Conversion of Nucleophilic Halides to Electrophilic Halides: Efficient and Selective Halogenation of Azinones, Amides, and Carbonyl Compounds Using Metal Halide/Lead Tetraacetate

Jeum-Jong Kim, ${ }^{\text {a }}$ Deok-Heon Kweon, ${ }^{a}$ Su-Dong Cho, ${ }^{* a}$ Ho-Kyun Kim, ${ }^{\text {a }}$ Sang-Gyeong Lee, ${ }^{\text {b }}$ Yong-Jin Yoon*a
${ }^{\text {a }}$ Department of Chemistry \& Environmental Biotechnology National Core Research Center, Gyeongsang National University, Chinju 660-701, Korea
Fax +82(55)7610244; E-mail: yjyoon@gsnu.ac.kr
${ }^{\text {b }}$ Department of Chemistry \& Research Institute of Life Science Gyeongsang National University, Chinju 660-701, Korea
Received 18 October 2005

Abstract

AlCl}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}\) and $\mathrm{ZnBr}_{2} / \mathrm{Pb}(\mathrm{OAc})_{4}$ are efficient electrophilic N - and α-C-halogenating agents. A variety of azinones, amides and carbonyl compounds were chemoselectively and regioselectively N -, or α-C-halogenated in good to excellent yield using $\mathrm{AlCl}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$ and $\mathrm{ZnBr}_{2} / \mathrm{Pb}(\mathrm{OAc})_{4}$ in acetonitrile.

Key words: N -halogenation,, α-C-halogenation, electrophilic halogenation, selective halogenation, metal halide/lead tetraacetate
α-Halocarbonyl compounds ${ }^{1-3}$ and N-halonitrogen heterocycles ${ }^{4,5}$ are among the most versatile intermediates in organic synthesis. Direct selective halogenation of carbonyl compounds and nitrogen heterocycles is also a very important synthetic transformation technique. Electrophilic halogenating agents are useful for halogenating these carbonyl compounds and nitrogen heterocycles. In general, direct conversion of carbonyl compounds such as ketones to α-halocarbonyl compounds can be achieved by using halogenating agents such as copper(II) halides, ${ }^{6}$ sulfuryl chloride, ${ }^{7}$ p-toluenesulfonyl chloride, ${ }^{8} \mathrm{~N}$-halo-succinimide/p-toluenesulfonic acid, ${ }^{9}$ Koser's reagent/ magnesium halides, ${ }^{10}$ tetraalkylammonium trihalides ${ }^{11}$ and bromine. ${ }^{12}$ Recently, much effort has been made to develop new efficient methods for α-halogenation of 1,3dicarbonyl compounds. ${ }^{13}$
Also N -halo derivatives have been found to be useful and valuable compounds in organic synthesis. ${ }^{4,5,14-22}$ For Nhalogenation of nitrogen heterocycles, and amides, a relatively few reagents for N -halogenation have been described, including among others, tert-butyl hypochlorite, ${ }^{14-16}$ chlorine, ${ }^{23}$ sodium hypochlorite, ${ }^{24}$ calcium hypochlorite, ${ }^{19}$ Oxone ${ }^{\circledR 25}$ and trichloroisocyanuric acids. ${ }^{26}$ However, these methods suffer from such drawbacks as long reaction times, cumbersome work-up procedures, short shelf lifetime and emission of active oxygen. Here, we report a more convenient and effective method for the N - or α-C-halogenation of azinones, amides, and carbonyl compounds.
In our previous work on phenylation of 4,5-dichloro-pyridazin-3(2H)-one using lead tetraacetate/zinc chloride/

[^0]benzene system, ${ }^{27}$ we had found that a combination of metal chloride and lead tetraacetate (LTA) chlorinates py-ridazin- $3(2 \mathrm{H})$-ones to the corresponding N -chloro derivatives. This is an evidence of conversion of nucleophilic chlorine, metal chloride, to electrophilic chlorine such as $\mathrm{AcOCl}\left(\mathrm{Cl}^{+}\right.$equivalent). Therefore, we anticipated this reaction to go through the following mechanism:

```
\(\mathrm{Pb}(\mathrm{OAc})_{4}+\mathrm{MXn} \rightarrow \mathrm{Pb}(\mathrm{OAc})_{2}+\mathrm{MX}_{\mathrm{n}-1}(\mathrm{OAc})+\mathrm{AcOX}\)
\(\mathrm{AcOX}+\mathrm{NuH} \rightarrow \mathrm{NuX}+\mathrm{AcOH}\)
```

