to the open form, 35%, ¹H NMR (400 MHz, CDCl₃) δ: 2.95 (s, 1H), 3.74 (quar, 1H, I = 6.8 Hz), 3.9 (s, 3H), 4.02 (s, 3H), 6.62 (d, 1H, I = 2.4 Hz), 7.02 (d, 2H, J = 8.8 Hz), 7.47-7.64 (m, 5H), 7.78-7.81 (m, 1H), 7.91-7.93 (m, 3H), 8 (d, 2H, I = 7.2 Hz), 8.21 (m, 1H), 8.3 (s, 1H), 8.61 (br, 1H).¹³C NMR (100 MHz, CDCl₃) δ: 47.71, 55.57, 56.22, 56.62, 93.8, 101.26, 114.2, 119.3, 121.69, 122.87, 124.4, 125.63, 128.89, 128.97, 129.63, 130.8, 132.28, 132.57, 139.78, 146.11, 146.48, 147.01, 148.44, 148.48, 161.58, 170.26. IR (KBr, cm⁻¹): 1600, 1575, 1525, 1470, 1345, 1280. Anal. Calcd. for C₃₀H₂₅N₅O₅: C 67.28, H 4.71, N 13.08, found C 67.34, H 4.76, N 13.01.

2-Methoxy-4-(2-methylphenylazo)-6-[6-(3-nitrophenyl)-4-phenyl-1,3diazabicyclo[3.1.0] hex-3-en-2-yl]phenol (Table 1, **3k**): Yield 80%, M.p. 147–149 °C, Close form, 54%, ¹H NMR (400 MHz, CDCl₃) δ : 2.5 (s, 3H), 2.72 (s, 1H), 3.89–3.91 (m, 1H), 4.01 (s, 3H), 6.91 (s, 1H), 7.24 (td, 1H, J = 7.4, 2 Hz), 7.27–7.32 (m, 1H), 7.35 (d, 1H, J = 4 Hz), 7.5–7.63 (m, 5H), 7.68–7.71 (m, 2H), 7.8 (d, 1H, J = 7.6 Hz), 7.99–8.02 (m, 2H), 8.18 (dd, 1H, J = 8.4, 1 Hz), 8.24 (s, 1H), 9.68 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 17.24, 42.79, 56.12, 57.15, 93.98, 104.55, 115.37, 117.06, 121.48, 122.79, 123.31, 126.41, 128.78, 129.1, 129.58, 130.28, 131.11, 132.73, 132.77, 137.4, 139.54, 149.53, 147.97, 148.43, 148.78, 150.58, 171.47. After irradiation with UV light converted to the open form, 46%, ¹H NMR (400 MHz, CDCl₃) δ : 2.74 (s, 3H), 2.96 (d, 1H, J =1.6 Hz), 3.89–3.91 (m, 1H), 4.02 (s, 3H), 6.63 (d, 1H, J = 2.4 Hz), 7.27– 7.32 (m, 2H), 7.35 (d, 1H, J = 4 Hz), 7.5–7.63 (m, 7H), 7.99–8.02

Scheme 2. Photoisomerization of photochromic dyes via imine ylide upon the UV-light irradiation.

(m, 3H), 8.21 (dd, 1H, J = 8.4, 1.2 Hz), 8.31 (s, 1H), 8.70 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 17.52, 47.68, 56.17, 56.62, 93.8, 102.18, 115.54, 119.14, 121.64, 122.88, 125.72, 126.46, 128.87, 128.98, 129.63, 130.35, 130.77, 131.16, 132.3, 132.54, 137.4, 139.77, 146.53, 146.88, 148.51, 148.57, 150.84, 170.34. IR (KBr, cm⁻¹): 1605, 1575, 1525, 1475, 1345. Anal. Calcd. for C₃₀H₂₅N₅O₄: C 69.35, H 4.85, N 13.48, found C 69.28, H 4.91, N 13.52.

