
ELSEVIER

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Reactions of fluoroalk-1-en-1-yltrifluoroborate and perfluoroalk-1-yn-1yltrifluoroborate salts and selected hydrocarbon analogues with hydrogen fluoride and with halogenating agents in aHF and in basic solvents

Vadim V. Bardin^a, Nicolay Yu. Adonin^{a,b}, Hermann-Josef Frohn^{c,*}

^a N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Acad. Lavrentjev Avenue 9, 630090 Novosibirsk, Russian Federation ^b G.K. Boreskov Institute of Catalysis, SB RAS, Acad. Lavrentjev Avenue 5, 630090 Novosibirsk, Russian Federation

^c Inorganic Chemistry, University of Duisburg-Essen, Lotharstrasse 1, D-47048 Duisburg, Germany

ARTICLE INFO

Article history: Received 24 August 2011 Received in revised form 20 September 2011 Accepted 25 September 2011 Available online 1 October 2011

Keywords: Organyltrifluoroborate salts Halogenation Halodeboration Halofluorination NMR spectroscopy

ABSTRACT

The relative rate of the electrophilic hydrodeboration of K[R'BF₃] with HF (27–100%) diminishes in the series $R' = C_4H_9C \equiv C > C_4F_9CF = CFC \equiv C > CF_2 = C(CF_3) > C_3F_7C \equiv C ~ (CF_3)_2CFC \equiv C > CF_3C \equiv C$. When $R' = CF_3C \equiv C$ the new salt K[CF_3CH_2-CF_2BF_3] was obtained by addition of HF besides CF_3C \equiv CH and K[BF_4]. Small amounts of water caused the formation of K[CF_3CH_2-C(O)BF_3] as a by-product. The electrophilic halofluorination of perfluoroalkenyltrifluoroborate salts with NCS or NBS in aHF (anhydrous HF) led to K[R_FCFHal-CF_2BF_3] (from K[R_FCF=CFBF_3]) and K[R_FCHal_2-CF_2BF_3] (from K[R_FCHal=CFBF_3] and K[R_FC=CBF_3]) (Hal = CI, Br). Treatment of K[R_FCF=CFBF_3] and K[R_FC=CBF_3] with 5% F_2/N_2 in MeCN gave the corresponding salts K[R_FCF_2-CF_2BF_3] indo=25\% isolated yield. Reactions of K[*trans*-C_4F_9CF=CFBF_3] with Cl₂ in MeOH resulted in K[C4F_9CFCl-C(O)BF_3] (major product). The latter was also obtained in reactions of K[*trans*-C_4F_9CF=CFBF_3] with Cl₂ in MeCN modeboration to RCF=CFBF and K[R_FC=CBF_3] (R = C_nF_{2n+1}, *trans*-C_4H_9) and K[CF_3C=CBF_3] underwent bromodeboration to RCF=CFBF and CF_3C=CEBF, respectively, when they were reacted with bromine in the polar solvents MeOH, MeCN, or sulfolane.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the preceding paper [1] we described reactions of tetrabutylammonium and potassium perfluorinated alkyl-, alkenyl-, and alkynyltrifluoroborates and selected low- or non-fluorinated analogues with the halogens fluorine, chlorine, and bromine and the interhalogens "BrF" (from Br₂ + BrF₃ (1:1)) and ICl in the halocarbon solvents CH₂Cl₂, CHCl₃, CH₂ClCH₂Cl, and CF₃CH₂CF₂CH₃. Perfluoroorganyltrifluoroborates with multiple bonds between C¹ and C² underwent 1,2-addition of halogen and/or replacement of boron by halogen. [Bu₄N][C₆F₁₃BF₃] was inert towards halodeboration. Reactions of M[RCF=CFBF3] and of each non-fluorinated hydrocarbon organyltrifluoroborate salt with Cl₂ and Br₂ led to the corresponding organyl chloride or bromide. Under the action of ICl iododeboration occurred fast in all cases, except of the surface reaction of K[CF₂=CFBF₃] in CH₂Cl₂. These results are in accordance with the known halodeboration reactions of M[RBF₃] with the brominating agents [Bu₄N][Br₃] [2], [NH₄]Br + CH₃C(O)OOH [3], NaBr + Chloramine-T $(Na[p-MeC_6H_4S(O)_2NCl])$ [4] and the iodinating agents Nal + Chloramine-T [5], Nal + CH₃C(O)OOH [6] in aqueous THF, and the fluorodeboration of K[R'CH=CHBF₃] with SelectfluorTM in MeCN [7]. All above compiled results display principally the electronic effect of fluorine in unsaturated fluor-oorganyl moieties of organyltrifluoroborate anions on the reaction route with halogenating agents.

In continuation of our studies of fluorinated organyltrifluoroborate salts, we investigated new reactions of fluoroalk-1en-1-yltrifluoroborates and perfluoroalk-1-yn-1-yltrifluoroborates with selected halogenating agents in the superacidic solvent aHF and in the basic solvents CH₃CN, CH₃OH, and sulfolane *inter alia* with the target to evaluate the influence of fluorine atoms in unsaturated organyl groups of organyltrifluoroborate salts on the reaction route [8].

2. Results

2.1. Reactions of $K[R_FBF_3]$ in anhydrous HF

2.1.1. Selection of alkenyltrifluoroborates and alkynyltrifluoroborates for reactions in aHF

In our previous publications [9,10] we reported the reactivity of a series of perfluorinated aryl-, alkenyl-, and alkyltrifluoroborates and

^{*} Corresponding author. Tel.: +49 203 379 3310; fax: +49 203 379 2231. *E-mail address:* h-j.frohn@uni-due.de (H.-J. Frohn).

^{0022-1139/\$ –} see front matter \circledcirc 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2011.09.011

$$\begin{array}{rcl} \mathsf{K}[\mathsf{CF}_2=\mathsf{C}(\mathsf{CF}_3)\mathsf{BF}_3]+48\% \ \mathsf{aq} \ \mathsf{HF} & \longrightarrow & \mathsf{CF}_2=\mathsf{C}(\mathsf{CF}_3)\mathsf{H}+\mathsf{K}[\mathsf{BF}_4] \\ 50\% \ \mathsf{conversion} \ (4\ \mathsf{h}) & \sim 20\ ^\circ\mathsf{C} \\ 100\% \ \mathsf{conversion} \ (19\ \mathsf{h}) & \sim 20\ ^\circ\mathsf{C} \\ \end{array}$$

$$\begin{array}{rcl} \mathsf{K}[\mathsf{CF}_2=\mathsf{C}(\mathsf{CF}_3)\mathsf{BF}_3]+\mathsf{aHF} & \longrightarrow & \mathsf{CF}_2=\mathsf{C}(\mathsf{CF}_3)\mathsf{H}+\mathsf{K}[\mathsf{BF}_4] \\ 50\% \ \mathsf{conversion} \ (25\ \mathsf{min}) & -50\ ^\circ\mathsf{C} \\ 100\% \ \mathsf{conversion} \ (\mathsf{few} \ \mathsf{min}) & -20\ ^\circ\mathsf{C} \\ 100\% \ \mathsf{conversion} \ (\mathsf{immediately}) & \sim 20\ ^\circ\mathsf{C} \end{array}$$

Scheme 1.

their hydrocarbon analogues towards protic acids of different strength including aHF. At ~20 °C each borate K[RBF₃] (R = hydrocarbon group) underwent fast hydrodeboration with aHF and formed RH and K[BF₄]. The perfluorinated salt K[CF₂==CFBF₃] and the partially fluorinated salt K[*trans*-C₄H₉CF=CFBF₃] also reacted under hydrodeboration. Perfluorinated alkyltrifluoroborates, K[C_nF_{2n+1}BF₃], and alk-1-en-1-yltrifluoroborates, K[C_nF_{2n+1}CF=CFBF₃], did not react with aHF over days.

To make the series of organyltrifluoroborates more representative, we examined the reactivity of further organylborates towards both, aqueous HF and anhydrous HF.

In contrast to perfluorinated salts $K[C_nF_{2n+1}CF=CFBF_3] \ (n \geq 0)$, the perfluorinated salt $K[CF_2=C(CF_3)BF_3]$ reacted with 48% aq HF at $\sim 20~^\circ C$ with a half-life period of 4 h to yield $CF_2=C(CF_3)H$ and $K[BF_4]$. $K[CF_2=C(CF_3)BF_3]$ underwent fast hydrodeboration in aHF. At $-50~^\circ C$ the half-life period was only 25 min, at $-20~^\circ C$ hydrodeboration was already completed within a few min and the dissolution of $K[CF_2=C(CF_3)BF_3]$ at $\sim 20~^\circ C$ was accompanied by an immediate conversion (Scheme 1).

The reactivity of alkynyltrifluoroborates K[RC=CBF₃] towards hydrodeboration strongly depended on the nature of R. Potassium trifluoropropynyltrifluoroborate, K[CF₃C=CBF₃], potassium hepta-fluoropentynyltrifluoroborate, K[C₃F₇C=CBF₃], and potassium heptafluoro-3-methylbutynyltrifluoroborate, K[(CF₃)₂CFC=CBF₃], did not react with 48% aq HF at ~20 °C over more than one week. Potassium undecafluorooct-3-en-1-yn-1-yltrifluoroborate, K[C4F₉CF=CFC=CBF₃], did not react with 27% aq HF over 2 d, whereas potassium hexynyltrifluoroborate, K[C4H₉C=CBF₃], underwent hydrodeboration in 27% aq HF within 30 min to yield hexyne and K[BF₄] (Scheme 2).

Dissolution of K[C₄F₉CF=CFC≡CBF₃] (*cis:trans* = 45:55) in aHF at ~20 °C went along with the complete hydrodeboration to C₄F₉CF=CFC≡CH and K[BF₄] within \leq 0.5 h. K[C₃F₇C≡CBF₃] and K[(CF₃)₂CFC≡CBF₃] were more stable in aHF. They did not react at 0 °C in 1–2 h but they were slowly converted at ~20 °C to the heptafluoroalkynes C₃F₇C≡CH and (CF₃)₂CFC≡CH, respectively (Scheme 3).

$$\begin{array}{rcl} \mathsf{K}[\mathsf{R}_{\mathsf{F}}\mathsf{C} \equiv \mathsf{C}\mathsf{B}\mathsf{F}_3] + 48\% \text{ aq HF} & & & & \text{no reaction} \\ \hline & & \sim 20 \ ^\circ\mathsf{C} \\ \mathsf{R} = \mathsf{C}\mathsf{F}_3 \ (2 \ \mathsf{m}), \ \mathsf{C}_3\mathsf{F}_7 \ (8 \ \mathsf{d}), \ \mathsf{and} \ (\mathsf{C}\mathsf{F}_3)_2\mathsf{C}\mathsf{F} \ (8 \ \mathsf{d}) \\ \hline & \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F} = \mathsf{C}\mathsf{F}\mathsf{C} \equiv \mathsf{C}\mathsf{B}\mathsf{F}_3] + 27\% \ \mathsf{aq} \ \mathsf{HF} & & & \frac{2 \ \mathsf{d}}{\sim 20 \ ^\circ\mathsf{C}} \\ \hline & \mathsf{K}[\mathsf{C}_4\mathsf{H}_9\mathsf{C} \equiv \mathsf{C}\mathsf{B}\mathsf{F}_3] + 27\% \ \mathsf{aq} \ \mathsf{HF} & & & \xrightarrow{20 \ ^\circ\mathsf{C}} \\ \hline & \mathsf{K}[\mathsf{C}_4\mathsf{H}_9\mathsf{C} \equiv \mathsf{C}\mathsf{B}\mathsf{F}_3] + 27\% \ \mathsf{aq} \ \mathsf{HF} & & & \xrightarrow{20 \ ^\circ\mathsf{C}} \\ \hline & & \sim 20 \ ^\circ\mathsf{C} \end{array}$$

100% conversion (<0.5 h)

Scheme 2.

The reactivity of $K[CF_3C=CBF_3]$ towards aHF differed from that of $K[C_3F_7C=CBF_3]$ and $K[(CF_3)_2CFC=CBF_3]$. At room temperature the addition products 1,1,3,3,3-pentafluoropropyltrifluoroborate, $K[CF_3CH_2-CF_2BF_3]$, and 3,3,3-trifluoropropanoyltrifluoroborate, $K[CF_3CH_2-C(O)BF_3]$, were formed with a slow rate. The major products, namely $K[BF_4]$ and 3,3,3-trifluoropropyne, $CF_3C=CH$, resulted from the slow hydrodeboration reaction (Scheme 4).

The formation of $K[CF_3CH_2-C(O)BF_3]$ was probably caused by long-term diffusion of moisture into hygroscopic hydrogen fluoride through the thin FEP-wall or PTFE-stopper of the NMR tube insert or during taking NMR samples repeatedly.

Based on these actual results and on previously reported data [9,10] of the reactivity of alkenyltrifluoroborate and alkynyltrifluoroborate salts towards aHF, the compounds K[*trans*-CF₃CF=CFBF₃], K[*cis*-C₂F₅CF=CFBF₃], K[*trans*-C₄F₉CF=CFBF₃], K[CF₃C=CBF₃], and K[C₃F₇C=CBF₃] were chosen for investigations with halogenating agents in aHF.

2.1.2. Halofluorination in aHF

The systems N-haloimide/aHF or N-haloimide/ $(HF)_n$ -base were used for halofluorination (Hal-F addition) of unsaturated hydrocarbons [11–13]. Polyfluorinated alkenes are less reactive to electrophilic attacks than the non-fluorinated analogues and thus halofluorination occurs only in strong acids like HSO₃F or

$$\begin{array}{lll} \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}=\mathsf{C}\mathsf{F}\mathsf{C}\equiv\mathsf{C}\mathsf{B}\mathsf{F}_3]+\mathsf{a}\mathsf{H}\mathsf{F} & \longrightarrow & \mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}=\mathsf{C}\mathsf{F}\mathsf{C}\equiv\mathsf{C}\mathsf{H}+\mathsf{K}[\mathsf{B}\mathsf{F}_4]\\ 100\% \ \mathsf{conversion} \ (\leq 0.5 \ \mathsf{h}) & \sim 20 \ ^\circ\mathsf{C} & \\ \mathsf{K}[\mathsf{C}_3\mathsf{F}_7\mathsf{C}\equiv\mathsf{C}\mathsf{B}\mathsf{F}_3]+\mathsf{a}\mathsf{H}\mathsf{F} & \longrightarrow & \mathsf{C}_3\mathsf{F}_7\mathsf{C}=\mathsf{C}\mathsf{H}+\mathsf{K}[\mathsf{B}\mathsf{F}_4]\\ 0\% \ \mathsf{conversion} \ (\geq 1) & 0 \ ^\circ\mathsf{C} & \\ 100\% \ \mathsf{conversion} \ (\leq 24 \ \mathsf{h}) & \sim 20 \ ^\circ\mathsf{C} & \\ \mathsf{K}[(\mathsf{C}\mathsf{F}_3)_2\mathsf{C}\mathsf{F}\mathsf{C}=\mathsf{C}\mathsf{B}\mathsf{F}_3]+\mathsf{a}\mathsf{H}\mathsf{F} & \longrightarrow & (\mathsf{C}\mathsf{F}_3)_2\mathsf{C}\mathsf{F}\mathsf{C}=\mathsf{C}\mathsf{H}+\mathsf{K}[\mathsf{B}\mathsf{F}_4]\\ 0\% \ \mathsf{conversion} \ (1 \ \mathsf{h}) & 0 \ ^\circ\mathsf{C} & \\ 100\% \ \mathsf{conversion} \ (\leq 5 \ \mathsf{h}) & \sim 20 \ ^\circ\mathsf{C} & \end{array}$$

Scheme 3.

$$\begin{array}{ccc} \mathsf{K}[\mathsf{CF}_3\mathsf{C}{=}\mathsf{CBF}_3] + \mathsf{aHF} & \longrightarrow & \mathsf{K}[\mathsf{BF}_4] + \mathsf{CF}_3\mathsf{C}{=}\mathsf{CH} + \mathsf{K}[\mathsf{CF}_3\mathsf{CH}_2{-}\mathsf{CF}_2\mathsf{BF}_3] + \\ & & & & & & \\ \mathsf{20\ °C} & & & & & \\ \mathsf{K}[\mathsf{CF}_3\mathsf{CH}_2{-}\mathsf{C}(\mathsf{O})\mathsf{BF}_3] \text{ (formed by penetrat} \\ & & & \\ \mathsf{100\%\ conversion\ (}{\geq}43\ \mathsf{h}) \end{array}$$

$$CF_3CH_2-C(O)BF_3$$
 (formed by penetrating water)

 $K[R_FCF=CFBF_3] + \ge 1 NCS$ $R_F = cis - C_2 F_5$

0% conversion (1 h) 73% conversion (55 h) 100% conversion (\leq 102 h)

R_F = trans-C₄F₉ 8% conversion) (2 h) 83% conversion (20 h) 100% conversion (\leq 48 h) aHF K[R_FCFCI-CF₂BF₃] → ~20 °C 59% isolated yield

58% isolated yield

Scheme 5.

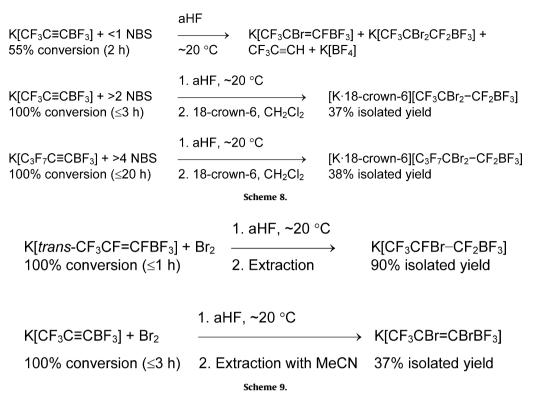
HSO₃F/SbF₅ [14]. It is worth to mention, that the majority of unsaturated organoelement compounds react with strong acids and cannot be halofluorinated with the above acidic systems.

We found that the potassium perfluoroalkenyltrifluoroborates $K[cis-C_2F_5CF=CFBF_3]$ and $K[C_4F_9CF=CFBF_3]$ reacted with N-chlorosuccinimide (NCS) in aHF and formed potassium 2-chlorooctafluorobutyltrifluoroborate, K[C₂F₅CFCl–CF₂BF₃], and potassium 2-chloroduodecafluorohexyltrifluoroborate, K[C₄F₉CFCl–CF₂BF₃], respectively. At room temperature chlorofluorination proceeded slowly and was completed within 2-4 d (Scheme 5).