In this study, we examined the N -chlorination of 4,5-dichloropyridazin-3(2H)-one (1a) with $\mathrm{ZnCl}_{2} / \mathrm{Pb}(\mathrm{OAc})_{4}$ in refluxing organic solvents such as dichloromethane, dimethylformamide, acetonitrile, n-hexane and tetrahydrofuran (entries $1-5$ in Table 1). Using acetonitrile as solvent, 2-chloro derivative 2a was obtained exclusively in 78% yield (entry 2 in Table 1). Subsequently, the chlorination of 1a was evaluated in acetonitrile using various $\mathrm{MX}_{\mathrm{n}} / \mathrm{Pb}(\mathrm{OAc})_{4}$ systems (entries 6-18 in Table 1). Using FeCl_{3} (1 equiv) and AlCl_{3} (1 equiv), 2a was obtained exclusively in excellent yields (entries 6 and 10 in Table 1). On the other hand, chlorination of 1a with $\mathrm{SnCl}_{4} /$ $\mathrm{Pb}(\mathrm{OAc})_{4}$ (1:1 equiv) in refluxing dichloromethane gave 2a in 85% yield (entry 15 in Table 1), whereas $\mathbf{2 a}$ was not formed at room temperature. Reaction of $\mathbf{1 a}$ with $\mathrm{SnCl}_{4} /$ $\mathrm{Pb}(\mathrm{OAc})_{4}(1: 1$ equiv) in refluxing acetonitrile for four hours gave 2a in low yield although the reaction did not proceed completely (entry 16 in Table 1). Although the treatment of $\mathbf{1 a}$ with $\mathrm{AlBr}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$ in acetonitrile did not yield 2-bromo derivative $\mathbf{2 b}$, the compound 1a, when reacted with $\mathrm{ZnBr}_{2} / \mathrm{Pb}(\mathrm{OAc})_{4}$ in acetonitrile at room temperature, gave 2b in excellent yield (entry 18 in Table 1). However, treatment of $\mathbf{1 a}$ with $\mathrm{AlI}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$ or $\mathrm{ZnI}_{2} /$ $\mathrm{Pb}(\mathrm{OAc})_{4}$ in acetonitrile did not give products. Neither did the reaction of $\mathbf{1 a}$ with zinc chloride and other metal acetates such as $\mathrm{Zn}(\mathrm{OAc})_{2}, \mathrm{Cu}(\mathrm{OAc})_{2}, \quad \mathrm{Hg}(\mathrm{OAc})_{2}$, $\mathrm{Sn}(\mathrm{OAc})_{4}, \mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{Tl}(\mathrm{OAc})_{3}$ occur.
On the other hand, the chlorination of benzene derivatives with elemental chlorine has been reported to have yielded from $\mathrm{SnCl}_{4} / \mathrm{Pb}(\mathrm{OAc})_{4}$ (2:1 equiv). ${ }^{28}$ However, when $\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{AlCl}_{3}$ ($1: 2$ equiv; entry 11 in Table 1) or $\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{AlCl}_{3}$ ($0.5: 1$ equiv; entry 12 in Table 1) were used, the reactions did not occur. Consequently, the mechanism of our system is different from the pathway described in the literature ${ }^{28}$ although small amounts of

Table 1 Reaction of 4,5-Dichloropyridazin-3(2H)-ones (1a) with $\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{MX}_{\mathrm{n}}$

	$\xrightarrow[\text { solvent, reflux }]{\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{MX}_{n}}$	 2a: $X=C l$ 2b: $X=B r$					
Entry	$\mathrm{Pb}(\mathrm{OAc})_{4}$ (equiv)	MX_{n} (equiv)	Solvent	Conditions ${ }^{\text {a }}$	Product (\%) ${ }^{\text {b }}$		
					2a		2b
1	1	ZnCl_{2} (1)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20 h, r.t.	$60^{\text {c }}$		-
2	1	ZnCl_{2} (1)	MeCN	1.5 h , reflux	78		-
3	1	ZnCl_{2} (1)	DMF	4 h , reflux	-d		-
4	1	ZnCl_{2} (1)	n-hexane	4 h , reflux	No reaction		
5	1	ZnCl_{2} (1)	THF	4 h , reflux	No reaction		
6	1	$\mathrm{FeCl}_{3}(1)$	MeCN	1.5 h , reflux	91	-	
7	1	$\mathrm{TiCl}_{4}(1)$	MeCN	4 h , reflux	No reaction		
8	1	$\mathrm{CuCl}(1)$	MeCN	5 h , reflux	$30^{\text {c }}$	-	
9	1	CuCl_{2} (1)	MeCN	7 h , reflux	$50^{\text {c }}$	-	
10	1	$\mathrm{AlCl}_{3}(1)$	MeCN	1.1 h , reflux	93	-	
11	2	$\mathrm{AlCl}_{3}(1)$	MeCN	1.1 h , reflux	92	-	
12	0.5	$\mathrm{AlCl}_{3}(1)$	MeCN	1.1 h , reflux	No reaction		
13	1	$\mathrm{AlCl}_{3}(2)$	MeCN	1.1 h , reflux	No reaction		
14	1	$\mathrm{AlCl}_{3}(0.5)$	MeCN	3.7 h , reflux	$48^{\text {c }}$	-	
15	1	SnCl_{4} (1)	MeCN	12 h , reflux	85	-	
16	1	SnCl_{4} (1)	MeCN	4 h , reflux	$30^{\text {c }}$	-	
17	1	$\mathrm{AlBr}_{3}(1)$	MeCN	10 min , r.t.	$_^{\text {e }}$	-	
18	1	$\mathrm{ZnBr}_{2}(1)$	MeCN	5 min , r.t.	-	95	