3. Result and discussion

In our approach, o-vanillin or salicylaldehyde in the first step was coupled with the diazonium chloride obtained from aniline derivatives to give **1a–1e**. In the next efforts, the photochromic azo dyes **3a–3k** were synthesized via three-component reactions between ketoaziridine **2a** or **2b**, NH₄OAc and azo dye precursor, as shown in Scheme 1 and Table 1.

The characteristic IR absorption bands of compounds were determined in KBr disk. In the IR spectra of **3a–3k**, absence of a C==O absorption related to the azo precursors **1a–1e** and the N–H stretching related to the ketoaziridines **2a–2b** in addition to the appearance of a new C=N absorption band in the range of 1597–1605 cm⁻¹ indicated that 1,3-diazabicyclo[3.1.0]hex-3-en moiety was formed.

The NMR spectra of dyes were recorded in CDCl₃ at 25 °C. All of the synthesized azo dyes except for **3a**, **3f** and **3g** showed a new set of signals in ¹H and ¹³C NMR in addition to the original ones because of Photoisomerization between their closed-ring **A** photoisomer and open-ring **B** photoisomer via conrotatory (σ 2s + n2s) heterolytic cleavage of the three-member ring under irradiation with light source of appropriate wavelength (254 nm) [9–11]. Photoisomerization of these photochromic azo dyes via proposed zwitter ionic doublecharged imine ylides were depicted in Scheme 2.

The ¹H NMR spectra of compound **3c** in CDCl₃ indicate mixture of two photoisomers with ratio of 78:22 (**3c**:**3c**') closed to open forms upon exposure to UV light. The ratios of close to open photoisomers were measured from integral ratio of certain peaks in ¹H NMR spectra. The characteristic shifts of their H_a, H_b, H_c were observed in the

8.031 8.025 8.025 8.025 989 972 989 890 868 868 865 863 863 88 857 8 837 697 692 8 3 Z 636 555 3 35 5 92

Fig. 1. ¹HNMR of 3c indicates mixture of two photoisomers with ratio of 78:22 for close and open forms.

 Table 2

 ¹H NMR chemical shifts of close and open-ring isomers for 3a-3k.

Entry	δb.b′	δa.a′	δς.ς'	δOH.OH'	Close/open form ratio (%)
Direry	0010	ouju	00,0	0011,011	
3a	2.67, -	3.97, -	6.83, -	-	100/0
3b	2.67, 2.99	3.97, 3.88	6.83,6.50	9.8, –	81/19
3c	2.64, 2.98	3.96, 3.88	6.80, 6.50	9.90, -	78/22
3d	2.69, 2.94	3.91, 3.89	6.90, 6.62	9.29, 8.60	70/30
3e	2.70, 2.96	3.91, 3.89	6.90, 6.63	9.65, 8.66	72/28
3f	2,70, -	3.98, -	6.84, -	10, –	100/0
3g	2.69, -	3.98, -	6.83, -	9.92, –	100/0
3h	2.66, 2.90	3.97, 3.89	6.80, 6.40	10, -	68/32
3i	2.71, 2.95	3.92, 3.74	6.91, 6.62	9.35, 8.61	65/35
3k	2.72, 2.96	3.90, 3.90	6.91, 6.63	9.68, 8.70	54/46

¹H NMR spectra (Fig. 1). As shown in Fig. 1 and Table 2, the ¹H NMR signal of H_b appeared at $\delta = 2.64$ ppm for **3c** (close form) and $\delta = 2.98$ ppm for **3c**' (open form), and the ¹H NMR signals of the H_a and H_c of the imidazole ring appeared at $\delta = 3.96$ and 6.80 ppm for **3c** and $\delta = 3.88$ and 6.50 ppm for **3c**' respectively. The H_b proton located above the plane of imidazole ring is shielded by anisotropic effect, thus it chemical shift appeared at higher field compared to H_a and H_c. Similar chemical shift changes have also been observed in the ¹H NMR spectra of other photochromic dyes. ¹H NMR spectra in Fig. 1 shows broad peak of O – H at 10 ppm attributed to the intramolecular H-bonding with N₁ or N₃ of imidazoline ring.