K[CF₃C=CBF₃] reacted with NCS/aHF on two routes, hydrodeboration and chlorofluorination. The primary product of chlorofluorination was potassium (E)-2-chlorotetrafluoroprop-1en-1-yltrifluoroborate, K[(E)-CF₃CCl=CFBF₃], which was detected by ¹⁹F NMR as the minor component at 69% conversion of K[CF₃C=CBF₃]. After total conversion, potassium 2,2-dichloropentafluoropropyltrifluoroborate, K[CF₃CCl₂-CF₂BF₃], CF₃C=CH, and K[BF₄] were the only products (Scheme 6).

Bromofluorination of perfluoroalkenylborate salts with Nbromosuccinimide (NBS) in aHF proceeded faster than chlorofluorination. Thus, K[C₄F₉CF=CFBF₃] was completely converted at ~20 °C within 2 h giving potassium 2-bromododecafluorohexyltrifluoroborate K[C₄F₉CFBr-CF₂BF₃] (Scheme 7).

k


Treatment of the alkynylborate $K[CF_3C \equiv CBF_3]$ with one equivalent of NBS in aHF gave potassium 2-bromotetrafluorobut-1-en-1-yltrifluoroborate, $K[CF_3CBr=CFBF_3]$, ((E):(Z) = 5:1)(minor), K[CF₃CBr₂-CF₂BF₃], CF₃C=CH, and K[BF₄] at 55% conversion of K[CF₃C=CBF₃]. K[CF₃C=CBF₃] reacted with two equivalents of NBS in aHF and gave K[CF₃CBr₂−CF₂BF₃], besides CF₃C≡CH and K[BF₄]. In case of a 1:2 stoichiometry the intermediate K[CF₃CBr=CFBF₃] was not observed. With four equivalents NBS the longer-chain analogue K[C₃F₇C=CBF₃] gave potassium 2,2dibromononafluoropentyltrifluoroborate, $K[C_3F_7CBr_2-CF_2BF_3],$ which was isolated and characterized after complex formation with 18-crown-6 (Scheme 8).

We investigated the reagent molecular bromine in aHF as an alternative for bromofluorination reactions. In the series of unsaturated hydrocarbons this reagent has only a limited application because of by-processes, mainly the addition of two bromine atoms across C=C bonds and some aHF-initiated reactions. K[trans-CF₃CF=CFBF₃] reacted fast with bromine in aHF to form potassium 2-bromohexafluoropropyltrifluoroborate, $K[CF_3CFBr-CF_2BF_3]$. In contrast, the alkynylborate $K[CF_3C=CBF_3]$ gave potassium 1,2-dibromo-3,3,3-trifluoroprop-1-en-1-yltrifluoroborate, K[CF₃CBr=CBrBF₃], (*cis:trans* = 94:6) parallel to hydrodeboration (Scheme 9).

$$\begin{array}{ccc} \mathsf{K}[\mathsf{CF}_3\mathsf{C}{\equiv}\mathsf{CBF}_3] + > 2 \text{ NCS} & \xrightarrow{\mathsf{aHF}} & \mathsf{K}[(E){-}\mathsf{CF}_3\mathsf{C}\mathsf{C}{=}\mathsf{CFBF}_3] + \mathsf{K}[\mathsf{CF}_3\mathsf{C}\mathsf{C}{-}\mathsf{CF}_2\mathsf{BF}_3 + \\ 69\% \text{ conversion (3 h)} & \xrightarrow{\sim} 20 \ ^\circ\mathsf{C} & \mathsf{CF}_3\mathsf{C}{\equiv}\mathsf{CH} + \mathsf{K}[\mathsf{BF}_4] \\ 100\% \text{ conversion (\leq} 33 \text{ h}) & \xrightarrow{\mathsf{aHF}} & \mathsf{K}[\mathsf{CF}_3\mathsf{CCl}_2{-}\mathsf{CF}_2\mathsf{BF}_3] + \mathsf{CF}_3\mathsf{C}{\equiv}\mathsf{CH} + \mathsf{K}[\mathsf{BF}_4] \\ & \xrightarrow{\mathsf{aHF}} & \mathsf{Scheme 6.} \end{array}$$

K[trans-C₄F₉CF=CFBF₃] + >1 NBS K[C₄F₉CFBr-CF₂BF₃] → 100% conversion (≤ 2 h) ~20 °C 34% isolated vield

1

2.2. Reactions of fluoroorganyltrifluoroborate salts with halogenating agents in basic solvents

2.2.1. Reactions with fluorine

Fluorine diluted with nitrogen (5%, v/v) was bubbled through a stirred suspension of KF in the solution of K[R_FCF=CFBF₃] or K[CF₃C=CBF₃] in MeCN at ~0 °C. KF acted as scavenger of HF resulting from the by-reaction of fluorine with acetonitrile. Without KF the solution became dark within a few minutes and the yield of perfluoroalkyltrifluoroborates was significantly reduced.

Treatment of a diluted MeCN solution of $K[R_FCF=CFBF_3]$ in the presence of suspended KF with an excess of fluorine resulted in the consumption of $K[R_FCF=CFBF_3]$ under formation of the corresponding potassium perfluoroalkyltrifluoroborate, $K[R_FCF_2-CF_2BF_3]$, in a

moderate yield together with $K[BF_4]$ and perfluorocarbons, which were not analyzed. $K[CF_3C=CBF_3]$ reacted with fluorine in a similar way to yield potassium perfluoropropyltrifluoroborate $K[CF_3CF_2-CF_2BF_3]$ in 16% yield. The intermediate salt $K[CF_3CF=CFBF_3]$ was not detected (Scheme 10).

2.2.2. Reactions with chlorine

Potassium trans-1,2-difluorohex-1-en-1-yltrifluoroborate, K[trans-C₄H₉CF=CFBF₃], reacted with chlorine in MeCN and formed within 1 h trans-1-chloro-1,2-difluorohexene, trans-C₄H₉CF=CFCl, as the main product besides very small quantities of K[C₄H₉CFCl– CFClBF₃], C₄H₉CFCl–CFCl₂, and trans-C₃H₇CHClCF=CFCl. The same products were obtained in the reaction of the tetrabutylammonium salt [Bu₄N][trans-C₄H₉CF=CFBF₃] with chlorine (Scheme 11).

$$\begin{array}{l} \text{MeCN} \\ \text{K}[\text{R}_{\text{F}}\text{CF}=\text{CFBF}_{3}] + >9\text{F}_{2}/\text{N}_{2} (5\%) & \longrightarrow \\ 100\% \text{ conversion} & \sim 0 \ ^{\circ}\text{C} \\ \text{R}_{\text{F}} = \text{F} (22\%), \ trans\text{-}\text{CF}_{3} (29\%), \ trans\text{-}\text{C}_{4}\text{F}_{9} (25\%) \end{array}$$

NA-ON

$$\begin{array}{ll} \text{MeCN} \\ \text{K}[\text{CF}_3\text{C}=\text{CBF}_3] + >4\text{F}_2/\text{N}_2 (5\%) & \xrightarrow{} & \text{K}[\text{CF}_3\text{CF}_2-\text{CF}_2\text{BF}_3] \\ 100\% \text{ conversion} & & \sim 0 \ ^\circ\text{C} & 16\% \end{array}$$

Scheme 10.

Scheme 11.

sulfolane K[trans-C₄H₉CF=CFBF₃] + >4 Cl₂ - \longrightarrow K[C₄H₉CFCI-CFCIBF₃] + ~20 °C, 2 h 25% 100% conversion C₄H₉CFCI-CFCI₂ + *trans*-C₃H₇CHCICF=CFCI + C₃H₇CHCICFCI-CFCIH 14% 10% 16% MeOH $K[trans-C_4H_9CF=CFBF_3] + >1 Cl_2$ trans-C₄H₉CF=CFCI + \rightarrow ~0 °C, 15 min 100% conversion 62% C₄H₉CFCI-CFCI₂ + trans-C₃H₇CHCICF=CFCI 14% 6% Scheme 12.

Replacement of acetonitrile by sulfolane increased the fraction of chlorine addition products relative to chlorodeboration products, whereas in methanol chlorodeboration dominated (Scheme 12).

Bubbling of chlorine through the solution of perfluorinated K[*trans*-C₄F₉CF=CFBF₃] in methanol also led to chlorine addition, but potassium 1,2-dichloroundecafluorohexyltrifluoroborate, K[C₄F₉CFCl–CFClBF₃], was formed only in a low yield. Instead, potassium 2-chlorodecafluorohexanoyltrifluoroborate, K[C₄F₉CFCl–C(O)BF₃], was the main product. Chlorodeboration did not occur. Noteworthy, that in deuterated methanol K[C₄F₉CFCl–C(O)BF₃] underwent slow fluoro/methoxy substitution and formed a mixture of the corresponding fluoro(methoxy)borates, K[C₄F₉CFCl–C(O)BF₂(OCD₃)], K[C₄F₉CFCl–C(O)BF(OCD₃)₂], and K[C₄F₉CFCl–C(O)B(OCD₃)₃]. Treatment of the fluoro(methoxy)borates with aq HF resulted in the quantitative recovery of K[C₄F₉CFCl–C(O)BF₃]. Under the same conditions K[C₄F₉CFCl–CFClBF₃] did not undergo fluoro/methoxy substitution (¹¹B, ¹⁹F NMR) (Scheme 13).

Chlorine addition across the C=C bond occurred when K[*trans*-C₄F₉CF=CFBF₃] was reacted with an excess of chlorine in sulfolane. The new borate K[C₄F₉CFCl-CFXBF₃] was isolated (Scheme 14). Its ¹⁹F NMR spectrum was closely related to K[C₄F₉CFCl-CFClBF₃]. The ¹H NMR spectrum of a freshly prepared solution of K[C₄F₉CFCl-CFXBF₃] in DMSO-d₆ contained signals at 4.48, 3.63, 2.66, and 2.47 ppm with integral intensities of 2:2:2:2. The intensity of each ¹H-signal corresponded to two fluorine atoms in the ¹⁹F NMR spectrum (PhCF₃ was used as internal integration standard). This allowed the assumption that X in K[C₄F₉CFCl-CFXBF₃] contains a (CH₂)₄ fragment which derived from one molecule of sulfolane. The reaction of K[*trans*-C₄F₉CF=CFBF₃] with chlorine in MeCN proceeded on both reaction channels, chlorodeboration and chlorine addition across the C=C bond. The first channel gave a high-boiling oil soluble in CH₂Cl₂ which consisted at least of two components in the molar ratio 4:1. The second channel gave a solid with a ¹⁹F NMR spectrum which looked similar to that of K[C₄F₉CFCl-CFClBF₃] and K[C₄F₉CFCl-CFXBF₃], and corresponded to K[C₄F₉CFCl-CFYBF₃] (Y represents a fragment which derives from the molecule acetonitrile). The constitution of K[C₄F₉CFCl-CFXBF₃] and K[C₄F₉CFCl-CFYBF₃] was supported by their conversion to K[C₄F₉CFCl-C(O)BF₃] in methanol solution (Scheme 15).

2.2.3. Reactions with bromine

In contrast to chlorine, bromine did not add across double or triple carbon-carbon bonds of 1,2-difluoroalk-1-en-1-yltrifluoroborates and perfluoroalk-1-yn-1-yltrifluoroborates. Thus, potassium *trans*-1,2-difluoro-2-phenylethenyltrifluoroborate, K[*trans*-C₆H₅CF=CFBF₃], reacted with a slight excess of bromine in acetonitrile to yield *trans*-1-bromo-1,2-difluoro-2-phenylethene, *trans*-C₆H₅CF=CFBr, and 1,2-dibromo-1,2-difluoro-2-phenylethane, C₆H₅CF=CFBr, and 1,2-dibromo-1,2-difluoro-2-phenylethane, C₆H₅CF=CFBr, and *trans*-1,2-difluorohexene, *trans*-C₄H₉CF=CFBr, were obtained from K[*trans*-C₄H₉CF=CFBF₃]. The attempt to perform bromofluorination by reacting K[*trans*-C₄H₉CF=CFBF₃] with the reagent Br₂/AgF in MeCN only led to bromodeboration under formation of an isomeric mixture of C₄H₉CF=CFBr (Scheme 16). Assumed that in a fast metathesis insoluble KF was formed from K[*trans*-C₄H₉CF=CFBF₃] and AgF, we

K[<i>trans</i> -C₄F₃C 100% convers	$F=CFBF_{3}] + >1 Cl_{2} \xrightarrow{\text{MeOH}} \\ \hline \sim 20 \text{ °C, 1 h}$	• • • • • • •	+ K[C4F9CFCI-CFCIBF3] 5%
CD₃OD → ~20 °C, 7 d	K[C₄F₃CFCI−C(O)BFn(OCD₃)₃ n = 0–2	-n] + K[C₄F₀CFCI−CFCIBF	-a]
33% aq HF → ~20 °C, 4 h	K[C₄F₀CFCI−C(O)BF₃] + K[C₄F	F ₉ CFCI-CFCIBF ₃]	
	Sch	eme 13.	

sulfolane

 $\begin{array}{ccc} \mathsf{K}[\textit{trans-}\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}=\mathsf{C}\mathsf{F}\mathsf{B}\mathsf{F}_3] + >4 \ \mathsf{Cl}_2 & \longrightarrow & \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}\mathsf{C}\mathsf{I}-\mathsf{C}\mathsf{F}\mathsf{X}\mathsf{B}\mathsf{F}_3] \\ 100\% \ \mathsf{conversion} & & \sim 20 \ ^\circ\mathsf{C}, \ \leq 1 \ \mathsf{h} & \mathsf{X} = \mathsf{fragment deriving from sulfolane} \end{array}$

$$\begin{array}{rl} \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}\mathsf{C}\mathsf{I}-\mathsf{C}\mathsf{F}\mathsf{X}\mathsf{B}\mathsf{F}_3] & \textit{or} \; \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}\mathsf{C}\mathsf{I}-\mathsf{C}\mathsf{F}\mathsf{Y}\mathsf{B}\mathsf{F}_3] & \xrightarrow[]{}{} & \xrightarrow[]{}{} & \xrightarrow[]{} & \xrightarrow[]{}{} & \xrightarrow[]{} & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\$$

 $\label{eq:Kinetic} \begin{array}{c} \mbox{MeCN} \\ \mbox{K}[trans-C_6H_5CF=CFBF_3] + >1 \ Br_2 & \longrightarrow \\ 100\% \ conversion & \sim 20 \ ^\circ C, \ 13 \ h \\ trans-C_6H_5CF=CFBr + C_6H_5CFBr-CFBrH + BF_3 \cdot NCCH_3 \\ 85\% & 7\% & \geq 18\% \end{array}$

	MeCN
K[trans-C ₄ H ₉ CF=CFBF ₃] + >1 Br ₂	\longrightarrow
100% conversion	~20 °C, 1 h

$$\begin{array}{c} \textit{trans-C_4H_9CF=CFBr} + \textit{trans-C_4H_9CF=CFH} + BF_3 \cdot NCCH_3 + KBr\\ 72\% \qquad 9\% \qquad \geq 75\% \qquad 92\% \end{array}$$

 $K[trans-C_4H_9CF=CFBF_3] + >1 AgF + Br_2$ 100% conversion

Scheme 16.

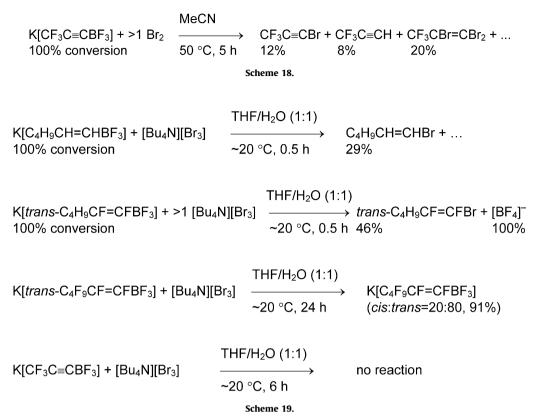
MeCN

→ ~20 °C, 1 h

can state that Ag[*trans*-C₄H₉CF=CFBF₃] and Br₂ in the presence of less than equivalent amounts of AgF (from initial excess) did not even partially react under bromofluorination.

K[*trans*-C₄F₉CF=CFBF₃] did not react with bromine in MeCN at 50 °C within 6 h. Heating at 100 °C in a sealed tube led to partial *trans* to *cis* isomerization of K[*trans*-C₄F₉CF=CFBF₃] and isomeric mixtures of the bromodeboration and hydrodeboration products. K[*cis*-C₂F₅CF=CFBF₃] reacted in a similar way (Scheme 17).

Treatment of K[*trans*-C₄F₉CF=CFBF₃] with a slight excess of bromine in MeOH at ~20 °C in a sealed tube was even accompanied by partial *trans* to *cis* isomerization with a ratio *cis:trans* of 58:42 after 80 h. This result is closely related to the outcome of the photo-induced isomerization of K[*trans*-C₄F₉CF=CFBF₃] in MeOH in the presence of traces of bromine which gave a ratio *cis:trans* of 40:60 after 2 h of irradiation ($\lambda > 280$ nm) [15]. When a solution of K[*trans*-C₄F₉CF=CFBF₃] and Br₂ in MeOH was heated at 90 °C for 1 h, 50% of the starting


C₄H₉CF=CFBr

(cis:trans=13:87, 96%)

K[<i>cis</i> -C₂F₅CF= 94% conversic	on 100 C ₂ F ₅ CF=0 26%	$\begin{array}{c} \overset{\circ}{\longrightarrow} \\ \overset{\circ}{\rightarrow} \\ \overset{\circ}{\rightarrow} \\ CFBr + C_2F_5CF=0 \\ 57\% \\ 78:22) (cis:trans=7) \end{array}$	57%	H ₃ + KBr 86%
K[<i>trans</i> -C₄F₀C	F=CFBF ₃] + >1 Br ₂	MeCN → 100 °C, 2 h		
	K[C ₄ F ₉ CF=CFBF ₃] + 9% (<i>cis:trans</i> =50:50)	+ C ₄ F ₉ CF=CFBr + 18% (<i>cis:trans</i> =25:75)	55%	BF₃·NCCH₃ ≥9%

Scheme 17.