${ }^{\mathrm{a}}$ Isolated yield.
${ }^{\mathrm{b}}$ Unreacted 1a was isolated.
${ }^{\text {c }} \mathrm{N}$-Methyl- N -(6-oxo-6H-pyridazin-1-ylmethyl)formamide was isolated in good yield.
${ }^{\mathrm{d}}$ The unknown product was detected on TLC.
${ }^{\mathrm{e}} \mathrm{AlBr}_{3}$ was reacted explosively with $\mathbf{1 a}$ under this condition to some unknown products.
chlorine or bromine were detected at the initial step. Based on the experiments for five different mole ratios of $\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{AlCl}_{3}$ (entries $10-14$ in Table 1), the optimum molar ratio is $1: 1$ equivalent of $\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{AlCl}_{3}$ (entry 10 in Table 1). However, treatment of $\mathbf{1 a}$ with zinc chloride or chlorine in the absence of lead tetraacetate in acetonitrile did not give trichloro compound 2a. Neither did the reaction of $1 \mathbf{a}$ with $\mathrm{Zn}(\mathrm{OAc})_{2} / \mathrm{Br}_{2}$ occur. These results are strongly suggestive of the conversion of nucleophilic chloride such as zinc chloride to an electrophilic chloride of $\mathrm{AcOCl}\left(\mathrm{Cl}^{+}\right.$equivalent) in our system. Lead tetraacetate is a good acetoxylation agent. ${ }^{29}$ Reaction of lead tetraacetate with iodide affords AcOI. ${ }^{30}$ If AcOX were to
be formed by the reaction of lead tetracetate with X_{2}, two equivalents of lead tetraacetate would be required. However, when one equivalent of $\mathrm{Pb}(\mathrm{OAc})_{4}$ (entry 10 in Table 1) was used, the N-halogenation proceeded completely. On the other hand, when excess AlCl_{3} was used (entries 12, 13 in Table 1), no reaction occurred.
For detailed comparison with a panel of representative azinones and amides, two reaction systems, i.e., $\mathrm{AlCl}_{3} /$ $\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{MeCN}$ and $\mathrm{ZnBr}_{2} / \mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{MeCN}$ were selected. N -Chlorination of benzotriazole, nicotinamide, isoindole-1,3-dione and saccharin with $\mathrm{AlCl}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$ (1:1 equiv) in acetonitrile gave the corresponding N monochlorides in good to excellent yields, respectively
(entries $1,3,7,11,15$ and 17 in Table 2), ${ }^{31}$ whereas 2-pyridone was found to be unreactive under the identical condition. The reaction of toluene-4-sulfonamide and 2,3-dihydrophthalzine-1,4-dione with $\mathrm{AlCl}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$ (2:2 equiv) in acetonitrile gave the corresponding N, N-dichlorides in 88% and 94% yields, respectively (entries 5 and 9 in Table 2). On the other hand, N -bromination of iso-
indole-1,3-dione, 2,3-dihydrophthalzine-1,4-dione, saccharin, pyrrolidine-2,5-dione and azepan-2-one with $\mathrm{ZnBr}_{2} / \mathrm{Pb}(\mathrm{OAc})_{4}$ in MeCN gave the corresponding N bromo derivatives (entries 8, 12, 16 and 18 in Table 2) ${ }^{32}$ and N, N-dibromo derivative (entries 10 in Table 2). ${ }^{32}$