The electronic absorption spectra of **3a–3k** were recorded in EtOH upon irradiation with 254 nm light at room temperature. Before UV light irradiation, compound **3b** showed two strong bands at 252 and 354 nm. When **3b** was irradiated, the absorption intensity at 354 nm gradually increased and a new absorption peak at 440 nm appeared. When **3g** was irradiated, the absorption intensity at 248 and 354 nm increased without appearance of a peak at 440 nm (Fig. 2). This implies that both azo and aziridine moieties are affected by UV irradiation and the imine ylide of photoisomer **3b** with *ap*-NO₂ group is more highly stabilized than photoisomer **3g** with *meta*-NO₂ substitution. This phenomenon is attributed to the *p*-NO₂ conjugation effect.

By increasing the duration of irradiation or exposure to the sun light the intensity of color for all of the photochromic dyes due to population of open-*Z* photoisomer both in the solid and solution forms were increased.

4. Conclusion

New azo dyes with 1,3-diazabicyclo-[3.1.0]hex-3-ene moiety were synthesized via three-component reaction between (3-(x-phenyl) aziridin-2-yl)(phenyl)methanone (x = 4-NO₂, 3-NO₂), NH₄OAc and azo-coupled*o*-vanillin or salicylaldehyde precursor. The photochromic azo dyes**3a–3k**, upon exposure to UV light showed the equilibrium

ratio between close and open photoisomers. The spectroscopy data showed that the close photoisomers prevail in ordinary room light; however by irradiation with UV light the open photoisomers are prominent.

Acknowledgments

We thank the Research Committee of the University of Guilan for partial support given to this study.