HF

material represented an isomeric mixture *cis:trans* = 43:57 besides equal amounts of the alkenes *trans*-C₄F₉CF=CFBr and *trans*-C₄F₉CF=CFH. No signals which could be attributed to $[C_4F_9CFBr-CFBrBF_3]^-$ or $[C_4F_9CFBr-C(O)BF_3]^-$ were observed (¹⁹F NMR).

The alkynylborate K[CF₃C \equiv CBF₃] reacted slowly with bromine in MeCN at 50 °C to give a complex mixture. After 5 h the conversion was completed. K[CF₃CBr=CBrBF₃] or any other organyltrifluoroborate K[RBF₃] was absent: no ¹⁹F NMR signals of BF₃ groups in the range -130 to -160 ppm were found. The addition, bromodeboration, and protodeboration products CF₃CBr=CBr₂, CF₃C \equiv CBr, and CF₃C \equiv CH were formed in 20%, 12%, and 8% yields, respectively (Scheme 18).

Potassium perfluorohexyltrifluoroborate did not react with bromine in MeCN (\sim 20 °C, 40 h).

Recently Kabalka et al. reported the preparation of 1bromoalkenes and 1-bromoalkynes from potassium alk-1-en-1yltrifluoroborates or alk-1-yn-1-yltrifluoroborates and [Bu₄N][Br₃] in aq THF (~20 °C, 20 min) [2]. Using the same methodical approach we converted K[C₄H₉CH=CHBF₃] to C₄H₉CH=CHBr. We extended this method to fluoroorganyltrifluoroborates. Under the same conditions, 1,2-difluorinated K[*trans*-C₄H₉CF=CFBF₃] underwent bromodeboration to *trans*-C₄H₉CF=CFBF, whereas perfluorinated K[*trans*-C₄F₉CF=CFBF₃] was partially isomerized to K[*cis*-C₄F₉CF=CFBF₃] without further transformation. The perfluoroalkynylborate K[CF₃C=CBF₃] did not underwent a transformation to the corresponding bromoalkyne (Scheme 19).

3. Discussion

The combination of previously published data and the currently obtained new results displays generally a diminishing reactivity of organyltrifluoroborates towards protic acids (hydrodeboration) and halogenating agents (halodeboration) with replacement of hydrogen atoms by fluorine atoms in organyltrifluoroborate anions. The earlier reported two qualitative series [9] of relative rates of hydrodeboration can now be supplemented with new members (cf. Section 2.1):

$$\begin{split} & \mathsf{K}[trans{-}C_4H_9CF{=}CFBF_3] > \mathsf{K}[C_4F_9CF{=}CFC{=}CBF_3] > \\ & \mathsf{K}[CF_2{=}C(CF_3)BF_3] > \mathsf{K}[C_3F_7OCF{=}CFBF_3] \sim \mathsf{K}[CF_2{=}CFBF_3] \geq \\ & \mathsf{K}[CICF{=}CFBF_3] \sim \mathsf{K}[C_6F_5BF_3] > \mathsf{K}[C_3F_7C{=}CBF_3] \sim \\ & \mathsf{K}[(CF_3)_2CFC{=}CBF_3] > \mathsf{K}[CF_3C{=}CBF_3] > \mathsf{K}[cis{-}C_2F_5CF{=}CFBF_3] \geq \\ & \mathsf{K}[trans{-}C_4F_9CF{=}CFBF_3] > \mathsf{K}[C_6F_{13}BF_3] \end{split}$$

and

$$\begin{array}{l} \mathsf{K}[\mathsf{C}_4\mathsf{H}_9\mathsf{C}{\equiv}\mathsf{C}\mathsf{B}\mathsf{F}_3]\sim\mathsf{K}[\mathsf{C}_4\mathsf{H}_9\mathsf{C}\mathsf{H}{=}\mathsf{C}\mathsf{H}\mathsf{B}\mathsf{F}_3]>\mathsf{K}[\mathsf{C}_6\mathsf{H}_5\mathsf{B}\mathsf{F}_3]>\\ \mathsf{K}[\mathsf{C}_4\mathsf{H}_9\mathsf{B}\mathsf{F}_3]\sim\mathsf{K}[\mathsf{C}_8\mathsf{H}_{17}\mathsf{B}\mathsf{F}_3] \end{array}$$

Hydrodeborations start with the electrophilic addition of H^+ at the carbon atom C^1 , whereas halofluorinations and related brominations in aHF start with the addition of the electrophilic species at the carbon atom C^2 of the C–C double and triple bond of the perfluorinated alk-1-en-1-yl and alk-1-yn-1-yltrifluoroborates. The subsequent attachment of the nucleophilic species at C^1 completes the addition across the carbon–carbon multiple bond.

Chlorofluorination and bromofluorination with NCS or NBS in aHF (superacidic solvent) proceeded on the latter route. In halocarbon solvents bromofluorination with BrF_3-Br_2 (1:1) [1] represents – at least formally – also that channel.

The conversion of $[CF_3C\equiv CBF_3]^-$ in aHF to $[CF_3CH_2-CF_2BF_3]^$ and to $[CF_3CH_2-C(O)BF_3]^-$ in the presence of less than stoichiometric amounts of water starts with the addition of H⁺ to the carbon atom C² in $[CF_3C\equiv CBF_3]^-$ and is finished after addition of the nucleophiles F⁻ or OH⁻ giving $[CF_3CH= CXBF_3]^-$ (X = F, OH) (Scheme 4). By the way, this is – to the best of our knowledge – the only example of HF addition across a carbon–carbon multiple bond in organylboron compounds, fluorinated or not. It is important to stress that the first step of the HF addition in the $[CF_3C=CBF_3]^-$ anion $(H^+$ adds to C^2) proceeds opposite to the HF addition in the $[(C_3F_7C=C)_2Br]^+$ cation, where H^+ adds primarily to C^1 , and with a low rate $[(Z-C_3F_7CF=CH)_2Br]^+$ is formed [16]. This distinction in reactivity can be explained by the opposite polarization of the sigma and pi electron pairs of the $R_FC^2=C^1-X$ triple bond by the substituent X (X = BF_3^- and R-Br(III)^+).

The formation of the acyltrifluoroborate, $K[C_4F_9CFCl-C(O)BF_3]$ and of the borates $K[C_4F_9CFCl-CFXBF_3]$ and $K[C_4F_9CFCl-CFYBF_3]$ from the borate $K[C_4F_9CF=CFBF_3]$ and chlorine in MeOH, sulfolane, or MeCN, respectively, (Schemes 13 and 14) proceeds also on an "ionic route". The ratio "fluorine addition/fluorodeboration" in reactions of perfluoroalkenyltrifluoroborates and perfluoroalkynyltrifluoroborates with fluorine does not depend on the nature of the solvent. This is deduced from the yields of perfluoroalkyltrifluoroborates (20–25%) which are independent of the type of solvent, either CH_2Cl_2 (weakly polar solvent) or MeCN (basic solvent). Such a pattern can be assigned as typical for radical halogen additions. Furthermore, the absence of the intermediate $K[CF_3CF=CFBF_3]$ in fluorination reactions of $K[CF_3C=CBF_3]$ with F_2 indicates a higher reactivity of the alkenylborate towards fluorine radicals.

In contrast to fluorination, the reaction channel of perfluorinated alk-1-en-1-yl and alk-1-yn-1-yltrifluoroborates with chlorine or bromine depends on the type of solvent. K[*trans*-CF₃CF=CFBF₃] and bromine underwent the until now unknown reaction path of bromofluorination in aHF solution (Scheme 9) whereas bromodeboration was the exclusive reaction channel of all M[C_nF_{2n+1}CF=CFBF₃] salts in CH₂Cl₂ (M = [Bu₄N]) [1] and in MeCN solution (M = K) (except of M[CF₂=CFBF₃] [1]). M[CF₃C≡CBF₃] added only two bromine (differing from the corresponding fluorination) to yield M[CF₃CBr=CBrBF₃] in CH₂Cl₂ (M = [Bu₄N]) [1] and in aHF (M = K) (Scheme 9), but in MeCN (M = K) the carbon–boron bond was cleaved completely (Scheme 18).

The new data present additional reactivities of perfluorinated alkenyltrifluoroborates and alkynyltrifluoroborates with respect to their non-fluorinated analogues. In some cases the addition of Hal–Hal or Hal–F across the C=C or C=C bond allows to prepare new fluoroalkenyltrifluoroborates or fluoroalkyltrifluoroborates which are not easy available by alternative routes.

In 2003 Shellhamer et al. reported many reactions of fluorocontaining alkenes with Cl₂, Br₂, and ICl in MeOH which resulted in dihalogenation and halomethoxylation products [17]. Based on our and literature data, we can conclude a high sensitivity of alkenyltrifluoroborates in "ionic addition reactions" which depends on the alkyl substituent R in the RC=C moiety and the position and number of vinylic fluorine atoms. In future, the mechanistic aspects require further experimental investigations and theoretical explanations.

4. Experimental

4.1. General

The NMR spectra were recorded on the Bruker spectrometers AVANCE 300 (300.13 MHz, ¹H; 282.40 MHz, ¹⁹F; 96.29 MHz, ¹¹B; 75.47 MHz, ¹³C) and AVANCE 600 (192.60 MHz, ¹¹B). The chemical shifts are referenced to TMS (¹H, ¹³C), BF₃·OEt₂/CDCl₃ (15%, v/v) (¹¹B), and CCl₃F (¹⁹F, with C₆F₆ as secondary reference (–162.9 ppm)), respectively. The IR spectra were recorded on a Bruker Vector 22 instrument. High resolution mass spectra were recorded on a Thermo Scientific DFS spectrometer in EI mode. The elemental analysis was performed in the N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry (Novosibirsk, Russian Federation). The composition of reaction

mixtures and the yields of products were determined by 1 H or 19 F NMR spectroscopy using the internal integral standards C₆H₅CF₃, C₆F₅H, and C₆F₆.

Acetonitrile, dichloromethane, carbon tetrachloride, THF, sulfolane, methanol, pentane, benzene, and ether were purified and dried as described in Ref. [18]. N-bromosuccinimide (Aldrich), Nchlorosuccinimide (Aldrich), [Bu₄N][BF₄] (Fluka), and anhydrous KF (Merck) were used as supplied. Chlorine (n mmol) was prepared by the addition of 37% hydrochloric acid (0.8n mL) to KMnO₄ (0.8n mmol, 126n mg) [19] in a slow stream of argon. Crude chlorine in argon was passed through a column (D = 0.5 cm, L = 3 cm) packed with freshly calcinated CaO to remove HCl and moisture. Bromine was dried with concentrated H₂SO₄ and distilled over P₄O₁₀. [Bu₄N][Br₃] [20] and the salts K[trans- $C_4F_9CF=CFBF_3$, $K[cis-C_2F_5CF=CFBF_3]$ [21], $K[CF_2=C(CF_3)BF_3]$ [22]. $K[CF_3C \equiv CBF_3],$ $K[C_3F_7C \equiv CBF_3],$ $K[(CF_3)_2CFC \equiv CBF_3],$ $K[C_4F_9CF=CFC\equiv CBF_3], K[C_4H_9C\equiv CBF_3][23], K[trans-CF_3CF=CFBF_3]$ [24], K[trans-C₄H₉CF=CFBF₃] [21], [Bu₄N][trans-C₄H₉CF=CFBF₃] [1], and $K[C_4H_9CH=CHBF_3]$ [9] were prepared as described. Anhydrous hydrogen fluoride (aHF) was obtained by electrolysis (stainless steel cell, Ni-electrodes).

All manipulations with fluorine and aHF were performed in FEP (block copolymer of tetrafluoroethylene and hexafluoropropylene) or PFA (block copolymer of tetrafluoroethylene and perfluoroalk-oxytrifluoroethylene) equipment under an atmosphere of dry argon.

4.2. Reactions of $K[R_FBF_3]$ with hydrogen fluoride

4.2.1. Reactions of $K[CF_2=C(CF_3)BF_3]$

- A. $K[CF_2=C(CF_3)BF_3]$ (49 mg, 0.21 mmol) was dissolved in 48% aq HF (0.7 mL) which contained CF₃C(O)OH (internal integral standard) (13 mg, 0.11 mmol). The conversion of $K[CF_2=C(CF_3)BF_3]$ to $CF_2=C(CF_3)H$ and $K[BF_4]$ at ~20 °C was 50% (4 h), 75% (6 h), and 100% (19 h) (¹⁹F NMR).
- B. K[CF₂=C(CF₃)BF₃] (35 mg, 0.15 mmol) was cooled to $-55 \degree$ C before cold ($-50 \degree$ C) aHF (0.5 mL) was added. After 25 min at $-50 \degree$ C the ¹⁹F NMR spectrum showed 50% of conversion of K[CF₂=C(CF₃)BF₃] to CF₂=C(CF₃)H and K[BF₄] (ratio 1:1). Warming to $-20 \degree$ C within a few min resulted in the complete hydrodeboration of K[CF₂=C(CF₃)BF₃] (¹⁹F NMR).
- C. Cold $(-20 \ ^{\circ}C)$ aHF $(0.5 \ mL)$ was added to the pre-cooled $(-20 \ ^{\circ}C)$ salt K[CF₂=C(CF₃)BF₃] (35 mg, 0.14 mmol) and the solution was warmed to $\sim 20 \ ^{\circ}C$. CF₂=C(CF₃)H and K[BF₄] were formed immediately in a quantitative yield (¹⁹F NMR).

K[CF₂=C(CF₃)BF₃]. The fluorine atoms at C-2 in [F₂C²=C¹(CF₃)BF₃]⁻ are specified by *cis* or *trans* relative to the position of BF₃. ¹⁹F NMR (48% aq HF) δ –55.8 (3F, CF₃), –66.9 (1F, F^{2trans}), –76.0 (1F, F^{2cis}), –136.5 (q (1:1:1:1), ¹*J*(F, B) = 42 Hz, 3F, BF₃) (the signals of fluorine bonded to carbon were not resolved). ¹⁹F NMR (aHF, –50 °C): δ –53.9 (dd, ⁴*J*(CF₃, F^{2trans}) = 22 Hz, ⁴*J*(CF₃, F^{2cis}) = 12 Hz, 3F, CF₃), –62.5 (br s, 1F, F^{2trans}), –71.6 (qd, ⁴*J*(F^{2cis}, CF₃) = 12 Hz, ²*J*(F^{2cis}, F^{2trans}) = 15 Hz, 1F, F^{2cis}), –134.4 (br s, $\Delta \nu_{1/2}$ = 313 Hz, 3F, BF₃). ¹¹B NMR (aHF, –50 °C): δ 2.9 (br s, $\Delta \nu_{1/2}$ = 45 Hz) (cf. with ¹¹B and ¹⁹F NMR spectra in CD₃CN [22]). CF₂=CHCF₃. ¹⁹F NMR (aHF, –20 °C): δ –56.5 (ddd, ³*J*(F³).

CF₂=CHCF₃. ¹⁹F NMR (aHF, -20 °C): δ -56.5 (ddd, ³*J*(F³, H²) = 7 Hz, ⁴*J*(F³, F^{1trans}) = 11 Hz, ⁴*J*(F³, F^{1cis}) = 18 Hz, 3F, F³), -72.0 (ddq, ³*J*(F^{1cis}, H²) = 22 Hz, ²*J*(F^{1cis}, F^{1trans}) 14 Hz, ⁴*J*(F^{1cis}, F³) = 18 Hz, 1F, F^{1cis}), -75.7 (dq, ²*J*(F^{1trans}, F^{1cis}) = 14 Hz, ⁴*J*(F^{1trans}, F³) = 11 Hz, 1F, F^{1trans}) (cf. ¹⁹F NMR (ether): δ -57.4 (ddd, ³*J*(F³, H²) = 7 Hz, ⁴*J*(F³, F^{1trans}) = 11 Hz, ⁴*J*(F^{1cis}, F³) = 18 Hz, 3F, F³), -72.0 (ddq, ³*J*(F^{1cis}, H²) = 22 Hz, ²*J*(F^{1cis}, F^{1trans}) 13 Hz, ⁴*J*(F^{1cis}, F³) = 18 Hz, 1F, F^{1cis}), -76.7 (dq, ²*J*(F^{1trans}, F^{1cis}) = 13 Hz, ⁴*J*(F^{1trans}, F³) = 11 Hz, 1F, F^{1trans}) [22]).}

4.2.2. Reactions of K[CF₃C≡CBF₃]

- A. A solution of K[CF₃C=CBF₃] (50 mg, 0.25 mmol) in 27% aq HF (0.5 mL) and CF₃C(O)OH (12 mg) (internal integral standard) was maintained at ~20 °C for 2 months. The periodic control by ¹¹B and ¹⁹F NMR spectroscopy displayed no reaction. The same result was obtained for a solution of K[CF₃C=CBF₃] (50 mg, 0.25 mmol) in 48% aq HF (0.5 mL) and CF₃C(O)OH (12 mg) (~20 °C, 2 months).
- B. K[CF₃C=CBF₃] (462 mg, 2.31 mmol) was suspended in cold $(-40 \,^{\circ}\text{C})$ aHF (4 mL). Warming above 10 $^{\circ}\text{C}$ led to the complete dissolution of K[CF₃C=CBF₃] without reaction after 0.5 h (19 F NMR). The solution was stirred at \sim 20 °C with periodic control by ¹⁹F NMR spectroscopy. For this purpose probes of the solution were taken under argon from the reactor in a cold (~ 0 °C) inliner and the measurement was performed at 10 °C. With progress of the reaction the integral intensity of the very broad $[BF_4]^-$ signal (¹⁹F) increased strongly whereas the quantity of the co-product of the hydrodeboration, CF₃C≡CH, appeared significantly lower, caused by its high volatility and diffusion through the FEP wall. The molar ratio K[CF₃C=CBF₃]:K[CF₃CH₂-CF₂BF₃]:K[CF₃CH₂- $C(O)BF_3$] was 83:12:5 (3 h), 15:68:17 (22 h), and 1:86:12 (43 h) (all spectra contained additional signals of minor unknown compounds). Stirring was continued for additional 30 h. Then all volatiles were removed under reduced pressure. The residue was suspended in water (3 mL), neutralized with KF (excess) and extracted with MeCN (2×5 mL). The combined extracts were dried with KF. The solution contained K[CF₃CH₂-CF₂BF₃] (0.18 mmol) and K[CF₃CH₂-C(O)BF₃] (0.18 mmol) (¹⁹F NMR) (internal integral standard C_6F_5H).
- C. K[CF₃C=CBF₃] (1.1 g, 5.5 mmol) was dissolved in aHF (5 mL) and stirred at ~20 °C for 4 d. All volatiles were distilled off, the residue was diluted with ice water (10 mL), neutralized with KF (excess) and stirred with charcoal to remove colored impurities. The suspension was filtered, saturated with KF and extracted with MeCN (2×5 mL). The colorless combined extracts were dried with KF and evaporated to dryness to yield a white solid mixture of K[CF₃CH₂-CF₂BF₃] and K[CF₃CH₂-C(O)BF₃] (43:57) (185 mg).