Table 2 N-Chlorination of Azaheterocycles and Amides Using $\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{MX}_{\mathrm{n}}$ in Acetonitrile ${ }^{\mathrm{a}}$

RHN-NHR' or RNHR'(H)	$\xrightarrow[\mathrm{MeCN}]{\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{MX}_{\mathrm{n}}}$	X-NRR'(H) or $\mathrm{X}_{2}-\mathrm{NR}$ or $\mathrm{RN}-\mathrm{NR}$ $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$			
Entry	MX_{n}	Time	Method ${ }^{\text {b }}$	Product	Yield (\%) ${ }^{\text {c }}$
1	AlCl_{3}	1 h	A		96
2	ZnBr_{2}	1.1 h	A		No reaction
3	AlCl_{3}	1 h	A		86
4	ZnBr_{2}	1.3 h	A		No reaction
5	AlCl_{3}	6 h	B		88
6	ZnBr_{2}	50 min	B		No reaction
7	AlCl_{3}	3 h	A		88
8	ZnBr_{2}	5 min	A		86
9	AlCl_{3}	45 min	B		94
10	ZnBr_{2}	1 h	B		41
11	AlCl_{3}	30 min	A		91
12	ZnBr_{2}	55 min	A		82

Table 2 N-Chlorination of Azaheterocycles and Amides Using $\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{MX}_{\mathrm{n}}$ in Acetonitrile ${ }^{\mathrm{a}}$ (continued)

RHN-NHR' or RNHR'(H)	$\xrightarrow[\mathrm{MeCN}]{\mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{MX}_{\mathrm{n}}}$	X-NRR'(H) or $\mathrm{X}_{2}-\mathrm{NR}$ or $\mathrm{RN}-\mathrm{NR}$ $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$			
Entry	MX_{n}	Time	Method ${ }^{\text {b }}$	Product	Yield (\%) ${ }^{\text {c }}$
13	AlCl_{3}	7 h	A		No reaction
14	ZnBr_{2}	3 h	A		Unknown product
15	AlCl_{3}	1.3 h	A		95
16	ZnBr_{2}	1 h	A		93
17	AlCl_{3}	45 min	A		90
18	ZnBr_{2}	1 h	B		84
19	AlCl_{3}	$15 \mathrm{~min}^{\text {d }}$	B		97
20	ZnBr_{2}	20 min	B		94
21	AlCl_{3}	$55 \min ^{\text {d }}$	B		95
22	ZnBr_{2}	15 min	B		85

${ }^{\text {a }}$ Reaction temperature: at reflux temperature for the chlorination; at room temperature for the bromination.
${ }^{\mathrm{b}}$ Method $\mathrm{A}: \mathrm{MXn} / \mathrm{Pb}(\mathrm{OAc})_{4}=1: 1$ equiv. Method $\mathrm{B}: \mathrm{MXn} / \mathrm{Pb}(\mathrm{OAc})_{4}=2: 2$ equiv.
${ }^{\text {c }}$ Isolated yield.
${ }^{\mathrm{d}}$ Reflux temperature.

Furthermore, α-chlorination of 2-acetyl-3,4-dihydro-2H-naphthalen-1-one and 2-benzylmalonic acid diethyl ester with $\mathrm{AlCl}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$ (1:1 equiv) in acetonitrile gave exclusively the corresponding α-monochlorides in excellent yields (entries 4 and 11 in Table 3), whereas malonic acid diethyl ester was reacted under identical condition to afford 2-chloro (60%) and 2,2-dichloro derivative (24%, entry 8 in Table 3). ${ }^{31}$ Treatment of 1-phenylbutane-1,3-dione, indan-1,3-dione, and malonic acid diethyl ester with $\mathrm{AlCl}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$ (2:2 equiv) in acetonitrile afforded the corresponding α, α-dichlorides in good to excellent yields,
respectively (entries 1,6 and 9 in Table 3). ${ }^{31}$ Bromination of 1 -phenylbutane-1,3-dione, 2-acetyl-3,4-dihydro-2H-naphthalen-1-one and 2-benzylmalonic acid diethyl ester with $\mathrm{ZnBr}_{2} / \mathrm{Pb}(\mathrm{OAc})_{4}$ (1:1 equiv) in MeCN furnished the corresponding α-monobromides in good to excellent yields, respectively (entries 2,5 and 12 in Table 3). ${ }^{32}$ In addition, reaction of 1 -phenylbutane-1,3-dione, indan-1,3-dione and malonic acid diethyl ester with $\mathrm{ZnBr}_{2} /$ $\mathrm{Pb}(\mathrm{OAc})_{4}$ (2:2 equiv) in MeCN afforded the corresponding α, α-dibromides in good yields, respectively (entries 3, 7 and 10 in Table 3). ${ }^{32}$

