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A mild and efficient method for etherification of cyclic �-di-
ketones with alcohols has been developed using a catalytic
amount of cerium(IV) ammonium nitrate at room temperature
to afford the corresponding �-keto enol ethers in good to excel-
lent yields. The deprotections of enol ethers in water–acetonitrile
(1:1) using a catalytic amount (10mol%) of cerium(IV) ammo-
nium nitrate have also been achieved.

�-Keto enol ethers are versatile intermediates in synthetic
organic chemistry.1 For example, they have been widely used
as precursors for the synthesis of different optically active com-
pounds.2 Usually, ethers are prepared by coupling reactions of
alkoxide or alcohols with different alkyl halides in basic condi-
tions.3 Although several methods have been demonstrated for
the synthesis of �-keto enol ethers from cyclic �-diketones such
as p-toluene sulfonic acid catalyzed etherification,4 methyl ether
from 3-chlorocycloalk-2-enones,5 methylation using diazo-
methane,1 and catalytic etherification by TiCl4,

6 iodine,7 and
B(C6F5)3,

8 the use of lanthanides as reagents in this field is
not much explored. In recent years, several lanthanide com-
plexes have proven to be extraordinarily effective catalysts for
various organic transformations.9 We wish to report here a mild
and efficient synthesis of �-keto enol ethers from cyclic �-dike-
tones in good to excellent yields using a catalytic amount of
CAN (10mol%) at room temperature.

Cerium(IV) ammonium nitrate (CAN) has been widely used
in carbon–carbon9 as well as carbon–heteroatom10 bond forming
reactions and also as a powerful one electron oxidant11 in organ-
ic synthesis for several years. In continuation to our efforts12 to
develop novel methodologies in organic synthesis using com-
mercially available CAN as a catalyst, we treated cyclic �-dike-
tones with an excess of alcohols (also act as solvents) at room
temperature to afford the corresponding �-keto enol ethers in
good to excellent yields (Scheme 1).

Thus, cyclohexan-1,3-dione and 5,5-dimethylcyclohexan-
1,3-dione (dimedone) were subjected to the etherification reac-
tion13 at room temperature with various alcohols in the presence
of a catalytic amount of CAN (10mol%) to furnish �-keto enol
ethers 1–12 and the results are summarized in Table 1.

Although primary (Entries 1–10) as well as secondary alco-
hols (Entries 11 and 12) underwent smoothly at room tempera-
ture, the reaction with secondary alcohols took place with an in- creased reaction time and with a lower yield of products com-

pared to the reaction with primary alcohols. The etherification
did not undergo at all with sterically crowded tert-butanol under
the reaction conditions. It is noteworthy that the reaction of prop-
argyl alcohol (Entry 7) and allyl alcohol (Entry 10) underwent
smoothly with dimedone giving excellent yields of the �-keto
enol ethers 7 and 10, respectively.

We have also successfully deprotected14 the �-keto enol
ethers (1–12) to the corresponding cyclic �-diketones in good
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Table 1. CAN-catalyzed etherification of cyclic �-diketones
and their deprotection
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aProducts were characterized by NMR, IR, and HRMS analysis
and also by comparing the spectral data with those of authentic
samples.
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to excellent yields by treatment with CAN (10mol%) in water–
acetonitrile (1:1) under reflux condition as depicted in Table 1.
However, open chain �-diketones such as acetylacetone and
benzoylacetone when treated with MeOH in the presence of a
catalytic amount of CAN remained unchanged even after pro-
longed stirring. These open chain �-diketones preferably exist
in cis-enol form in the solution and serve as bidentate ligands
which may form a stable cerium complex.6 In contract, enoliza-
tion of cyclic �-diketones forms fixed trans-enols where no such
complex formation is sterically possible.

In summary, we have developed a mild and efficient
CAN-catalyzed method for the synthesis of �-keto enol ethers
from �-diketones at room temperature in good to excellent
yields. We have also developed a method for deprotection of
�-keto enol ethers to the corresponding cyclic �-diketones in
water–acetonitrile under reflux condition catalyzed by CAN
(10mol%).

B. B. and S. K. M. thank CSIR, New Delhi for awarding
fellowships.
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