K[CF₃C≡CBF₃]. ¹¹B NMR (48% aq HF): δ −3.3 (q, ¹*J*(B, F) = 32 Hz). ¹¹B NMR (aHF, −20 °C): δ −2.3 (s, $\Delta \nu_{1/2}$ = 46 Hz). ¹⁹F NMR (48% aq HF): δ −48.5 (s, 3F, F³), −132.9 (q (1:1:1:1), ¹*J*(F, B) = 32 Hz, 3F, BF₃). ¹⁹F NMR (aHF, −20 °C): δ −49.5 (s, 3F, F³), −133.3 (s, 3F, BF₃). (cf. with ¹¹B and ¹⁹F NMR spectra in CD₃CN, acetone-d₆ or DMSO-d₆ [23]).

K[CF₃CH₂-CF₂BF₃]. ¹H NMR (CD₃CN): δ 2.64 (tq, ³*J*(H², F¹) = 19 Hz, ³*J*(H², F³) = 11 Hz, 2H, H²). ¹H NMR (acetone-d₆): δ 2.56 (tq, ³*J*(H², F¹) = 19 Hz, ³*J*(H², F³) = 11 Hz, 2H, H²). ¹¹B NMR (aHF, 0 °C): δ 0 (m). ¹¹B NMR (CD₃CN): δ -0.3 (tq, ²*J*(B, F¹) = 23 Hz, ¹*J*(B, F) = 46 Hz). ¹¹B NMR (acetone-d₆): δ -0.2 (tq, ²*J*(B, F¹) = 23 Hz, ¹*J*(B, F) = 46 Hz). ¹³C{¹⁹F} NMR (CH₃OD): δ 124 (C-3), 116.4 (C-1), 36.6 (t, ¹*J*(C-2, H²) = 127 Hz, C-2). ¹³C{¹H} NMR (acetone-d₆): δ 126.0 (q, ¹*J*(C-3, F³) = 276 Hz, C-3), 116.7 (t, ¹*J*(C-1, F¹) = 238 Hz, C-1), 37.8 (tq, ²*J*(C-2, F¹) = 24 Hz, ²*J*(C-2, F³) = 24 Hz, C-2). ¹⁹F NMR (aHF, 0 °C): δ -59.6 (tt, ³*J*(F³, H²) = 10 Hz, ⁴*J*(F³, F¹) = 10 Hz, 3F, F³), -116.4 (m, 2F, F¹), -151.7 (q (1:1:1:1), ¹*J*(F, B) = 44 Hz, 3F, BF₃). ¹⁹F NMR (CD₃CN): δ -59.3 (tt, ³*J*(F³, H²) = 10 Hz, ⁴*J*(F³, F¹) = 10 Hz, 3F, F³), -120.9 (m, 2F, F¹), -155.6 (q (1:1:1:1), ¹*J*(F, B) = 47 Hz, 3F, BF₃). ¹⁹F NMR (CH₃OD): δ -60.2 (ttq, ³*J*(F³, H²) = 11 Hz, ⁴*J*(F³, F¹) = 9 Hz, ⁵*J*(F³, BF₃) = 1 Hz, 3F, F³), -121.1 (m, 2F, F¹), -156.4 (q (1:1:1:1), ¹*J*(F, B) = 47 Hz, 3F, BF₃). ¹⁹F NMR (acetone-d₆): δ -58.9 (ttq, ³*J*(F³, H²) = 10 Hz, ⁴*J*(F³, F¹) = 10 Hz, ⁵*J*(F³, BF₃) = 1 Hz, 3F, F³), -121.6 (m, 2F, F¹), -155.7 (q (1:1:1:1), ¹*J*(F, B) = 46 Hz, 3F, BF₃). K[CF₃CH₂-C(O)BF₃]. ¹H NMR (CD₃CN): δ 3.34 (q, ³*J*(H², F³) = 11 Hz, 2H, H²). ¹H NMR (acetone-d₆): δ 3.29 (q, ³*J*(H², F³) = 12 Hz, 2H, H²). ¹¹B NMR (aHF, 0 °C): δ 0 (m). ¹¹B NMR (CD₃CN): δ -2.3 (q, ¹*J*(B, F) = 51 Hz). ¹¹B NMR (acetone-d₆): δ -2.2 (q, ¹*J*(B, F) = 50 Hz). ¹³C{¹⁹F} NMR (CH₃OD): δ 236 (C-1), 123 (C-3), 45 (t, ¹*J*(C-2, H²) = 134 Hz, C-2). ¹³C{¹H} NMR (acetone-d₆): δ 125.5 (q, ¹*J*(C-3, F³) = 277 Hz, C-3), 45.7 (q, ²*J*(C-2, F³) = 21 Hz, C-2), (C-1 was not observed because of the low concentration and S/N caused by couplings with boron and fluorine atoms of the BF₃ group). ¹⁹F NMR (aHF, 0 °C): δ -61.2 (t, ³*J*(F³, H²) = 9 Hz, 3F, F³), -149.5 (q (1:1:1:1), ¹*J*(F, B) = 33 Hz, 3F, BF₃). ¹⁹F NMR (CD₃CN): δ -60.6 (t, ³*J*(F³, H²) = 12 Hz, 3F, F³), -150.4 (q (1:1:1:1), ¹*J*(F, B) = 50 Hz, 3F, BF₃). ¹⁹F NMR (acetone-d₆): δ -60.4 (t, ³*J*(F³, H²) = 12 Hz, 3F, F³), -150.6 (q (1:1:1:1), ¹*J*(F, B) = 49 Hz, 3F, BF₃). ¹⁹F NMR (CH₃OD): δ -61.6 (t, ³*J*(F³, H²) = 11 Hz, 3F, F³), -151.4 (q (1:1:1:1), ¹*J*(F, B) = 47 Hz, 3F, BF₃).

 $\begin{array}{l} (K[CF_3CH_2-CF_2BF_3]+K[CF_3CH_2-C(O)BF_3]). \ IR \ (KBr): \ 3014w \ (C-H), \ 2978w \ (C-H), \ 2963w \ (C-H), \ 2951w \ (C-H), \ 2926w \ (C-H), \ 1685m \ (C=O), \ 1419w, \ 1386w, \ 1361m, \ 1263s, \ 1188s, \ 1126s, \ 1051s, \ 937m, \ 865m, \ 784w, \ 683w, \ 615w, \ 602w \ cm^{-1}. \end{array}$

4.2.3. Reactions of $K[C_3F_7C \equiv CBF_3]$

- A. A solution of K[C₃F₇C=CBF₃] (60 mg, 0.20 mmol) in 48% aq HF (1 mL) and CF₃C(O)OH (24 mg, 0.21 mmol) (internal integral standard) was maintained at ~20 °C for 8 d. The periodic control by ¹¹B and ¹⁹F NMR spectroscopy displayed no reaction.
- B. A solution of K[C₃F₇C≡CBF₃] (26 mg, 0.09 mmol) and C₆H₅CF₃ (5 µL, 0.041 mmol) (internal integral standard) in aHF (0.5 mL) was kept at 0 °C for 2 h without reaction. The complete hydrodeboration of K[C₃F₇C≡CBF₃] to C₃F₇C≡CH (>98% yield) and K[BF₄] occurred when this solution was maintained at ~20 °C for 24 h (¹¹B, ¹⁹F NMR).

K[C₃F₇C≡CBF₃]. ¹¹B NMR (aHF, 0 °C): δ −1.7 (br s). ¹⁹F NMR (aHF, −20 °C): δ −80.4 (t, ⁴J(F⁵, F³) = 9 Hz, 3F, F⁵), −98.5 (m, 2F, F³), −127.0 (m, 2F, F⁴), −134.6 (br s, 3F, BF₃) (cf. with ¹¹B and ¹⁹F NMR spectra in CH₃CN [23]).

 $C_3F_7C \equiv CH.$ ¹⁹F NMR (aHF, -10 °C): δ -78.5 (t, ⁴J(F⁵, F³) = 9 Hz, 3F, F⁵), -98.0 (dtq, ⁴J(F³, H¹) = 5 Hz, ³J(F³, F⁴) = 4 Hz, ⁴J(F³, F⁵) = 9 Hz, 2F, F³), -125.3 (t, ³J(F⁴, F³) = 4 Hz, 2F, F⁴) (cf. with ¹⁹F NMR spectra of the neat liquid, and in ether or CCl₄ solutions [23]).

4.2.4. Reaction of $K[(CF_3)_2CFC \equiv CBF_3]$

- A. A solution of K[(CF₃)₂CFC=CBF₃] (56 mg, 0.19 mmol) in 48% aq HF (0.7 mL) and CF₃C(O)OH (24 mg, 0.21 mmol) (internal integral standard) was maintained at \sim 20 °C for 8 d. The periodic control by ¹¹B and ¹⁹F NMR spectroscopy displayed no decomposition.
- B. K[(CF₃)₂CFC=CBF₃] (62 mg, 0.21 mmol) was cooled to $-40 \,^{\circ}$ C and cold ($-40 \,^{\circ}$ C) aHF (0.8 mL) was added. The solution was kept at $-15 \,^{\circ}$ C for 20 min and at 0 $^{\circ}$ C for 1 h (no reaction of K[(CF₃)₂CFC=CBF₃]) (¹¹B, ¹⁹F NMR). Stirring at \sim 20 $^{\circ}$ C for 5 h resulted in the complete hydrodeboration to (CF₃)₂CFC=CH and K[BF₄] (ratio 1:1) (¹¹B, ¹⁹F NMR).

K[(CF₃)₂CFC==CBF₃]. ¹¹B NMR (48% aq HF): δ -3.1 (q, ¹*J*(B, F) = 32 Hz). ¹¹B NMR (aHF, 0 °C): δ -2.2 (s, $\Delta \nu_{1/2}$ = 20 Hz). ¹⁹F NMR (48% aq HF): δ -77.9 (d, ³*J*(CF₃, F³) = 10 Hz, 6F, 2CF₃), -163.4 (sept, ³*J*(F³, CF₃) = 10 Hz, 1F, F³), -134.7 (q (1:1:1:1), ¹*J*(F, B) = 31 Hz, 3F, BF₃). ¹⁹F NMR (aHF, 0 °C): δ -75.8 (d, ³*J*(CF₃, F³) = 10 Hz, 6F, 2CF₃), -165.2 (sept, ³*J*(F³, CF₃) = 10 Hz, 1F, F³), -133.3 (br s, $\Delta \nu_{1/2}$ = 390 Hz, 3F, BF₃) (cf. with ¹¹B and ¹⁹F NMR spectra in CH₃CN or DMSO-d₆ [23]).

 $(CF_3)_2CFC \equiv CH.$ ¹⁹F NMR (aHF, 0 °C): δ –75.9 (d, ³*J*(CF₃, F³) = 10 Hz, 6F, 2CF₃), –167.4 (dsept, ⁴*J*(F³, H¹) = 6 Hz, ³*J*(F³, CF₃) = 10 Hz, 1F, F³) (cf. with ¹⁹F NMR spectrum in ether [23]).

4.2.5. Reaction of $K[C_4F_9CF=CFC=CBF_3]$

- A. A solution of K[C₄F₉CF=CFC=CBF₃] (*cis:trans* = 45:55) (49 mg, 0.12 mmol) in 27% aq HF (0.5 mL) was maintained at ~20 °C for 2 d. The periodic control by the ¹¹B and ¹⁹F NMR spectroscopy displayed no reaction.
- B. A solution of K[C₄F₉CF=CFC=CBF₃] (*cis:trans* = 45:55) (41 mg, 0.10 mmol) and C₆H₅CF₃ (5 μ L, 0.04 mmol) (internal integral standard) in aHF (0.6 mL) was kept at ~20 °C for 0.5 h. The ¹¹B and ¹⁹F NMR spectra displayed the quantitative conversion of K[C₄F₉CF=CFC=CBF₃] to C₄F₉CF=CFC=CH (*cis:trans* = 44:56) and K[BF₄].

K[*cis*-C₄F₉CF=CFC=CBF₃]. ¹¹B NMR (27% aq HF): δ -2.6 (br s). ¹⁹F NMR (27% aq HF): δ -80.4 (tt, ³*J*(F⁸, F⁷) = 2 Hz, ⁴*J*(F⁸, F⁶) = 10 Hz, 3F, F⁸), -114.6 (d, ³*J*(F³, F⁴) = 10 Hz, 1F, F³), -115.2 (dt, ³*J*(F⁵, F⁴) = 13 Hz, ⁴*J*(F⁵, F⁷) = 13 Hz, 2F, F⁵), -123.0 (m, 2F, F⁶), -125.4 (m, 2F, F⁷), -132.7 (purely resolved q, 3F, BF₃), -142.6 (m, 1F, F⁴).

K[*trans*-C₄F₉CF=CFC≡CBF₃]. ¹¹B NMR (27% aq HF): δ –2.6 (br s). ¹⁹F NMR (27% aq HF): δ –80.8 (tt, ³*J*(F⁸, F⁷) = 2 Hz, ⁴*J*(F⁸, F⁶) = 10 Hz, 3F, F⁸), -116.8 (dtd, ³*J*(F⁵, F⁴) = 13 Hz, ⁴*J*(F⁵, F⁷) = 13 Hz, ⁴*J*(F⁵, F³) = 25 Hz, 2F, F⁵), -123.7 (m, 2F, F⁶), -125.7 (m, 2F, F⁷), -132.7 (poorly resolved q, 3F, BF₃), -135.2 (dt, ³*J*(F³, F⁴) = 140 Hz, ⁴*J*(F³, F⁵) = 25 Hz, 1F, F³), -160.0 (d, ³*J*(F⁴, F³) = 140 Hz, 1F, F⁴) (cf. with ¹¹B and ¹⁹F NMR spectra in CH₃CN [23]).

cis-C₄F₉CF=CFC≡CH. ¹⁹F NMR (aHF, 0 °C): δ −79.6 (t, ⁴*J*(F⁸, F⁶) = 10 Hz, 3F, F⁸), −114.5 (m, 2F, F⁵), −119.0 (dd, ³*J*(F³, F⁴) = 6 Hz, ⁴*J*(F³, H¹) = 5 Hz, 1F, F³), −121.8 (m, 2F, F⁶), −124.4 (m, 2F, F⁷), −138.6 (m, 1F, F⁴).

trans-C₄F₉CF=CFC=CH. ¹⁹F NMR (aHF, 0 °C): δ -79.6 (t, ⁴J(F⁸, F⁶) = 10 Hz, 3F, F⁸), -116.0 (m, 2F, F⁵), -122.5 (m, 2F, F⁶), -124.4 (m, 2F, F⁷), -138.3 (dt, ³J(F³, F⁴) = 139 Hz, ⁴J(F³, F⁵) = 26 Hz, 1F, F³), -156.4 (d, ³J(F⁴, F³) = 139 Hz, 1F, F⁴).

4.2.6. Reaction of $K[C_4H_9C \equiv CBF_3]$

A three-phase system of $K[C_4H_9C=CBF_3]$ (69 mg, 0.36 mmol) and C_6F_5H (20 mg, 0.12 mmol, internal integral standard) in CCl₄ (0.7 mL) and 27% aq HF (1 mL) was stirred at ~20 °C for 30 min. The colorless organic phase at the bottom of the final three-phase system contained C₄H₉C=CH (quantitative yield) (¹H NMR).

4.3. Reactions of perfluoroalkenyl- and

perfluoroalkynyltrifluoroborates with N-chlorosuccinimide in aHF

4.3.1. Reaction of K[trans-C₄F₉CF=CFBF₃]

A solution of K[*trans*-C₄F₉CF=CFBF₃] (166 mg, 0.43 mmol) in aHF (1 mL) was cooled to ~0 °C and *N*-chlorosuccinimide (70 mg, 0.52 mmol) was added in one portion. The solution was stirred at ~20 °C for 2 h (8% conversion), 20 h (83% conversion), and 48 h (100% conversion). KF (2–3 g) was added and the slurry was diluted with water (1:1, v/v). The suspension was extracted with ether (4× 1 mL). The combined extracts were dried with KF and the solvent was removed under reduced pressure. After further drying in vacuum (13.3 hPa) K[C₄F₉CFCl–CF₂BF₃] was obtained as a white solid (114 mg, 0.25 mmol, 58%).