Table $3 \quad \alpha$-Chlorination of Carbonyl Compounds 7 with $\mathrm{MX}_{\mathrm{n}} / \mathrm{Pb}(\mathrm{OAc})_{4}(1: 1$ equiv) in Acetonitrile at Room Temperature

Entry
${ }^{\text {a }}$ Method A: molar ratio of azinone $/ \mathrm{MXn} / \mathrm{Pb}(\mathrm{OAc})_{4}=1: 1: 1$ equiv. Method B : molar ratio of azinone $/ \mathrm{MXn} / \mathrm{Pb}(\mathrm{OAc})_{4}=1: 2: 2$ equiv.
${ }^{\mathrm{b}}$ Isolated yield.

On the other hand, halogenation of barbituric acid or malonamide using $\mathrm{AlCl}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$ (2:2 equiv) and $\mathrm{ZnBr}_{2} / \mathrm{Pb}(\mathrm{OAc})_{4}$ (2:2 equiv) in MeCN gave the corresponding C_{α}, C_{α}-dihalo derivatives chemoselectively in excellent yields, respectively (entries 19-22 in Table 2).

In summary, metal halide/lead tetraacetate $\left[\mathrm{MX}_{\mathrm{n}} /\right.$ $\left.\mathrm{Pb}(\mathrm{OAc})_{4}\right]$ is proven to be a good system for converting of nucleophilic halogen (X^{-}) to electrophilic halogen (X^{+} equivalent). The systems $\mathrm{AlCl}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$ and $\mathrm{ZnBr}_{2} /$ $\mathrm{Pb}(\mathrm{OAc})_{4}$ are efficient electrophilic halogenating agents for azinones, amides, and 1,3-dicarbonyl compounds. A variety of azinones and amides were chemoselectively

N -halogenated in good to excellent yield using $\mathrm{AlCl}_{3} /$ $\mathrm{Pb}(\mathrm{OAc})_{4}$ and $\mathrm{ZnBr}_{2} / \mathrm{Pb}(\mathrm{OAc})_{4}$ in acetonitrile. In addition, α-halogenation of some 1,3-dicarbonyl compound with $\mathrm{AlCl}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$ and $\mathrm{ZnBr}_{2} / \mathrm{Pb}(\mathrm{OAc})_{4}$ in acetonitrile afforded α-monohalides or α, α-dihalides selectively in good to excellent yields. The halogenation of barbituric acid or malonamide involving 1,3-dicarbonyl and amide NH chemoselectively afforded the corresponding C_{α}, C_{α} dihalo derivatives in excellent yields. We believe that these systems will also be applicable particularly to halogenation of various nitrogen heterocycles, amides, and active methylene/methyne compounds.

Acknowledgment

This work was supported by a grant from the Korea Science and Engineering Foundation (KOSEF) to the Environmental Biotechnology National Core Research Center (grant \#: R15-2003-012-02001-0).