References

- Y. Yokoyama, T. Shiozawa, Y. Tani, T. Ubukata, Angewandte Chemie International Edition 48 (2009) 4521–4523.
- [2] Y. Chen, M.L. Pang, K.G. Cheng, Y. Wang, J. Han, Z.J. He, J.B. Meng, Tetrahedron 63 (2007) 4319–4327.
- [3] T. Yang, S. Pu, B. Chen, J. Xu, Canadian Journal of Chemistry 85 (2007) 12-20.
- [4] J. Andréasson, J. Kärnbratt, M. Hammarson, S. Li, H.L. Anderson, B. Albinsson, Angewandte Chemie International Edition 49 (2010) 1854–1857.
- [5] J. Cusido, E. Deniz, F.M. Raymo, European Journal of Organic Chemistry (2009) 2031–2045.
- [6] T. Fäcke, F.K. Bruder, R. Hagen, T. Rölle, M.S. Weiser, Angewandte Chemie International Edition 50 (2011) 4552–4573.
- [7] K. Ikeda, K. Uosaki, Chemistry-A European Journal 18 (2012) 1564-1570.
- [8] F. Terao, M. Morimoto, M. Irie, Angewandte Chemie International Edition 51 (2012) 901–904.
- [9] N.O. Mahmoodi, M.A. Zanjanchi, H. Kiyani, Journal of Chemical Research 6 (2004) 438–440.
- [10] N.O. Mahmoodi, H. Kiyani, K. Tabatabaeian, M.A. Zanjanchi, M. Arvand, B. Sharifzadeh, Russian Journal of Organic Chemistry 46 (2010) 884–889.
- [11] N.O. Mahmoodi, H. Kiyani, Bulletin of the Korean Chemical Society 25 (2004) 1417–1420.
- [12] M.R. Yazdanbakhsh, N.O. Mahmoodi, S. Dabiry, Mendeelev Communications 37 (2006) 192–194.
- [13] N.O. Mahmoodi, M.R. Yazdanbakhsh, H. Kiyani, B. Sharifzadeh, Journal of the Chinese Chemical Society 54 (2007) 635–641.
- [14] H. Kiyani, N.O. Mahmoodi, K. Tabatabaeian, M.A. Zanjanchi, Mendeleev Communications 19 (2009) 203–205.
- [15] N.O. Mahmoodi, K. Tabatabaeian, H. Kiyani, Helvetica Chimica Acta 95 (2012) 536–542.
- [16] M. Arvand, M. Moghimi, A. Afshari, N. Mahmoodi, Analytica Chimica Acta 579 (2006) 102–108.
- [17] M.A. Zanjanchi, M. Arvand, N.O. Mahmoodi, A. Islamnezhad, Electroanalysis 21 (2009) 1816–1821.
- [18] A. Islamnezhad, N.O. Mahmoodi, Desalination 271 (2011) 157-162.
- [19] M.R. Yazdanbakhsh, H. Yousefi, M. Mamaghani, E.O. Moradi, M. Rassa, H. Pouramir, M. Bagheri, Journal of Molecular Liquids 169 (2012) 21–26.
- [20] Y.G. Sıdır, I. Sıdır, H. Berber, E. Taşal, Journal of Molecular Liquids 162 (2011) 148–154.
- [21] P. Gordon, P. Gregory, Organic Chemistry in Colour, Springer-Verlag, Berlin, 1983.
- [22] K. Nejati, Z. Rezvani, M. Seyedahmadian, Dyes and Pigments 83 (2009) 304-311.
- [23] J. Shao, H. Lin, Dyes and Pigments 80 (2009) 259–263.
- [24] Y. Qian, G. Wang, G. Xiao, B. Lin, Y. Cui, Dyes and Pigments 75 (2007) 460-465.
- [25] H. Dincalp, F. Toker, I. Durucasu, N. Avcibasi, S. Icli, Dyes and Pigments 75 (2007) 11-24.
- [26] V.K. Bhardwaj, N. Singh, M.S. Hundal, G. Hundal, Tetrahedron 62 (2006) 7878–7886.
- [27] H. Rau, in: H. Durr, H. B-Laurent (Eds.), Photochromism: Molecular and Systems, Elsevier, Amsterdam, 1990, pp. 165–192.

Fig. 2. Absorption spectra character in EtOH (2×10^{-4} M) before and after successive UV irradiation, for **3b** ring opening prevailed (left); **3g** (right).

- [28] N. Tamai, H. Miyasaka, Chemical Reviews 100 (2000) 1875–1890.
- [29] E.Y. Schmidt, I.A. Ushakov, N.V. Zorina, A.I. Mikhaleva, B.A. Trofimov, Mendeleev Communications 21 (2011) 36–37.
- [30] K.G. Yager, C.J. Barrett, Journal of Photochemistry and Photobiology A 182 (2006) 250-261.
- M.M. Raposo, M.C.R. Castro, A.M.C. Fonseca, P. Schellenberg, M. Belsley, Tetrahedron 67 (2011) 5189–5198.
 J.A. Mikroyannidis, G.D. Sharma, S.S. Sharma, Y.K. Vijay, Journal of Physical Chemistry C 114 (2010) 1520–1527.
- [33] M.C.R. Castro, P. Schellenberg, M. Belsley, A.M.C. Fonseca, S.S.M. Fernandes, M.M.M. Raposo, Dyes and Pigments 95 (2012) 392–399.
 [34] M.R. Yazdanbakhsh, M. Giahi, A. Mohammadi, Journal of Molecular Liquids 144
- (2009) 145-148.
- [35] M. Odabasoglu, C. Albayrak, R. Ozkanca, F.Z. Aykan, P. Lonecke, Journal of Molecular Structure 840 (2007) 71–89.
- [36] H. Khanmohammadi, M. Darvishpour, Dyes and Pigments 81 (2009) 167–173.