 $\begin{array}{l} \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}\mathsf{C}\mathsf{I}-\mathsf{C}\mathsf{F}_2\mathsf{B}\mathsf{F}_3]. \quad {}^{11}\mathsf{B} \quad \mathsf{NMR} \quad (\mathsf{C}\mathsf{H}_3\mathsf{C}\mathsf{N}): \quad \delta \quad -0.6 \quad (\mathsf{qt}, \quad {}^{1}\!J(\mathsf{B}, \mathsf{F}) = 40 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{B}, \mathsf{F}^1) = 20 \; \mathsf{Hz}). \quad {}^{19}\mathsf{F} \; \mathsf{NMR} \; (\mathsf{C}\mathsf{H}_3\mathsf{C}\mathsf{N}): \quad \delta \quad -79.9 \; (\mathsf{tt}, \quad {}^{4}\!J(\mathsf{F}^6, \mathsf{F}^4) = 10 \; \mathsf{Hz}, \quad {}^{3}\!J(\mathsf{F}^6, \mathsf{F}^5) = 3 \; \mathsf{Hz}, \quad 3\mathsf{F}, \mathsf{F}^6), \quad -113.5 \quad (\mathsf{md}, \quad {}^{2}\!J(\mathsf{F}^{3\mathsf{A}}, \mathsf{F}^{3\mathsf{B}}) = 295 \; \mathsf{Hz}, \; 1\mathsf{F}, \; \mathsf{F}^{3\mathsf{B}}), \\ -117.9 \; (\mathsf{md}, \quad {}^{2}\!J(\mathsf{F}^{4\mathsf{A}}, \mathsf{F}^{4\mathsf{B}}) = 300 \; \mathsf{Hz}, \; 1\mathsf{F}, \; \mathsf{F}^{4\mathsf{A}}), \; -119.9 \; (\mathsf{md}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 4 \; \mathsf{Hz}, \quad {}^{3}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 300 \; \mathsf{Hz}, \; 1\mathsf{F}, \; \mathsf{F}^{4\mathsf{B}}), \\ -124.5 \; (\mathsf{ddddd}, \quad {}^{3}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 4 \; \mathsf{Hz}, \quad {}^{3}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{B}}) = 20 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{B}}) = 30 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{3\mathsf{B}}) = 20 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 12 \; \mathsf{Hz}, \quad {}^{4}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{3\mathsf{B}}) = 20 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 12 \; \mathsf{Hz}, \quad {}^{4}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{3\mathsf{B}}) = 20 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 12 \; \mathsf{Hz}, \quad {}^{4}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{3\mathsf{B}}) = 20 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 12 \; \mathsf{Hz}, \quad {}^{4}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{3\mathsf{B}}) = 20 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 12 \; \mathsf{Hz}, \quad {}^{4}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{3\mathsf{B}}) = 20 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 12 \; \mathsf{Hz}, \quad {}^{4}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{3\mathsf{B}) = 20 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 12 \; \mathsf{Hz}, \quad {}^{4}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{3\mathsf{B}) = 20 \; \mathsf{Hz}, \quad {}^{2}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 12 \; \mathsf{Hz}, \quad {}^{4}\!J(\mathsf{F}^{5\mathsf{A}}, \mathsf{F}^{4\mathsf{A}}) = 12 \; \mathsf{HZ}, \quad {}^{4}\!J(\mathsf{A}^{5\mathsf{A}}, \mathsf{F$

 $\begin{array}{l} F^{5B}) = 292 \ Hz, \ 1F, \ F^{5A}), \ -125.2 \ (dddd, \ ^3J(F^{5B}, \ F^{4B}) = 3 \ Hz, \ ^3J(F^{5B}, \ F^{4A}) = 8 \ Hz, \ ^4J(F^{5B}, \ F^{3B}) = 15 \ Hz, \ ^4J(F^{5B}, \ F^{3A}) = 19 \ Hz, \ ^2J(F^{5B}, \ F^{5A}) = 292 \ Hz, \ 1F, \ F^{5B}), \ -121.9 \ (br \ m, \ \Delta\nu_{1/2} = 72 \ Hz, \ d, \ ^2J(F^{1A}, \ F^{1B}) = 319 \ Hz, \ 1F, \ F^{1A}), \ -124.9 \ (br \ m, \ \Delta\nu_{1/2} = 71 \ Hz, \ d, \ ^2J(F^{1B}, \ F^{1A}) = 319 \ Hz, \ 1F, \ F^{1B}), \ -134.1 \ (m, \ 1F, \ F^2), \ -150.0 \ (q \ (1:1:1:1), \ ^1J(F, \ B) = 40 \ Hz, \ 3F, \ BF_3). \end{array}$

Anal. Calcd for $C_6BClF_{15}K$ (442.40): C, 16.29; Cl, 8.01; F, 64.42. Found: C, 16.3; Cl, 7.6; F, 63.9.

4.3.2. Reaction of K[cis-C₂F₅CF=CFBF₃]

A solution of K[*cis*-C₂F₅CF=CFBF₃] (327 mg, 1.14 mmol) in aHF (1 mL) was cooled to ~0 °C and *N*-chlorosuccinimide (157 mg, 1.18 mmol) was added in one portion. The solution was stirred at ~20 °C for 1 h (no reaction), 24 h (37% conversion), 55 h (73% conversion), and 102 h (100% conversion). KF (2–3 g) was added and the slurry was diluted with water (1:1, v/v). The suspension was extracted with ether (4× 1 mL). The combined extracts were dried with KF and the solvent was removed under reduced pressure. After additional drying in vacuum (13.3 hPa) K[C₂F₅CFCl–CF₂BF₃] was obtained as a white solid (229 mg, 0.67 mmol, 59%).

Anal. Calcd for C₄BClF₁₁K (342.39): C, 14.03; Cl, 10.35; F, 61.04. Found: C, 13.8; Cl, 10.3; F, 60.2.

4.3.3. Reaction of $K[CF_3C \equiv CBF_3]$

N-chlorosuccinimide (300 mg, 2.25 mmol) was added in one portion to a cold (~ 0 °C) stirred solution of K[CF₃C=CBF₃] (200 mg, 1 mmol) in aHF (1 mL). The yellow solution was stirred for 1 h at ${\sim}0~^\circ C$ and at ${\sim}20~^\circ C$ for 3 h. The ^{19}F NMR spectrum showed the presence of $K[CF_3C \equiv CBF_3]$, $K[(E)-CF_3CCl = CFBF_3]$, $K[CF_3CCl_2 - CFBF_3]$ CF₂BF₃], CF₃C=CH, and K[BF₄] (molar ratio 100:13:34:31:172). After stirring at $\sim 20 \,^{\circ}$ C for 33 h the total conversion of K[CF₃C=CBF₃] to K[CF₃CCl₂-CF₂BF₃], CF₃C=CH, and K[BF₄] was achieved (signals of [CF₃CCl=CFBF₃]⁻ were no more detected). Volatiles were evaporated in vacuum and the semi-solid was stirred with charcoal (100 mg) in water (2 mL) at \sim 20 °C for 0.5 h and the solid was filtered off. The filtrate was saturated with KF and extracted with acetonitrile (5× 1 mL). The combined extracts were treated with K₂CO₃ and the solvent was evaporated to yield crude K[CF₃CCl₂-CF₂BF₃] (300 mg). It was washed with CH_2Cl_2 (5× 1 mL) and stirred with 18-crown-6 (250 mg, 0.95 mmol) in CH₂Cl₂ (2 mL) for 1 h. After filtration the solution was evaporated at \sim 20 °C overnight. The solid was washed with pentane $(5 \times 2 \text{ mL})$ and ether $(5 \times 2 \text{ mL})$ and dried in a vacuum desiccator over Sicapent[®]. The salt [K·18-crown-6][CF₃CCl₂-CF₂BF₃] (230 mg, 0.40 mmol) was isolated.

K[(*E*)-CF₃CCl=CFBF₃]. ¹⁹F NMR (aHF, 0 °C): δ -60.7 (d, ⁴*J*(F³, F¹) = 25 Hz, 3F, F³), -105.4 (m, 1F, F¹), -140.0 (q (1:1:1:1), ¹*J*(F, B) = 39 Hz, 3F, BF₃).

K[CF₃CCl₂–CF₂BF₃]. ¹¹B NMR (aHF, 0 °C): δ –0.7 (m). ¹¹B NMR (CD₃CN): δ –0.5 (tq, ²*J*(B, F¹) = 20 Hz, ¹*J*(B, F) = 41 Hz). ¹³C{¹⁹F} NMR (CD₃CN): δ 122.3 (q (1:1:1:1), ¹*J*(C-1, B) = 86 Hz, C-1), 120.9 (m, C-3), 86.4 (m, C-2). ¹⁹F NMR (aHF, 0 °C): δ –71.7 (m, 3F, F³), -115.3 (m, 2F, F¹), -145.1 (q (1:1:1:1), ¹*J*(F, B) = 40 Hz, 3F, BF₃). ¹⁹F NMR (CD₃CN): δ –72.7 (tq, ⁴*J*(F³, F¹) = 10 Hz, ⁵*J*(F³, BF₃) = 6 Hz, 3F, F³), -115.6 (qq (1:1:1:1), ⁴*J*(F¹, F³) = 10 Hz, ²*J*(F¹, B) = 19 Hz, 2F, F¹), -148.7 (q (1:1:1:1), ¹*J*(F, B) = 40 Hz, 3F, BF₃).

[K·18-crown-6][CF₃CCl₂-CF₂BF₃]. Anal. Calcd for $C_{15}H_{24}BCl_2F_8$ KO₆ (573.15): C, 31.43; H, 4.22. Found: C, 32.6; H, 4.4.

4.4. Reactions of perfluoroalkenyl- and

perfluoroalkynyltrifluoroborates with N-bromosuccinimide in aHF

4.4.1. Reaction of K[trans-C₄F₉CF=CFBF₃]

A solution of K[*trans*-C₄F₉CF=CFBF₃] (197 mg, 0.51 mmol) in aHF (1.5 mL) was cooled to -10 °C and NBS (110 mg, 0.62 mmol) was added in one portion. The yellow solution was stirred at ~20 °C for 2 h to show the quantitative formation of K[C₄F₉CFBr-CF₂BF₃] (¹⁹F NMR). The solution was concentrated at 50 °C to a volume of ca. 1 mL, diluted with water (1 mL) and neutralized with concentrated aq KOH. A precipitate was formed which was filtered off. The solid was washed with water (2–3 mL) and dried in a vacuum desiccator over Sicapent[®] to give a solid mixture (284 mg) which consisted of K[C₄F₉CFBr-CF₂BF₃] and succinimide (77:23) (¹H, ¹⁹F NMR). Sequential washing with 20% aq KOH, water (2 mL) and drying in vacuum over Sicapent[®] gave analytically pure K[C₄F₉CFBr-CF₂BF₃] (167 mg, 34%).

$$\begin{split} & \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{CFBr}-\mathsf{CF}_2\mathsf{BF}_3]. \ \ ^{11}\mathsf{B} \ \ \mathsf{NMR} \ \ (\mathsf{CD}_3\mathsf{CN}): \ \delta \ -0.5 \ \ (\mathsf{qt}, \ \ ^{1}\!J(\mathsf{B}, \mathsf{F}) = 41 \ \mathsf{Hz}, \ \ ^{2}\!J(\mathsf{B}, \mathsf{F}^1) = 20 \ \mathsf{Hz}). \ \ ^{19}\mathsf{F} \ \ \mathsf{NMR} \ \ (\mathsf{CD}_3\mathsf{CN}): \ \delta \ -80.0 \ \ (\mathsf{tt}, \ \ ^{4}\!J(\mathsf{F}^6, \mathsf{F}^4) = 10 \ \mathsf{Hz}, \ \ ^{3}\!J(\mathsf{F}^6, \mathsf{F}^5) = 3 \ \mathsf{Hz}, 3\mathsf{F}, \mathsf{F}^6), -110.8 \ (\mathsf{md}, \ \ ^{2}\!J(\mathsf{F}^{3A}, \mathsf{F}^{3B}) = 293 \ \mathsf{Hz}, 1\mathsf{F}, \mathsf{F}^{3A}), -112.2 \ \ (\mathsf{md}, \ \ ^{2}\!J(\mathsf{F}^{3B}, \mathsf{F}^{3A}) = 293 \ \mathsf{Hz}, 1\mathsf{F}, \mathsf{F}^{3B}), -117.1 \ (\mathsf{md}, \ \ ^{2}\!J(\mathsf{F}^{4A}, \mathsf{F}^{4B}) = 296 \ \mathsf{Hz}, 1\mathsf{F}, \ \ \mathsf{F}^{4A}), \ -119.4 \ \ (\mathsf{md}, \ \ \ ^{2}\!J(\mathsf{F}^{4A}, \mathsf{F}^{4A}) = 296 \ \mathsf{Hz}, 1\mathsf{F}, \ \ \mathsf{F}^{4B}), -124.6 \ \ (\mathsf{ddddd}, \ \ \ ^{3}\!J(\mathsf{F}^{5A}, \ \ \mathsf{F}^{4A}) = 3 \ \mathsf{Hz}, \ \ ^{3}\!J(\mathsf{F}^{5A}, \ \ \mathsf{F}^{4B}) = 7 \ \mathsf{Hz}, \ \ ^{4}\!J(\mathsf{F}^{5A}, \mathsf{F}^{3B}) = 120 \ \mathsf{Hz}, \ \ ^{2}\!J(\mathsf{F}^{5A}, \ \ \mathsf{F}^{5B}) = 292 \ \mathsf{Hz}, 1\mathsf{F}, \ \ \mathsf{F}^{5A}), -125.1 \ \ (\mathsf{ddddd}, \ \ \ ^{3}\!J(\mathsf{F}^{5B}, \ \ \mathsf{F}^{4B}) = 3 \ \mathsf{Hz}, \ \ ^{3}\!J(\mathsf{F}^{5B}, \ \ \mathsf{F}^{4A}) = 7 \ \mathsf{Hz}, \ \ ^{4}\!J(\mathsf{F}^{5B}, \mathsf{F}^{3B}) = 16 \ \mathsf{Hz}, \ \ ^{4}\!J(\mathsf{F}^{5B}, \ \ \mathsf{F}^{3A}) = 18 \ \mathsf{Hz}, \ \ ^{2}\!J(\mathsf{F}^{5B}, \ \ \mathsf{F}^{5A}) = 292 \ \mathsf{Hz}, 1\mathsf{F}, \ \ \mathsf{F}^{5B}), -117.9 \ \ (\mathsf{br} \ \mathsf{m}, \ \ \Delta \nu \mu_{1/2} = 68 \ \mathsf{Hz}, \ \ ^{2}\!J(\mathsf{F}^{1A}, \ \ \mathsf{F}^{1B}) = 321 \ \mathsf{Hz}, 1\mathsf{F}, \ \ \mathsf{F}^{1A}), -121.5 \ \ (\mathsf{br} \ \mathsf{m}, \ \ \Delta \nu \mu_{1/2} = 65 \ \mathsf{Hz}, \ \ ^{2}\!J(\mathsf{F}^{1B}, \ \ \mathsf{F}^{1A}) = 321 \ \mathsf{Hz}, 3\mathsf{F}, \ \mathsf{F}^{1B}), -135.8 \ (\mathsf{m}, 1\mathsf{F}, \mathsf{F}^{2}), -149.5 \ (\mathsf{q} \ (1:1:1:1), \ \ ^{1}\!J(\mathsf{F}, \mathsf{B}) = 40 \ \mathsf{Hz}, 3\mathsf{F}, \mathsf{B}^{5}). \end{split}$$

IR (KBr): 1358m, 1298m, 1234s, 1203s, 1167m, 1142s, 1099m, 1968m, 1038s, 1017s, 972m, 893w, 820m, 706w, 687m, 632w, 577w, 530w cm $^{-1}$.

Anal. Calcd for $C_6BBrF_{15}K$ (486.85): C, 14.80; Br, 16.41; F, 58.53. Found: C, 14.9; Br, 16.3; F, 58.6.

4.4.2. Reactions of $K[CF_3C \equiv CBF_3]$

A. NBS (83 mg, 0.47 mmol) was added in one portion to a cold (-15 °C) stirred solution of K[CF₃C≡CBF₃] (98 mg, 0.49 mmol) in aHF (0.5 mL). The yellow solution was stirred at ~20 °C for 2 h. The ¹¹B and ¹⁹F NMR spectra of a probe showed the presence of [CF₃C≡CBF₃]⁻, [CF₃CBr=CFBF₃]⁻ ((*E*):(*Z*) = 5:1) and [CF₃CBr₂-CF₂BF₃]⁻ in a molar ratio 45:4:51 besides a minor quantity of CF₃C≡CH. All volatiles were removed in vacuum. The residue was neutralized with KF (excess) and extracted with MeCN (1.5 mL). The MeCN solution was kept over KF overnight, filtered and MeCN was removed under reduced pressure to yield a mixture (133 mg) of K[CF₃C≡CBF₃], K[CF₃CBr=CFBF₃] ((*E*):(*Z*) = 2:1), and K[CF₃CBr₂-CF₂BF₃] in the molar ratio 37:5:58 (still contaminated with succinimide).

K[(*Z*)-CF₃CBr=CFBF₃]. ¹¹B NMR (aHF, 10 °C): δ -0.6 (m, overlapping). ¹¹B NMR (CH₃CN): δ -0.7 (m, overlapping). ¹⁹F NMR (aHF, 10 °C): δ -68.0 (q, ⁵*J*(F³, BF₃) = 3 Hz, 3F, F³), -69.0 (m, 1F, F¹), -143.2 (q (1:1:1:1), ¹*J*(F, B) = 35 Hz, 3F, BF₃). ¹⁹F NMR (CH₃CN): δ -68.6 (q, ⁵*J*(F³, BF₃) = 3 Hz, 3F, F³), -69.6 (m, 1F, F¹), -140.7 (q (1:1:1:1), ¹*J*(F, B) = 44 Hz, 3F, BF₃).

K[(*E*)-CF₃CBr=CFBF₃]. ¹¹B NMR (aHF, 10 °C): δ -0.6 (m, overlapping). ¹¹B NMR (CH₃CN): δ -0.7 (m, overlapping). ¹⁹F NMR (aHF, 10 °C): δ -58.5 (d, ⁴*J*(F³, F¹) = 25 Hz, 3F, F³), -94.0 (m, 1F, F¹), -139.0 (q (1:1:1:1), ¹*J*(F, B) = 34 Hz, 3F, BF₃). ¹⁹F NMR (CH₃CN): δ -58.4 (dq, ⁴*J*(F³, F¹) = 25 Hz, ⁵*J*(F³, BF₃) = 1 Hz, 3F, F³), -87.6 (q, ⁴*J*(F¹, F³) = 25 Hz, 1F, F¹), -143.1 (q (1:1:1:1), ¹*J*(F, B) = 40 Hz, 3F, BF₃).