References and Notes

(1) (a) De Kimpe, N.; Verhe, R. In The Chemistry of α Haloketones, α-Haloaldehydes and α-Haloimines; Patai, S.; Rappoport, Z., Eds.; John Wiley: Chichester, UK, 1988, 1119. (b) Smith, M. B.; March, J. In March's Advanced Organic Chemistry, 5th ed.; John Wiley and Sons, Inc.: New York, 2001, 559-561. (c) Smith, M. B.; March, J. In March's Advanced Organic Chemistry, 5th ed.; John Wiley and Sons, Inc.: New York, 2001, 1212-1213. (d) Smith, M. B.; March, J. In March's Advanced Organic Chemistry, 5th ed.; John Wiley and Sons, Inc.: New York, 2001, 14031405.
(2) Larock, R. C. Comprehensive Organic Transformations, 2nd ed.; VCH Publishers Inc.: New York, 1999, 715-719.
(3) For examples of α-bromo 1,3-dicarbonyl compounds in organic transformations, see: (a) Misa, A. P.; Raj, K.; Bhaduri, A. P. Synth. Commun. 1999, 29, 3227. (b) Coats, S. J.; Wasserman, H. H. Tetrahedron Lett. 1995, 36, 7735. (c) Endo, M.; Droghini, R. Can. J. Chem. 1988, 66, 1400. (d) Hlavka, J.; Bitha, P.; Lin, Y.; Srohmeyer, T. J. Heterocycl. Chem. 1985, 22, 1317.
(4) Fieser, M.; Fieser, L. F. Reagents for Organic Synthesis; John Wiley and Sons: New York, 1967, 78.
(5) Barton, D. R. H.; Ollis, W. D. In Comprehensive Organic Chemistry, Vol. 2; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1979, 1030.
(6) (a) Kosower, E. M.; Cole, W. J.; Wu, G. S.; Cardy, D. E.; Meisters, G. J. Org. Chem. 1963, 28, 630. (b) King, L. C.; Ostrum, G. K. J. Org. Chem. 1964, 29, 3459.
(7) Warnhoff, E. W.; Martin, D. G.; Johnson, W. S. Org. Synth., Coll. Vol. IV; J. Wiley and Sons: New York, 1963, 162.
(8) Brummond, K. M.; Gesenberg, K. D. Tetrahedron Lett. 1999, 40, 2231.
(9) Lee, J. C.; Bae, Y. H.; Chang, S. K. Bull. Korean Chem. Soc. 2003, 24, 407.
(10) Lee, J. C.; Park, J. Y.; Yoon, S. Y.; Bae, Y. H.; Lee, S. J. Tetrahedron Lett. 2004, 45, 191.
(11) (a) Schlama, T.; Gabriel, K.; Gouverneur, V.; Mioskowski, C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2342.
(b) Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Fujisaki, S. Bull. Chem. Soc. Jpn. 1987, 60, 1159.
(12) Pearson, D. I.; Poper, H. W.; Hargrove, W. E. Org. Synth., Coll. Vol. V; J. Wiley and Sons: New York, 1973, 117.
(13) Yang, D.; Yan, Y.-L.; Lui, B. J. Org. Chem. 2002, 67, 7429.
(14) Poisel, H.; Schmidt, U. Angew. Chem., Int. Ed. Engl. 1976, 15, 294.
(15) Kolar, A. J.; Olsen, R. K. Synthesis 1977, 457.
(16) Daoust, B.; Lessard, J. Tetrahedron 1999, 55, 3495.
(17) Miosses, B.; Danion-Bougot, R.; Danion, D. Synthesis 1994, 1171.
(18) de Souza, S. P. L.; da Silva, J. F. M.; de Mattos, M. C. S. Synth. Commun. 2003, 33, 935.
(19) Freeman, J. P. Org, Synth. Coll. Vol. VII; John Wiley and Sons: New York, 1993, 167.
(20) Larionov, O. V.; Kozhushkov, S. I.; de Meijere, A. Synthesis 2003, 1916.
(21) Park, Y. D.; Kim, J. J.; Lee, S. G.; Falck, J. R.; Yoon, Y. J. Synthesis 2005, 1136.
(22) Marigo, M.; Kumaragurubaran, N.; Jorgensen, K. A. Chem. Eur. J. 2004, 10, 2133.
(23) Drago, R. S.; Wenz, D. A.; Carlson, R. J. J. Am. Chem. Soc. 1962, 84, 1106.
(24) Bachand, C.; Driguez, H.; Paton, J. M.; Touchard, D.; Lessard, J. J. Org. Chem. 1974, 39, 3136.
(25) Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.; Tsadjout, A. Synlett 2000, 813.
(26) Luca, L. D.; Giacomelli, G.; Nieddu, G. Synlett 2005, 223.
(27) Kim, J. J.; Park, Y. D.; Cho, S. D.; Kim, H. K.; Chung, H. A.; Lee, S. G.; Falck, J. R.; Yoon, Y. J. Tetrahedron Lett. 2004, 45, 8781.
(28) Muathen, H. A. Tetrahedron 1996, 52, 8863.
(29) Bulter, R. N. Synthetic Reagents; Pizey, J. S., Ed.; Ellis Horwood Ltd: New York, 1977, 277.
(30) Kalvoda, J.; Heusler, K. Synthesis 1971, 501.
(31) Typical N-Chlorination of Azinones, Amides and Carbonyl Compounds.
$\mathrm{Pb}(\mathrm{OAc})_{4}(2.0$ or 4.0 mmol$)$ was dissolved in $\mathrm{MeCN}(20$ mL). AlCl_{3} or ZnCl_{2} (2.0 or 4.0 mmol) was added to the MeCN solution, and the mixture was stirred for 5 min at r.t. After adding the nitrogen heterocycle (2 mmol) or carbonyl compound (2 mmol) to the above solution, the resulting mixture was refluxed until nitrogen heterocycle or carbonyl compound was disappeared. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column $(3.0 \times 7 \mathrm{~cm})$. The column was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane (1:1). Fractions containing the product were combined and evaporated under reduced pressure to give monochlorides and/or dichlorides.