B. NBS (397 mg, 2.23 mmol) was added in one portion to a cold (~0 °C) stirred solution of K[CF₃C=CBF₃] (200 mg, 1 mmol) in aHF

(1 mL). The yellow solution was stirred at ~0 °C for 1 h and at ~20 °C for 3 h. The ¹¹B and ¹⁹F NMR spectra of a probe showed the complete conversion of K[CF₃C=CBF₃]. All volatiles were removed in vacuum and the semi-solid was dissolved in water (2 mL) and stirred with charcoal (100 mg) at ~20 °C for 0.5 h. The filtrate was saturated with KF and extracted with acetonitrile (5× 1 mL). The combined extracts were treated with K₂CO₃ and the solvent was evaporated to yield K[CF₃CBr₂-CF₂BF₃] (400 mg) (still contaminated with succinimide). The solid was washed with CH₂Cl₂ (5× 1 mL) and stirred with 18-crown-6 (250 mg, 0.95 mmol) in CH₂Cl₂ (2 mL) for 1 h. After filtration the solution was evaporated at ~20 °C overnight. The solid was washed with pentane (5× 2 mL), ether (5× 2 mL), and dried in a vacuum desiccator over Sicapent[®]. The salt [K·18-crown-6][CF₃CBr₂-CF₂BF₃] (250 mg, 0.38 mmol, 38%) was isolated.

K[CF₃CBr₂-CF₂BF₃]. ¹¹B NMR (aHF, 0 °C): δ –1.0 (m). ¹¹B NMR (CD₃CN): δ –0.7 (tq, ²*J*(B, F¹) = 21 Hz, ¹*J*(B, F) = 41 Hz). ¹³C NMR (CD₃CN): δ 122.6 (qt, ¹*J*(C-3, F³) = 280 Hz, ³*J*(C-3, F¹) = 4 Hz, C-3), 63.8 (q, ²*J*(C-2, F³) = 31 Hz, C-2); the resonance of C-1 was not observed. ¹³C{¹⁹F} NMR (CD₃CN): δ 122.7 (q (1:1:1:1), ¹*J*(C-1, B) = 88 Hz, C-1), 122.6 (m, C-3), 63.8 (m, C-2). ¹⁹F NMR (aHF, 0 °C): δ –68.0 (m, 3F, F³), –106.7 (m, 2F, F¹), –144.0 (q (1:1:1:1), ¹*J*(F, B) = 40 Hz, 3F, BF₃). ¹⁹F NMR (CD₃CN): δ –68.9 (tq, ⁴*J*(F³, F¹) = 9 Hz, ⁵*J*(F³, BF₃) = 6 Hz, 3F, F³), –107.2 (m, 2F, F¹), –147.5 (q (1:1:1:1), ¹*J*(F, B) = 41 Hz, 3F, BF₃).

 $[K\cdot 18-crown-6][CF_3CBr_2-CF_2BF_3]. \qquad Anal. \qquad Calcd \qquad for \\ C_{15}H_{24}BBr_2F_8KO_6\,(662.05); \ C, 27.21; \ H, 3.65. \ Found: \ C, 27.7; \ H, 4.1.$

4.4.3. Reaction of $K[C_3F_7C \equiv CBF_3]$

N-bromosuccinimide (397 mg, 2.23 mmol) was added in one portion to a cold ($\sim 0^{\circ}$ C) stirred solution of K[C₃F₇C=CBF₃] (150 mg, 0.5 mmol) in aHF (1 mL). The yellow solution was stirred for 1 h at ${\sim}0~^\circ\text{C}$ and at ${\sim}20~^\circ\text{C}$ for 20 h. The ^{11}B and ^{19}F NMR spectra of a probe showed the complete conversion of $K[C_3F_7C \equiv CBF_3]$ under formation of K[C₃F₇CBr₂-CF₂BF₃]. All volatiles were evaporated in vacuum and the semi-solid was dissolved in water (2 mL). The solution was stirred at \sim 20 °C for 0.5 h with charcoal (100 mg). The solid was filtered off, the filtrate was saturated with KF and extracted with acetonitrile (5 \times 1 mL). The combined extracts were treated with K₂CO₃. The solvent was evaporated to yield crude K[C₃F₇CBr₂-CF₂BF₃] (210 mg) (still contaminated with succinimide). The solid was washed with CH_2Cl_2 (5× 1 mL) and stirred with 18-crown-6 (200 mg, 0.76 mmol) in CH₂Cl₂ (2 mL) for 1 h. After filtration, the solution was evaporated at ~ 20 °C overnight. The solid was washed with pentane $(5 \times 2 \text{ mL})$ and ether (5 \times 2 mL) and was dried in a vacuum desiccator over Sicapent[®]. The salt [K·18-crown-6][C₃F₇CBr₂-CF₂BF₃] (145 mg, 0.19 mmol) was isolated.

$$\begin{split} & \mathsf{K}[\mathsf{C_3F_7CBr_2-CF_2BF_3}]. \ ^{11}\mathsf{B} \ \mathsf{NMR} \ (\mathsf{aHF}, 0\ ^\circ\mathsf{C}): \ \delta \ -0.7 \ (\mathsf{m}). \ ^{19}\mathsf{F} \ \mathsf{NMR} \\ & (\mathsf{aHF}, 0\ ^\circ\mathsf{C}): \ \delta \ -78.9 \ (\mathsf{t}, \ ^4 J(\mathsf{F}^5, \mathsf{F}^3) = \mathsf{13} \ \mathsf{Hz}, \ \mathsf{3F}, \ \mathsf{F}^5), \ -\mathsf{100.2} \ (\mathsf{m}, \ \mathsf{2F}, \ \mathsf{F}^3), \\ & -\mathsf{105.7} \ (\mathsf{m}, \ \mathsf{2F}, \ \mathsf{F}^1), \ -\mathsf{116.0} \ (\mathsf{m}, \ \mathsf{2F}, \ \mathsf{F}^4), \ -\mathsf{143.0} \ (\mathsf{q} \ (\mathsf{1:1:1:1}), \ ^1 J(\mathsf{F}, \ \mathsf{B}) = \mathsf{40} \ \mathsf{Hz}, \ \mathsf{3F}, \ \mathsf{BF}_3). \end{split}$$

[K·18-crown-6][C₃F₇CBr₂-CF₂BF₃]. ¹H NMR (CD₃CN): δ 3.57 (s, 24H, C₁₂H₂₄O₆). ¹¹B NMR (CD₃CN): δ -0.7 (tq, ²J(B, F¹) = 20 Hz, ¹J(B, F) = 41 Hz). ¹⁹F NMR (CD₃CN): δ -80.1 (t, ⁴J(F⁵, F³) = 13 Hz, 3F, F⁵), -101.0 (m, 2F, F³), -106.2 (m, 2F, F¹), -117.5 (m, 2F, F⁴), -146.8 (q (1:1:1:1), ¹J(F, B) = 40 Hz, 3F, BF₃).

Anal. Calcd for $C_{17}H_{24}BBr_2F_{12}KO_6$ (762.07): C, 26.79; H, 3.17. Found: C, 27.5; H, 3.7.

4.5. Reaction of K[trans-CF₃CF=CFBF₃] with bromine in aHF

Bromine (0.12 mL, 2.25 mmol) was added to a cold (-20 °C) solution of K[*trans*-CF₃CF=CFBF₃] (512 mg, 2.15 mmol) in aHF (2 mL) and the red emulsion was stirred at \sim 20 °C for 1 h till

discoloration. The volatiles were removed under reduced pressure and the white solid was dissolved in water (1.5 mL). The solution was neutralized with solid K_2CO_3 , evaporated to dryness and the residue was extracted with acetone (10 mL). The extract was dried with MgSO₄ and the solvent was evaporated to give the white solid K[CF₃CFBr-CF₂BF₃] (655 mg, 1.94 mmol, 90%).

K[CF₃CFBr-CF₂BF₃]. ¹¹B NMR (CD₃CN): δ -0.7 (qt, ¹*J*(B, F) = 41 Hz, ²*J*(B, F¹) = 21 Hz). ¹⁹F NMR (CD₃CN): δ -74.6 (m, 3F, F³), -118.6 (qdq (1:1:1:1), ⁴*J*(F^{1A}, F³) = 9 Hz, ²*J*(F^{1A}, F^{1B}) = 322 Hz, ²*J*(F^{1A}, B) = 22 Hz, 1F, F^{1A}), -121.0 (m, 1F, F^{1B}), -136.8 (m, 1F, F²), -150.3 (q (1:1:1:1), ¹*J*(F, B) = 40 Hz, 3F, BF₃).

IR (KBr): 1621br w, 1297m, 1236s, 1213s, 1194s, 1168s, 1081s, 1028s, 976m, 935m, 910m, 858w, 822m, 786m, 733m, 715w, 649m, 605w, 548w cm⁻¹.

Anal. Calcd for C_3BBrF_9K (336.83): C, 10.70; Br, 23.72; F, 50.76. Found: C, 10.8; Br, 23.7; F, 50.6.

4.6. Reaction of $K[CF_3C \equiv CBF_3]$ with bromine in aHF

K[CF₃C=CBF₃](300 mg, 1.5 mmol) was dissolved in aHF(3 mL) at 0 °C and bromine (0.116 mL, 2.2 mmol) was added drop-wise at ~0 °C. After stirring at ~20 °C for 3 h salt K[CF₃C \equiv CBF₃] was consumed and the borates K[CF₃CBr=CBrBF₃] (cis:trans = 94:6) and K[BF₄] (60:40) were formed besides minor amounts of unknown products. The borates K[CF₃CBr₂-CF₂BF₃], K[CF₃CBr=CFBF₃], and K[CF₃CFBr-CF₂BF₃] were not found (¹¹B, ¹⁹F NMR). All volatiles were removed under reduced pressure. The residue was washed with CH₂Cl₂ and extracted with MeCN. The extract was evaporated to dryness to yield K[CF₃CBr=CBrBF₃] (200 mg, 0.56 mmol, 37%) (*cis:trans* = 94:6). The solid product was stirred with 18-crown-6 (160 mg, 0.61 mmol) in CH₂Cl₂ (1 mL) for 1 h, filtered and the solvent was evaporated from the mother liquor at \sim 20 °C overnight. The solid residue was washed with pentane $(5 \times 1 \text{ mL})$ and ether $(5 \times$ 1 mL) and dried in a vacuum desiccator over Sicapent[®] to give [K-18crown-6][CF₃CBr=CBrBF₃] (300 mg, 0.48 mmol, 86% based on $K[CF_3CBr=CBrBF_3]).$

K[CF₃CBr=CBrBF₃]. ¹¹B NMR (aHF, 0 °C): δ 0.6 (br s). ¹¹B NMR (CH₃CN): δ 0.2 (q, ¹*J*(B, F) = 38 Hz) (*cis*-isomer); -0.1 (q, ¹*J*(B, F) = 38 Hz) (*trans*-isomer). ¹³C{¹⁹F selective decoupling of BF₃} NMR (CD₃CN): δ 154.1 (q (1:1:1:1), ¹*J*(C-1, B) = 86 Hz, C-1), 121.8 (q, ¹*J*(C-3, F³) = 271 Hz, C-3), 115.7 (q, ²*J*(C-2, F³) = 27 Hz, C-2). ¹⁹F NMR (aHF, 0 °C): δ -56.2 (s, 3F, F³), -132 (br s, 3F, BF₃) (*cis*-isomer); -56.6 (s, 3F, F³), -132 (br s, 3F, BF₃) (*trans*-isomer). ¹⁹F NMR (CH₃CN): δ -56.9 (q, ⁵*J*(F³, BF₃) = 11 Hz, 3F, F³), -136.1 (qq (1:1:1:1), ⁵*J*(BF₃, F³) = 11 Hz, 3F, F³), -138.8 (q (1:1:1:1), ¹*J*(F, B) = 39 Hz, 3F, BF₃) (*trans*-isomer).

[K·18-crown-6][CF₃CBr=CBrBF₃]. Anal. Calcd for $C_{15}H_{24}BBr_{2}F_{6}KO_{6}$ (624.06): C, 28.87; H, 3.88. Found: C, 29.0; H, 4.1.

4.7. Reactions of $K[RCF=CFBF_3]$ (R = F, trans- CF_3 , and C_4F_9) and $K[CF_3C=CBF_3]$ with fluorine

A 11.7-mm i.d. PFA trap equipped with a Teflon-coated magnetic stir bar was charged with KF (10–15 M excess) in the glove box before a solution of $K[R_FBF_3]$ in MeCN was added. The suspension was stirred at ~0 °C under an atmosphere of dry argon.

Fluorine in nitrogen (5% v/v) (5–10 M excess) was bubbled slowly through the suspension using a FEP tube (0.7 mm i.d.). Residual fluorine was removed by flushing with nitrogen at ~0 °C over a period of 0.5 h. The suspension was filtered. The filtrate was evaporated under reduced pressure to yield potassium perfluoro-alkyltrifluoroborate (Table 1). The solid residue of the filtration consisted of K[BF₄], KF, and K[HF₂] (¹⁹F NMR, aqueous solution).

4.8. Reactions of fluorinated alkenyltrifluoroborates with chlorine

4.8.1. Reaction of K[trans- $C_4H_9CF=CFBF_3$] in MeCN

When chlorine (2.5 mmol) in argon was bubbled through the stirred solution of K[*trans*-C₄H₉CF=CFBF₃] (231 mg, 1.02 mmol) in MeCN (3.5 mL) at ~20 °C for 1 h a white suspension was formed. The suspension was centrifuged. A probe of the mother liquor showed resonances of *trans*-C₄H₉CF=CFCl (0.43 mmol), C₄H₉CFCl-CFCl₂ (0.03 mmol), and K[C₄H₉CFCl-CFClBF₃] (0.04 mmol). In order to isolate K[C₄H₉CFCl-CFClBF₃], the reaction mixtures from repeated experiments were combined, the volatiles were removed under reduced pressure. The residue was washed with CCl₄ and dried in vacuum to give K[C₄H₉CFCl-CFClBF₃].

K[C₄H₉CFCl−CFClBF₃]. ¹H NMR (CD₃CN): δ 2.1 (m, CH₂), 1.41 (m, CH₂), 1.26 (m, CH₂), 0.81 (t, ³*J*(H⁶, H⁵) = 7 Hz, CH₃). ¹¹B NMR (CD₃CN): δ 0.4 (dq, ²*J*(B, F¹) = 17 Hz, ¹*J*(B, F) = 41 Hz). ¹⁹F NMR (CD₃CN): δ −109.7 (m, 1F, F²), −136.8, −137.9, and −138.3 (m, 1F, F¹), −146.9 (q (1:1:1:1), ¹*J*(F, B) = 38 Hz, 3F, BF₃) (relative intensities 100:86:12:12:300 (≥3 diastereomeres).

4.8.2. Reaction of $[Bu_4N]$ [trans-C₄H₉CF=CFBF₃] in MeCN

A solution of $[Bu_4N][trans-C_4H_9CF=CFBF_3]$ (399 mg. 0.93 mmol) in MeCN (5 mL) was cooled to \sim 0 °C under an atmosphere of dry argon. Chlorine (1.2 mmol) in argon was bubbled during 15 min through the stirred solution and a white suspension was formed. Residual chlorine was removed by bubbling of argon during 45 min at \sim 0 °C. The suspension was stirred at \sim 20 °C for additional 10 min and then centrifuged. The colorless mother liquor contained trans-C₄H₉CF=CFCl (major product), [Bu₄N][BF₄], and [Bu₄N][C₄H₉CFCl-CFClBF₃] (resonances at -110 (m, 1F, F²), -137 (m, 1F, F¹), and -147 (q (1:1:1:1), ${}^{1}J(F, B) = 39 \text{ Hz}$, 3F, BF₃) ppm (${}^{19}F$ NMR) (minor). The volatiles were distilled off. The residue was suspended in benzene (2 mL) and the volatiles were distilled off again. The combined distillates were washed with water $(3 \times 10 \text{ mL})$ and dried with MgSO₄. NMR spectroscopy showed resonances of trans-C₄H₉CF=CFCl (0.71 mmol, 76% yield), besides traces of cis-C₄H₉CF=CFCl and *trans*-C₃H₇CHClCF=CFCl.

cis-C₄H₉CF=CFCl. ¹⁹F NMR (benzene): δ -110.2 (d, ³*J*(F¹, F²) = 12 Hz, 1F, F¹), -133.1 (td, ³*J*(F², H³) = 23 Hz, ³*J*(F², F¹) = 12 Hz, 1F, F²).

trans-C₄H₉CF=CFCl. ¹⁹F NMR (benzene): δ –127.6 (td, ⁴*J*(F¹, H³) = 5 Hz, ³*J*(F¹, F²) = 128 Hz, 1F, F¹), –143.9 (td, ³*J*(F², H³) = 22 Hz, ³*J*(F², F¹) = 128 Hz, 1F, F²).

 C_4H_9CF =CFCl. ¹H NMR (benzene): δ 2.12 (tdd, ³*J*(H³, H⁴) = 7 Hz, ⁴*J*(H³, F¹) = 5 Hz, ³*J*(H³, F²) = 22 Hz, 2H, H³), 1.31 (m, CH₂), 1.16 (m, CH₂), 0.81 (t, ³*J*(H⁴, H³) = 7 Hz, 3H, H⁴) (both *cis* and *trans* isomers). HRMS (EI) Calcd for C₆H₉ClF₂: 154.035536 (³⁵Cl). Found: 154.0356 (³⁵Cl).

Table 1	
Reaction with elemental fluorine in Me	CN.

Starting salt (mmol)	F ₂ (mmol)	MeCN (mL)	KF (mg/mmol)	Product (% yield)
$K[CF_2=CFBF_3](0.51)$	4.8	6	480/8.3	$K[C_2F_5BF_3]$ (22)
$K[trans-CF_3CF=CFBF_3]$ (0.35)	3.5	4	330/5.7	$K[C_3F_7BF_3]$ (29)
$K[trans-C_4F_9CF=CFBF_3]$ (0.26)	2.6	3	240/4.1	$K[C_6F_{13}BF_3]$ (25)
$K[CF_3C \equiv CBF_3] (0.50)$	2.5	3	580/10	$K[C_3F_7BF_3]$ (16)

trans-C₃H₇CHClCF=CFCl. ¹⁹F NMR (benzene): δ –119.1 (dd, ⁴*J*(F¹, H³) = 3 Hz, ³*J*(F¹, F²) = 128 Hz, 1F, F¹), -157.0 (dd, ³*J*(F², H³) = 27 Hz, ³*J*(F², F¹) = 128 Hz, 1F, F²).

4.8.3. Reaction of $K[trans-C_4H_9CF=CFBF_3]$ in sulfolane

Chlorine (2.5 mmol) in argon was bubbled through the stirred solution of K[*trans*-C₄H₉CF=CFBF₃] (226 mg, 1.0 mmol) in sulfolane (2 mL) at ~20 °C for 2 h to form a white suspension. The suspension was diluted with acetone (1 mL) and centrifuged. A probe of the mother liquor showed resonances of C₄H₉CFCl-CFCl₂ (0.16 mmol), *trans*-C₃H₇CHClCF=CFCl (0.14 mmol), C₄H₉CFCl-CFClH (0.10 mmol), and K[C₄H₉CFCl-CFClBF₃] (0.25 mmol) (¹⁹F NMR).

 $\begin{array}{l} {\sf K}[C_4{\sf H}_9{\sf CFCl-CFClBF_3}]. \ {}^{19}{\sf F}\ {\sf NMR}\ ({\sf sulfolane+acetone}):\ \delta-110.2 \\ ({\sf m}, 1{\sf F}, {\sf F}^2), -137.5\ ({\sf m}, 1{\sf F}, {\sf F}^1), -148.3\ ({\sf q}\ (1:1:1:1), \ {}^1J({\sf F}, {\sf B})=40\ {\sf Hz}, \\ {\sf 3F}, {\sf BF}_3)\ ({\sf diastereomer}\ {\sf A});\ -111.3\ ({\sf m}, 1{\sf F}, {\sf F}^2), -138.6\ ({\sf m}, 1{\sf F}, {\sf F}^1), \\ -148.3\ ({\sf q}\ (1:1:1:1), \ {}^1J({\sf F}, {\sf B})=40\ {\sf Hz}, {\sf 3F}, {\sf BF}_3)\ ({\sf diastereomer}\ {\sf B})\ ({\sf ratio}\ {\sf A}:{\sf B}=83:17). \end{array}$

 C_4H_9CFCI -CFCl₂. ¹⁹F NMR (sulfolane + acetone): δ -66.5 (d, ³J(F¹, F²) = 16 Hz, 1F, F¹), -114.6 (ddd, ³J(F², H^{3A}) = 9 Hz, ³J(F², H^{3B}) = 31 Hz, ³J(F², F¹) = 16 Hz, 1F, F²).

 $C_{3}H_{7}CHClCFCl-CFClH.$ ¹⁹F NMR (sulfolane + acetone): δ –125.7 (ddd ³J(F², H¹) = 8 Hz, ³J(F², H³) = 18 Hz, ³J(F², F¹) = 20 Hz, 1F, F²), -145.4 (dd, ²J(F¹, H¹) = 47 Hz, ³J(F¹, F²) = 20 Hz, 1F, F¹) (diastereomer A); δ –124.6 (m, 1F, F²), –147.3 (dd, ²J(F¹, H¹) = 47 Hz, ³J(F¹, F²) = 19 Hz, 1F, F¹) (diastereomer B) (ratio A:B = 60:40).

4.8.4. Reaction of K[trans- C_4H_9CF =CFBF₃] in MeOH

A solution of K[*trans*-C₄H₉CF=CFBF₃] (156 mg, 0.69 mmol) in MeOH (4 mL) was cooled to ~0 °C under an atmosphere of dry argon. Chlorine (1.0 mmol) in argon was bubbled through the stirred solution for 15 min and formed a white suspension. Residual chlorine was removed by flushing with argon for 45 min at ~0 °C. The suspension was stirred at ~20 °C for additional 10 min and centrifuged. A probe of the mother liquor showed resonances of *trans*-C₄H₉CF=CFCl (0.43 mmol), C₄H₉CFCl-CFCl₂ (0.10 mmol), and *trans*-C₄H₉CF=CFCl (0.04 mmol) (¹⁹F NMR). The resonances of [*trans*-C₄H₉CF=CFBF₃]⁻, *cis*-C₄H₉CF=CFCl, C₄H₉CF=CFH, and [C₄H₉CFCl-CFClBF₃]⁻ were not detected.

4.8.5. Reaction of K[trans- $C_4F_9CF=CFBF_3$] in MeOH

Chlorine (2 mmol) diluted by argon was bubbled through a stirred solution of K[trans-C₄F₉CF=CFBF₃] (186 mg, 0.48 mmol) in MeOH (3 mL) for 1 h. A small amount of white precipitate was formed. A probe of the mother liquor showed resonances of HF, $K[C_4F_9CFCl-C(O)BF_3]$ (0.41 mmol), and $K[C_4F_9CFCl-CFClBF_3]$ (0.03 mmol) besides minor quantities of unknown products. The reaction mixture was neutralized with KF (in excess), centrifuged and the mother liquor was evaporated to dryness under reduced pressure. The residue was extracted with MeCN (4 mL). The solvent was removed and the residue was dried in vacuum (~ 20 °C at 133 hPa) to yield a white semi-solid (190 mg) which consisted of $K[C_4F_9CFCl-C(O)BF_3]$, $K[C_4F_9CFCl-CFClBF_3]$, and $K[C_4F_9CFCl-CFClBF_3]$ C(O)BF₂OMe] (molar ratio 82:7:11). The semi-solid was dissolved in CD₃OD and stored at ~20 °C. The ¹⁹F and ¹¹B NMR spectra showed the signals of HF (-155 ppm) and of the transformation products of $K[C_4F_9CFCl-C(O)BF_3]$ to $K[C_4F_9CFCl-C(O)BF_n(OCD_3)_{3-n}]$ {principal NMR signals: $\delta(F) - 132.2$ (t, ${}^{4}J(F^{2}, F^{4}) = 18$ Hz, 1F, F^{2}), -152.9 (br q (1:1:1:1), 1F, BF(OCD₃)₂), -137.2 (m, 1F, F²), -149.3 (q (1:1:1:1), ¹ $J(F, B) = 40 \text{ Hz}, 2F, BF_2(OCD_3)); \delta(B) 0.3 (BF(OCD_3)_2), overlapping$ with the signal of $[C_4F_9CFCI-CFClBF_3]^-$, -1.2 (t, ${}^1J(B, F) = 48$ Hz, *B*F₂(OCD₃)]}, K[C₄F₉CFCl–C(O)B(OCD₃)₃] {principal NMR signals: $\delta(F) - 131.0$ (t, ${}^{4}J(F^{2}, F^{4}) = 18$ Hz, 1F, F^{2}); $\delta(B) 5.8$ (s, $B(OCD_{3})_{3}$)}, and probably $C_4F_9CFCl-C(O)B(OCD_3)_2$ {principal NMR signals: $\delta(F)$ -129.0 (t, ${}^{4}J(F^{2}, F^{4}) = 18$ Hz, 1F, F²); $\delta(B)$ 18.7 (s, $B(OCD_{3})_{2}$). The molar ratio $K[C_4F_9CFCl-C(O)BF_3]:K[C_4F_9CFCl-C(O)BF_2(OCD_3)]:$ $\begin{array}{l} \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}\mathsf{C}\mathsf{I}-\mathsf{C}(\mathsf{O})\mathsf{BF}\ (\mathsf{OCD}_3)_2]:\mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}\mathsf{C}\mathsf{I}-\mathsf{C}(\mathsf{O})\mathsf{B}(\mathsf{OCD}_3)_3]:\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}\mathsf{C}\mathsf{I}-\mathsf{C}(\mathsf{O})\mathsf{B}(\mathsf{OCD}_3)_2\ \text{was}\ 37:24:9:13:17\ (\sim\!20\ ^\circ\mathsf{C},\ 2\ d)\ \text{and}\ 22:3:19:25:31\ (\sim\!20\ ^\circ\mathsf{C},\ 7\ d). \ \text{The solution of the transformation products was}\ evaporated. \ The residue was dissolved in 33\% aq\ HF\ (0.7\ mL)\ \text{and}\ stirred\ at\ \sim\!20\ ^\circ\mathsf{C}\ for\ 4\ h.\ KF\ was\ added\ in\ excess\ and\ the\ slurry\ was\ extracted\ with\ \mathsf{MeCN}\ (4\ mL). \ The\ extract\ was\ dried\ with\ \mathsf{KF}\ and\ the\ solvent\ was\ removed\ under\ reduced\ pressure\ to\ yield\ a\ low-melting\ solid\ (146\ mg)\ which\ consisted\ of\ \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}\mathsf{C}\mathsf{I}-\mathsf{C}(\mathsf{O})\mathsf{B}\mathsf{F}_3]\ and\ \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}\mathsf{C}\mathsf{I}-\mathsf{C}(\mathsf{O})\mathsf{B}\mathsf{F}_3]\ (molar\ ratio\ 90:10)\ (^{19}\mathsf{F},\ ^{11}\mathsf{B}\ \mathsf{NMR}). \end{array}$

 $K[C_4F_9CFCI-C(O)BF_3]$. ¹¹B NMR (CD₃OD): δ -2.0 (q, ¹J(B, F) = 43 Hz). ¹³C NMR (CD₃OD): δ 224.1 (md, ²J(C-1, F²) = 33 Hz, C-1), 118.7 (td, ${}^{2}J(C-6, F^{5}) = 33$ Hz, ${}^{1}J(C-6, F^{6}) = 287$ Hz, C-6), 113.6 (mt, ${}^{1}J(C, F) = 268 \text{ Hz}, CF_{2}$), 112.2 (mt, ${}^{1}J(C, F) = 270 \text{ Hz}, CF_{2}$), 110.1 (mt, ${}^{1}J(C, F) = 270 \text{ Hz}, CF_{2}$), 104.8 (md, ${}^{1}J(C-2, F^{2}) = 265 \text{ Hz}, C-2$). ${}^{19}F$ NMR (CD₃OD): $\delta - 80.1$ (tt, ³*J*(F⁶, F⁵) = 2 Hz, ⁴*J*(F⁶, F⁴) = 10 Hz, 3F, F⁶), $-114.1 \text{ (md, } {}^{2}J(F^{3A}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3B}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3B}), -115.0 \text{ (md, } {}^{2}J(F^{3B}, F^{3B}) = 289 \text{ (md, } {}^{2}J(F^{3B},$ F^{3A}) = 289 Hz, 1F, F^{3B}), -117.7 (md, ${}^{2}J(F^{4A}, F^{4B})$ = 300 Hz, 1F, F^{4A}), -119.0 (dqddd, ${}^{3}J(F^{4B}, F^{5B}) = 7$ Hz, ${}^{4}J(F^{4B}, F^{6}) = 10$ Hz, ${}^{3}J(F^{4B}, F^{6}$ F^{5A}) = 13 Hz, ${}^{3}J(F^{4B}, F^{3A})$ = 19 Hz, ${}^{2}J(F^{4B}, F^{4A})$ = 300 Hz, 1F, F^{4B}), -124.9 (dddd, ${}^{3}J(F^{5A}, F^{4B}) = 6$ Hz, ${}^{3}J(F^{5A}, F^{4A}) = 13$ Hz, ${}^{4}J(F^{5A}, F^{5A}) = 13$ Hz, ${}^{4}J(F^{5A}) = 13$ Hz, ${}^{4}J(F^{$ F^{3B} = 18 Hz, ${}^{2}J(F^{5A}, F^{5B})$ = 296 Hz, 1F, F^{5A}), -125.4 (dddd, ${}^{3}J(F^{5B}, F^{5B})$ F^{4B}) = 6 Hz, ${}^{3}J(F^{5B}, F^{4A})$ = 14 Hz, ${}^{4}J(F^{5B}, F^{3A})$ = 17 Hz, 2 /(F^{5B} F^{5A}) = 296 Hz, 1F, F^{5B}), -136.6 (m, 1F, F^2), -146.6 (q (1:1:1:1), 1 *I*(F, B) = 44 Hz, 3F, BF₃) (the assignments 3 *I*(F^{4B}, F^{3A}), 4 *I*(F^{5A}, F^{3B}) and ⁴J(F^{5B}, F^{3A}) are tentitive). The ¹⁹F NMR spectrum of K[C₄F₉CFCl- $C(O)BF_3$ in CD_3CN coincided with the one in CD_3OD .

K[C₄F₉CFCI–C(O)BF₂OMe]. ¹³C NMR (CD₃OD): δ 220.6 (m, C-1), 118.6 (td, ²*J*(C-6, F⁵) = 33 Hz, ¹*J*(C-6, F⁶) = 287 Hz, C-6), 113.4 (mt, ¹*J*(C, F) = 268 Hz, CF₂), 112.6 (mt, ¹*J*(C, F) = 270 Hz, CF₂), 110.8 (mt, ¹*J*(C, F) = 270 Hz, CF₂), 104.8 (md, ¹*J*(C-2, F²) = 265 Hz, C-2).

4.8.6. Reaction of K[trans- C_4F_9CF =CFBF₃] in sulfolane

Chlorine (3 mmol) diluted with argon was bubbled through a stirred solution of K[*trans*-C₄F₉CF=CFBF₃] (248 mg, 0.64 mmol) in sulfolane (3 mL) for 1 h. The colorless solution was poured into water (20 mL) and the precipitate was filtered off and washed with water (3× 1 mL). After drying on air and in a vacuum desiccator over Sicapent[®] a white powder of K[C₄F₉CFCl–CFXBF₃] (244 mg) was obtained. The dissolution in MeOH led to its conversion into K[C₄F₉CFCl–C(O)BF₃] and HF (42% conversion after 4 h and 100% conversion after 24 h).

4.8.7. Reaction of K[trans- $C_4F_9CF=CFBF_3$] in acetonitrile

Chlorine (2.5 mmol) diluted in argon was bubbled through a stirred solution of K[*trans*-C₄F₉CF=CFBF₃] (200 mg, 0.52 mmol) in MeCN (3 mL) for 3 h. The suspension was centrifuged, the precipitate was washed with CH₂Cl₂ and dried to yield a white solid (45 mg), which consisted of KCl (tested with aqueous AgNO₃) and K[BF₄] (IR spectrum). The mother liquor was evaporated to dryness and the residue (150 mg) was extracted with CH₂Cl₂. The extract was combined with the dichloromethane washing and evaporated under reduced pressure to yield a yellow oil (93 mg). The ¹⁹F NMR spectrum (in CH₂Cl₂) showed signals at -81.2 (t, ⁴J(F⁶,

 F^4) = 10 Hz, 3F, F^6) and -81.3 (t, ${}^4J(F^6, F^4)$ = 10 Hz, 3F, F^6), -126.6 (m, 2F, F^5) ppm and several AB-systems at -105 to -121 (${}^2J(F^A, F^B)$ = 280–300 Hz) ppm, which belonged at least to two polyfluoro-alkanes in the molar ratio 4:1. Signals of the BF₃ groups (expected: q (1:1:1:1) at -140 to -150 ppm), terminal CFCl₂ groups (expected: -60 to -65 ppm), or CFClH groups (expected: d, ${}^2J(F, H)$ = 45–50 Hz at -130 to -150 ppm) were not detected.

After extraction the residue was dried in vacuum (~20 °C at 133 hPa) to give a semi-solid (54 mg). The ¹⁹F NMR spectrum showed resonances of K[*trans*-C₄F₉CF=CFBF₃] (trace) and K[C₄F₉CFCl–CFYBF₃]. Dissolution of this mixture in MeOH was accompanied by the conversion to K[C₄F₉CFCl–C(O)BF₃] and HF (~20 °C, 2 d) (¹⁹F NMR).

$$\begin{split} & \mathsf{K}[\mathsf{C}_4\mathsf{F}_9\mathsf{C}\mathsf{F}\mathsf{C}\mathsf{I}-\mathsf{C}\mathsf{F}\mathsf{Y}\mathsf{B}\mathsf{F}_3]. \ ^{19}\mathsf{F} \ \mathsf{NMR} \ (\mathsf{CH}_3\mathsf{C}\mathsf{N}): \ \delta \ -80.0 \ (t, \ ^4J(\mathsf{F}^6, \mathsf{F}^4) = 9 \ \mathsf{Hz}, \ 3\mathsf{F}, \ \mathsf{F}^6), \ -114.6 \ (m, \ 2\mathsf{F}, \ \mathsf{F}^3), \ -118.1 \ (md, \ ^2J(\mathsf{F}^{4A}, \mathsf{F}^{4B}) = 300 \ \mathsf{Hz}, \ 1\mathsf{F}, \ \mathsf{F}^{4A}), \ -119.3 \ (md, \ ^2J(\mathsf{F}^{4B}, \mathsf{F}^{4A}) = 300 \ \mathsf{Hz}, \ 1\mathsf{F}, \ \mathsf{F}^{4B}), \ -124.9 \ (m, \ 1\mathsf{F}, \mathsf{F}^1), \ -125.5 \ (m, \ 2\mathsf{F}, \ \mathsf{F}^5), \ -136.9 \ (m, \ 1\mathsf{F}, \ \mathsf{F}^2), \ -145.3 \ (q \ (1:1:1:1), \ ^1J(\mathsf{F}, \mathsf{B}) = 42 \ \mathsf{Hz}, \ 3\mathsf{F}, \ \mathsf{BF}_3) \ (diastereomer \ \mathsf{A}); \ -80.3 \ (t, \ ^4J(\mathsf{F}^6, \ \mathsf{F}^4) = 9 \ \mathsf{Hz}, \ 3\mathsf{F}, \ \mathsf{F}^6), \ -111.5 \ (md, \ ^2J(\mathsf{F}^{3A}, \ \mathsf{F}^{3B}) = 283 \ \mathsf{Hz}, \ 1\mathsf{F}, \ \mathsf{F}^{3A}), \ -113.5 \ (md, \ ^2J(\mathsf{F}^{3B}, \ \mathsf{F}^{3A}) = 283 \ \mathsf{Hz}, \ 1\mathsf{F}, \ \mathsf{F}^{3B}), \ -117.3 \ (md, \ ^2J(\mathsf{F}^{4A}, \ \mathsf{F}^{4B}) = 285 \ \mathsf{Hz}, \ 1\mathsf{F}, \ \mathsf{F}^{3B}), \ -123.7 \ (m, \ 1\mathsf{F}, \ \mathsf{F}^4), \ -120.0 \ (md, \ ^2J(\mathsf{F}^{4B}, \ \mathsf{F}^{4A}) = 285 \ \mathsf{Hz}, \ 1\mathsf{F}, \ \mathsf{F}^{4B}), \ -123.7 \ (m, \ 1\mathsf{F}, \ \mathsf{F}^1), \ -125.3 \ (m, \ 2\mathsf{F}, \ \mathsf{F}^5), \ -135.2 \ (m, \ 1\mathsf{F}, \ \mathsf{F}^2), \ -148.3 \ (\mathsf{q} \ (1:1:1:1), \ \ ^1J(\mathsf{F}, \ \mathsf{B}) = 38 \ \mathsf{Hz}, \ 3\mathsf{F}, \ \mathsf{BF}_3) \ (diastereomer \ \mathsf{B}) \ (ratio \ A:\mathsf{B} = 83:17). \end{split}$$

4.9. Reactions of fluorinated alkenyl- and alkynyltrifluoroborates with bromine

4.9.1. Reaction of K[trans-C₆H₅CF=CFBF₃] in MeCN

Bromine (71 mg, 0.44 mmol) in MeCN (0.3 mL) was added to a stirred suspension of K[*trans*-C₆H₅CF=CFBF₃] (82 mg, 0.33 mmol) in MeCN (3 mL) at ~20 °C. The suspension was stirred for 13 h and filtered. After concentration under reduced pressure the filtrate contained *trans*-C₆H₅CF=CFBr (0.28 mmol), *threo*-C₆H₅CFBr-CFBr+ (0.03 mmol), and BF₃·NCCH₃ (0.06 mmol) (¹⁹F NMR).

trans-C₆H₅CF=CFBr. ¹⁹F NMR (CH₃CN): δ -116.7 (d, ³*J*(F², F¹) = 133 Hz, 1F, F²), -140.5 (d, ³*J*(F¹, F²) = 133 Hz, 1F, F¹). {lit. δ -117.3 (d, ³*J*(F², F¹) = 133.5 Hz, 1F, F²), -142.5 (d, ³*J*(F¹, F²) = 133.4 Hz, 1F, F¹) [25]}.

threo-1,2-Dibromo-1,2-difluoro-2-phenylethane, $C_6H_5CFBr-CFBrH.$ ¹⁹F NMR (CH₃CN): δ –118.2 (dd, ³*J*(F², F¹) = 30 Hz, ³*J*(F², H¹) = 9 Hz, 1F, F²), –139.8 (dd, ³*J*(F¹, F²) = 30 Hz, ²*J*(F¹, H¹) = 46 Hz, 1F, F¹). {lit. ¹⁹F NMR (CDCl₃): δ –118.3 (dd, ³*J*(F², F¹) = 33 Hz, ³*J*(F², H¹) = 3 Hz, 1F, F²), –140.8 (dd, ³*J*(F¹, F²) = 35.7 Hz, ²*J*(F¹, H¹) = 46.7 Hz, 1F, F¹) [17]}.