Selected Analytical Data.

2,4,5-Trichloropyridazin-3(2H)-one: colorless crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; mp 146-147 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{21} 146-147{ }^{\circ} \mathrm{C}$). TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): R_{f}=0.5$. IR (KBr): 3100, 1700, 1600, 1580, 1360, 1260, 1180, 1160, $960 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.76(\mathrm{~s}$, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=134.8,137.0,137.5,153.8$ ppm. Anal. Calcd for $\mathrm{C}_{4} \mathrm{HCl}_{3} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 24.09 ; \mathrm{H}, 0.51 ; \mathrm{N}$, 14.05. Found: C, 24.10; H, 0.53 ; N, 14.07.
N-Chloroisoindole-1,3-dione: colorless crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\mathrm{mp} 184-185^{\circ} \mathrm{C}$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): R_{f}=0.73$. IR (KBr): 3070, 2950, 2880, 1750, 1720, 1620, 1510, 1470, 1360, 1310, 1080, $860 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.82-7.84(\mathrm{~m}, 2 \mathrm{H})$, 7.89-7.93 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=123.9$, 131.0, 134.7, 163.3 ppm . Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClNO}_{2}$: C, 52.92; H, 2.22; N, 7.71. Found: C, 52.98; H, 2.24; N, 7.79. \mathbf{N}, \mathbf{N}-Dichlorotoluene-4-sulfonamide: colorless crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; mp 130-131 ${ }^{\circ} \mathrm{C}$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): R_{f}=0.57$. IR $(\mathrm{KBr}): 3100,3070,1860,1770,1600,1470,1360,1250$, $1100,910 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.91-7.95(\mathrm{~m}, 2 \mathrm{H})$, 8.02-8.06 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=125.7$, 131.3, 136.1, 162.8 ppm . Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 30.03; H, 1.26; N, 8.76. Found: C, 30.11; H, 1.30; N, 8.82.

2-Acetyl-2-chloro-3,4-dihydro-2H-naphthalen-1-one: colorless crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-n\right.$-hexane $\left.=1: 1\right) ; \mathrm{mp} 49-50^{\circ} \mathrm{C}$ (lit. ${ }^{21} \mathrm{mp} 48-50^{\circ} \mathrm{C}$). TLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane $=1: 1$): $R_{f}=0.51$. IR (KBr): 2950, 1720, 1680, 1600, 1460, 1420, 1360, 1300, 1240, 1200, 900, 850, 750, $720 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.42(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.99(\mathrm{~m}$, $1 \mathrm{H}), 3.05-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.16(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.46$ (m, $2 \mathrm{H}), 7.63-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=25.0,26.6,30.0,75.9,127.3,127.7$, 129.2, 129.5, 134.7, 142.9, 189.3, 201.0 ppm. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClO}_{2}: \mathrm{C}, 64.73 ; \mathrm{H}, 4.98$. Found: C, $64.75 ; \mathrm{H}, 4.99$. 2,2-Dichloro-1-phenylbutane-1,3-dione: colorless crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-n\right.$-hexane $\left.=1: 2\right) ; \mathrm{mp} 75-76{ }^{\circ} \mathrm{C}$ (lit. ${ }^{21} \mathrm{mp} 75-$ $\left.76^{\circ} \mathrm{C}\right)$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-n\right.$-hexane $\left.=1: 2\right)$: $R_{f}=0.50$. IR (KBr) : 3070, 2930, 2880, 1760, 1730, 1710, 1680, 1600, 1580, 1510, 1450, 1360, 1250, 1230, 840, 780, 690, 660, 580 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.47(\mathrm{~s}, 3 \mathrm{H}), 7.46-7.54(\mathrm{~m}, 2$ H), 7.61-7.67 (m, 1 H), 8.06-8.10 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=24.9,86.5,128.7,130.6,130.9,134.5,185.9$, 192.2 ppm. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}: \mathrm{C}, 51.98 ; \mathrm{H}, 3.49$. Found: C, 51.99; H, 3.52.
2,2-Dichloroindan-1,3-dione: colorless crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ n-hexane $=1: 1) ; \mathrm{mp} 125-126^{\circ} \mathrm{C} . \operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-n\right.$-hexane $=$ $1: 1): R_{f}=0.63$. IR (KBr): 3100, 3060, 2930, 2880, 1780, 1740, 1600, 1260, 1160, 870, 810, 780, $650 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.07-8.11(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.17(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=72.8,125.8,137.0,138.1,186.4 \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, $50.27 ; \mathrm{H}, 1.87$. Found: C, 50.29; H, 1.91.
(32) Typical N-Bromination of Azinones, Amides and Carbonyl Compounds.
$\mathrm{Pb}(\mathrm{OAc})_{4}(2.0$ or 4.0 mmol$)$ was dissolved in $\mathrm{MeCN}(20$ $\mathrm{mL}) . \mathrm{ZnBr}_{2}(2.0$ or 4.0 mmol) was added to the MeCN solution, and the mixture was stirred for 5 min at r.t. The nitrogen heterocycle (2 mmol) or carbonyl compound (2 $\mathrm{mmol})$ was added to the resulting solution. The resulting mixture was stirred at r.t. until nitrogen heterocycle or carbonyl compound disappeared. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column (3.0×7 cm). The column was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n-$ hexane (1:1). Fractions containing the product were
combined and evaporated under reduced pressure to give monobromides or dibromides.