4.9.2. Reaction of K[trans- $C_4H_9CF=CFBF_3$] in MeCN

Bromine (113 mg, 0.70 mmol) in MeCN (0.4 mL) was added to a stirred solution of K[*trans*-C₄H₉CF=CFBF₃] (119 mg, 0.53 mmol) at ~20 °C. Discoloration occurred within ~1 min and a suspension was formed. Stirring was continued for 1 h before the mother liquor was decanted. It contained *trans*-C₄H₉CF=CFBr (0.38 mmol), *trans*-C₄H₉CF=CFH (0.05 mmol), and BF₃·NCCH₃ (0.40 mmol) (¹⁹F NMR). The precipitate was washed with CH₂Cl₂ (3 mL) and dried to give KBr (58 mg, 0.49 mmol) (determined by titration of an aqueous solution with 0.1 N AgNO₃).

trans-C₄H₉CF=CFBr. ¹⁹F NMR (CH₃CN): δ -126.0 (td, ⁴*J*(F¹, H³) = 5 Hz, ³*J*(F¹, F²) = 133 Hz, 1F, F¹), -138.0 (td, ³*J*(F², H³) = 23 Hz, ³*J*(F², F¹) = 133 Hz, 1F, F²) {lit. ¹⁹F NMR (CDCl₃ + CCl₄): δ -127.3 (td, ³*J*(F¹, H³) = 5 Hz, ³*J*(F¹, F²) = 134 Hz, 1F, F¹), -140.0 (td, ³*J*(F², H³) = 22 Hz, ³*J*(F², F¹) = 134 Hz, 1F, F²) [1]).

 $\begin{array}{l} trans-C_{4}H_{9}CF=CFH. \ ^{19}F \ NMR \ (CH_{3}CN): \ \delta \ -159.7 \ (ttd, \ ^{4}J(F^{2}, H^{4})=1 \ Hz, \ ^{3}J(F^{2}, H^{3})=23 \ Hz, \ ^{3}J(F^{2}, F^{1})=127 \ Hz, \ 1F, \ F^{2}), \ -183.3 \ (tdd, \ ^{4}J(F^{1}, H^{3})=3 \ Hz, \ ^{2}J(F^{1}, H^{1})=76 \ Hz, \ ^{3}J(F^{1}, F^{2})=127 \ Hz, \ 1F, \ F^{1}). \ ^{19}F \ NMR \ (CDCl_{3}): \ \delta \ -161.3 \ (td, \ ^{3}J(F^{2}, \ H^{3})=24 \ Hz, \ \ ^{3}J(F^{2}, F^{1})=127 \ Hz, \ 1F, \ F^{2}), \ -185.1 \ (tdd, \ \ ^{4}J(F^{1}, \ H^{3})=5 \ Hz, \ \ ^{2}J(F^{1}, \ Hz)$

H¹) = 77 Hz, ³*J*(F¹, F²) = 127 Hz, 1F, F¹) {lit. ¹H NMR: δ 2.35 (2H), 7.05 (H); ²*J*(H, F) = 77 Hz, ³*J*(H, F) = 4 Hz, ³*J*(H, F) = 23 Hz, ⁴*J*(H, F) = 5 Hz. ¹⁹F NMR: δ –161.2 (F-2), –184.9 (F-1); ³*J*(F, F) = 128 Hz) [26]}.

4.9.3. Reaction of K[trans-C₄H₉CF=CFBF₃] with Br_2 and AgF in MeCN

Silver fluoride (82 mg, 0.65 mmol) was added to a stirred solution of K[*trans*-C₄H₉CF=CFBF₃] (112 mg, 0.49 mmol) in MeCN (2.5 mL) and formed a fine suspension. Then bromine (80 mg, 0.50 mmol) in MeCN (0.5 mL) was added drop-wise within 5 min. Discoloration occurred immediately after each drop and the reaction was accompanied by a voluminous precipitation. The suspension was stirred at ~20 °C for 1 h and filtered. The mother liquor contained *trans*-C₄H₉CF=CFBr (0.41 mmol) and *cis*-C₄H₉CF=CFBr (0.06 mmol) (¹⁹F NMR).

4.9.4. Reaction of K[cis-C₂F₅CF=CFBF₃] in MeCN

A solution of K[*cis*-C₂F₅CF=CFBF₃] (101 mg, 0.35 mmol) and bromine (62 mg, 0.38 mmol) in MeCN (2.3 mL) was heated in a sealed tube in a boiling water bath for 4 h. After cooling to ~20 °C the yellow mother liquor was separated from the white precipitate after centrifugation. The ¹⁹F NMR spectrum showed the presence of residual K[*cis*-C₂F₅CF=CFBF₃] (0.02 mmol), *cis*-C₂F₅CF=CFBr (0.07 mmol), *cis*-C₂F₅CF=CFH (0.15 mmol), *trans*-C₂F₅CF=CFBr (0.02 mmol), *trans*-C₂F₅CF=CFH (0.05 mmol), and BF₃·NCCH₃ (0.20 mmol). The precipitate was washed with ether (2× 2 mL) and dried in vacuum to yield KBr (35 mg, 0.29 mmol) which was determined by the quantitative reaction with AgNO₃ in water.

4.9.5. Reaction of K[trans-C₄F₉CF=CFBF₃] in MeCN

A solution of K[*trans*-C₄F₉CF=CFBF₃] (85 mg, 0.22 mmol) and bromine (40 mg, 0.25 mmol) in MeCN (2 mL) was heated in a sealed tube for 6 h at 50 °C. No reaction occurred (¹⁹F NMR). When this solution was heated in a boiling water bath for 2 h, it became yellow and a white precipitate was formed. After cooling to ~20 °C, the yellow mother liquor was separated from white precipitate after centrifugation. The ¹⁹F NMR spectrum showed the presence of K[C₄F₉CF=CFBF₃] (0.02 mmol) (*cis:trans* = 50:50), C₄F₉CF=CFBr (0.04 mmol) (*cis:trans* = 25:75), C₄F₉CF=CFH (0.12 mmol) (*cis: trans* = 67:33), and BF₃-NCCH₃ (0.02 mmol).

4.9.6. Reaction of K[trans-C₄F₉CF=CFBF₃] in MeOH

- A. A solution of K[*trans*-C₄F₉CF=CFBF₃] (41 mg, 0.10 mmol), bromine (19 mg, 0.12 mmol), and C₆F₆ (11 mg, 0.06 mmol) (internal integral standard) in MeOH (0.5 mL) was kept in a sealed tube at ~20 °C for 80 h. The yellow solution contained K[C₄F₉CF=CFBF₃] (0.09 mmol) (*cis:trans* = 58:42) (¹⁹F NMR).
- B. A solution of K[*trans*-C₄F₉CF=CFBF₃] (41 mg, 0.11 mmol), bromine (19 mg, 0.12 mmol), and C₆F₆ (11 mg, 0.06 mmol) (internal integral standard) in MeOH (0.5 mL) was kept at 90 °C for 1 h. The yellow solution contained K[C₄F₉CF=CFBF₃] (0.05 mmol) (*cis:trans* = 42:58), *trans*-C₄F₉CF=CFBF (0.02 mmol), and *trans*-C₂F₅CF=CFH (0.02 mmol) besides traces of *cis*-C₄F₉CF=CFBr and *cis*-C₄F₉CF=CFH (¹⁹F NMR).

4.9.7. Reaction of $K[CF_3C \equiv CBF_3]$ in MeCN

A solution of K[CF₃C=CBF₃] (50 mg, 0.25 mmol) and bromine (48 mg, 0.30 mmol) in MeCN (0.6 mL) was heated in a sealed tube at 50 °C for 5 h and formed a white precipitate and a yellow mother liquor. The ¹⁹F NMR spectrum of the latter showed resonances of CF₃C=CBr (0.03 mol), CF₃C=CH (0.02 mmol), CF₃CBr=CBr₂ (0.05 mmol) besides many resonances of weak intensity at -49 to -65 ppm. Signals of [CF₃C=CBF₃]⁻ and [CF₃CBr=CBrBF₃]⁻ as well as signals of any [RBF₃]⁻ anion at -130 to -160 ppm were not detected.

4.10. Attempted reaction of $K[C_6F_{13}BF_3]$ with bromine in MeCN

A solution of $K[C_6F_{13}BF_3]$ (61 mg, 0.14 mmol) and bromine (30 mg, 0.18 mmol) in MeCN (0.7 mL) was stirred at ~20 °C for 40 h. No reaction was detected (¹⁹F NMR).

4.11. Reactions of alkenyl- and alkynyltrifluoroborate salts with $[Bu_4N][Br_3]$

4.11.1. Reaction of $K[C_4H_9CH=CHBF_3]$

K[C₄H₉CH=CHBF₃] (118 mg, 0.62 mmol) was dissolved in aq THF (1:1, v/v) (6 mL) and [Bu₄N][Br₃] (307 mg, 0.64 mmol) was added in one portion. The pale-yellow solution was stirred at ~20 °C for 30 min and diluted with ether (3 mL). The organic phase was decanted and the aqueous one was extracted with ether (5 mL). The combined ether phases were dried with MgSO₄ and concentrated to ~1 mL at 60–65 °C (bath). The solution contained C₄H₉CH=CHBr (0.18 mmol, internal integral standard C₆F₅H, ¹H NMR) and [Bu₄N]⁺ (signals were overlapped by solvent signals).

4.11.2. Reaction of K[trans-C₄H₉CF=CFBF₃]

K[*trans*-C₄H₉CF=CFBF₃] (159 mg, 0.70 mmol) was reacted with [Bu₄N][Br₃] (365 mg, 0.76 mmol) in aq THF (1:1, v/v) (4 mL) as described above and yielded a solution of *trans*-C₄H₉CF=CFBr (0.32 mmol) and [Bu₄N][BF₄] (0.70 mmol) (¹⁹F NMR).

4.11.3. Reaction of K[trans-C₄F₉CF=CFBF₃]

A solution of K[*trans*-C₄F₉CF=CFBF₃] (130 mg, 0.34 mmol) and [Bu₄N][Br₃] (161 mg, 0.33 mmol) in aq THF (1:1, v/v) (2 mL) was stirred at ~20 °C for 24 h and formed a yellow emulsion. After separation of the phases, the ¹⁹F NMR spectrum of the upper organic phase showed the presence of K[C₄F₉CF=CFBF₃] (*cis:trans* = 20:80) (0.30 mmol) (C₆H₅CF₃ as internal integral standard).

4.11.4. Reaction of $K[CF_3C \equiv CBF_3]$

A solution of $K[CF_3C=CBF_3]$ (146 mg, 0.73 mmol) and $[Bu_4N][Br_3]$ (366 mg, 0.76 mmol) in aq THF (1:1, v/v) (4 mL) was stirred at ~20 °C for 6 h and formed a yellow emulsion. After phase separation, the ¹⁹F NMR spectrum of upper (organic) phase showed the quantitative recovery of $K[CF_3C=CBF_3]$.

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft, the Russian Foundation for Basic Research, and the Fonds der Chemischen Industrie.

References

- [1] V.V. Bardin, N.Yu. Adonin, H.-J. Frohn, Z. Anorg. Allg. Chem., in press.
- [2] M.-L. Yao, M.S. Reddy, L. Yong, I. Walfish, D.W. Blevins, G.W. Kabalka, Org. Lett. 12
- (2010) 700-703.
 [3] G.W. Kabalka, A.R. Mereddy, J.F. Green, J. Label. Compd. Radiopharm. 49 (2006) 11-15
- [4] G.W. Kabalka, A.R. Mereddy, Organometallics 23 (2004) 4519–4521.
- [5] G.W. Kabalka, A.R. Mereddy, Tetrahedron Lett. 45 (2004) 1417–1419.
- [6] G.W. Kabalka, A.R. Mereddy, J. Label. Compd. Radiopharm. 48 (2005) 359–362.
- [7] N.A. Petatis, A.K. Yudin, I.A. Zavialov, G.K.S. Prakash, G.A. Olah, Synlett (1997) 606– 608.
- [8] (a) Partially reported: H.-J. Frohn, V.V. Bardin, 13th European Symposium on Fluorine Chemistry, Bordeaux (France), July 15–20, 2001, 1-P61;
 (b) N.Yu. Adonin, V.V. Bardin, H.-J. Frohn, 18th International Symposium on Fluorine Chemistry, Bremen (Germany), July 30–August 4, (2006), p. 300.
- [9] V.V. Bardin, S.G. Idemskaya, H.-J. Frohn, Z. Anorg, Allg. Chem. 628 (2002) 883–895.
 [10] H.-J. Frohn, V.V. Bardin, Z. Anorg, Allg. Chem. 628 (2002) 1853–1856.
- [11] L.M. Yagupolskii, in: B. Baasner, H. Hagemann, J.C. Tatlow (Eds.), 4th ed., Houben–Weyl Methods of Organic Chemistry. Organo-Fluorine Compounds, vol. E10a, Thieme, Stuttgart, 2000, pp. 234–264.
- [12] F.L.M. Pattison, D.A.V. Peters, F.H. Dean, Can J. Chem. 43 (1965) 1689-1699.
- [13] R.E.A. Dear, J. Org. Chem. 35 (1970) 1703-1705.
- [14] A.V. Fokin, Yu.N. Studnev, A.I. Rapkin, I.N. Krotovich, A.S. Tatarinov, O.V. Verenikin, Izv. Akad. Nauk. SSSR Ser. Khim. 229 (1985) 8–2302; A.V. Fokin, Yu.N. Studnev, A.I. Rapkin, I.N. Krotovich, A.S. Tatarinov, O.V. Verenikin, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 34 (1985) 2128–2131.
- [15] V.V. Bardin, H.-J. Frohn, Z. Anorg. Allg. Chem. 628 (2002) 721–722.
- [16] H.-J. Frohn, M. Giesen, V.V. Bardin, J. Fluorine Chem. 131 (2010) 969–974.
- [17] D.F. Shellhamer, J.L. Allen, R.D. Allen, D.C. Gleason, C. O'Neil Schlosser, B.J. Powers, J.W. Probst, M.C. Rhodes, A.J. Ryan, P.K. Titterington, G.G. Vaughan, V.L. Heasley, J. Org. Chem. 68 (2003) 3932–3937.
- [18] (a) H.-J. Frohn, M.E. Hirschberg, R. Boese, D. Bläser, U. Flörke, Z. Anorg. Allg. Chem. 634 (2008) 2539–2550;
 (b) W.L.F. Armarego, C. Li Lin Chai, Purification of Laboratory Chemicals, 5th ed.,
- Elsevier, 2003. [19] (a) F. Tellier, R. Sauvêtre, J.-F. Normant, J. Organomet. Chem. 362 (1989) 23–29;
- (b) G. Brauer (Ed.), Handbuch der Präparativen Anorganischen Chemie, 3rd ed., vol. 1, F. Enke Verlag, Stuttgart, 1975, p. 289.
- [20] S. Kajigaeshi, T. Kakinami, T. Okamoto, S. Fujisaki, Bull. Chem. Soc. Jpn. 60 (1987) 1159–1160.
- [21] H.-J. Frohn, V.V. Bardin, Z. Anorg. Allg. Chem. 627 (2001) 2499-2505.
- [22] H.-J. Frohn, V.V. Bardin, Z. Anorg. Allg. Chem. 629 (2003) 2465-2469.
- [23] V.V. Bardin, N.Yu. Adonin, H.-J. Frohn, Organometallics 24 (2005) 5311-5317.
- [24] N.Yu. Adonin, V.V. Bardin, H.-J. Frohn, Main Group Met. Chem. 32 (2009) 153-159.
- [25] T. Gouyon, R. Sauvêtre, J.-F. Normant, J. Organomet. Chem. 394 (1990) 37-44.
- [26] S. Martin, R. Sauvêtre, J.-F. Normant, J. Organomet. Chem. 264 (1984) 155-161.