Selected Analytical Data.

2-Bromo-3,4-dichloropyridazin-3(2H)-one: colorless crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{mp} 169^{\circ} \mathrm{C}$. IR (KBr): $3100,1690,1600$, $1460,1400,1300,1260,1120,960 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=7.50(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=132.3,136.2$, 154.7, 168.0 ppm . Anal. Calcd for $\mathrm{C}_{4} \mathrm{HBrCl}_{2} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 19.70$; H, 0.41 ; N, 11.49. Found: C, 19.76; H, 0.43; N, 11.51.
N -Bromoisoindole-1,3-dione: colorless crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\mathrm{mp} 199-200{ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{33} \mathrm{mp} 198-202{ }^{\circ} \mathrm{C}\right)$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $R_{f}=0.76$. IR (KBr): 3090, 3050, 1775, 1730, 1690, 1610, $1460,1350,1290,1100,1070,860,800,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.73-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.91(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=123.8,131.9,134.3,165.0 \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrNO}_{2}: \mathrm{C}, 42.51 ; \mathrm{H}, 1.78 ; \mathrm{N}, 6.20$. Found: C, 42.59; H, 1.84; N, 6.27.
2,3-Dibromophthalazine-1,4-dione: colorless crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{mp} 130-131^{\circ} \mathrm{C}$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): R_{f}=0.57$. IR $(\mathrm{KBr}): 3100,3070,1860,1770,1600,1470,1360,1250$, $1100,910 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.91-7.95(\mathrm{~m}, 2 \mathrm{H})$, 8.02-8.06 (m, 2 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=125.7$, 131.3, $136.1,162.8 \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}$, 30.03; H, 1.26; N, 8.76. Found: C, 30.11; H, 1.30; N, 8.86.

2-Bromo-1-phenylbutane-1,3-dione: colorless oil. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): R_{f}=0.52$. IR (KBr): 3080, 2970, 2940, 1720, $1680,1600,1450,1360,1300,1230,1190,1000,760,690$, $550 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.44(\mathrm{~s}, 3 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H})$, $7.46-7.52(\mathrm{dd}, 2 \mathrm{H}, J=7.87,7.41 \mathrm{~Hz}), 7.50-7.65(\mathrm{~m}, 1 \mathrm{H})$, $7.95-7.98(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=27.2,53.0$, 128.6, 129.0, 129.2, 134.5, 190.0, 198.1 ppm. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrO}_{2}$: C, 49.82; H, 3.76. Found: C, 49.84; H, 3.80. 2,2-Dibromomalonic Acid Diethyl Ester: colorless oil. TLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane $=1: 1$): $R_{f}=0.50$. IR (KBr): 2980, 2930, 2890, 1760, 1740, 1465, 1445, 1390, 1365, 1290, $1240,1200 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.32-1.37(\mathrm{t}, 6 \mathrm{H}$, $J=7.13 \mathrm{~Hz}), 4.33-4.41(\mathrm{q}, 4 \mathrm{H}, J=7.13 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=13.7,50.7,64.7,163.1 \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4}$: C, 26.44; H, 3.17. Found: C, 26.50; H, 3.20.
(33) Day, J. C.; Govindaraj, N.; McBain, D. S.; Skell, P. S.; Tanko, J. M. J. Org. Chem. 1986, 51, 4959.

[^0]: SYNLETT 2006, No. 2, pp 0194-0200
 Advanced online publication: 24.01.2006
 DOI: 10.1055/s-2006-926224; Art ID: U29005ST
 © Georg Thieme Verlag Stuttgart • New York

