Analgesic Activity of Some 3-(Arylpiperidinomethyl)-2-benzoxazolinone Derivatives

Hakkı Erdoğan and Serdar Ünlü

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey.

Rümeysa Sunal

Department of Pharmacology, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey.

Received May 2, 1988

In our previous study^{1,2)}, the antimicrobial activities of 16 new compounds synthetized by reacting 2-benzoxazolinones with derivatives of piperidine were determined. In this study, the analgesic activities of these compounds, using modified *Koster's* test³⁾ is investigated. The analgesic activities of these compounds are higher than that of O-acetyl salicilic acid.

Analgetische Effekte einiger 3-(Arylpiperidinomethyl)-2-benzoxazolinone

In unseren früheren Mitteilungen^{1,2)} wurden die antimikrobiellen Aktivitäten von 16 neuen Substanzen, die durch Kondensation von 2-Benzoxazolinonen mit Piperidin-Derivaten dargestellt wurden, bestimmt. In dieser Arbeit wird die analgetische Aktivität dieser Substanzen nach einem modifizierten Test von Koster³⁾ untersucht: die analgetischen Aktivitäten sind höher als die von O-Acetylsalicylsäure.

After the report on 2-benzoxazolinones as potent hypnotics⁴⁾ the biological activities of 2-benzoxazolinone derivatives were widely investigated. They were found to be potent analgesic⁵⁻¹²⁾, antipyretic^{7.8)}, and antiinflammatory⁸⁾ agents.

2-Benzoxazolinones which were modified structurally at the position 3 and systematically at the positions 5 and 6 were screened for their biological activities and aminoalkyl substition at position 3 was found to pronounce the analgesic activity.

*Bonte*⁶⁾ and *Renard*⁹⁾ synthesized 6-acyl-2-benzoxazolinone derivatives with analgesic activities more potent than those of aspirin^{6,9,13)}.

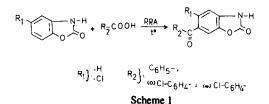
In this study, several new 3-(piperidine-1-yl)methyl-2-benzoxazolinone derivatives (Table 1) have been prepared, and their analgesic activity and toxicities at single high dose levels have been examined.

Results and Discussion

16 compounds with 3-(4-arylpiperidine-1-yl)methyl-2benzoxazolinone structure were synthesized by Mannich reaction using 2-benzoxazolinone, 5-chloro-2-benzoxazolinone, their 6-acyl derivatives and piperidine increments^{1,2)} (Table 1).

6-Acyl derivatives of 2-benzoxazolinone and 5-chloro-2benzoxazolinone were prepared by *Friedel-Crafts*-acylation of 2-benzoxazolinone or 5-chloro-2-benzoxazolinone with aromatic acids (Scheme 1).

The compounds were screened for their analgesic activities by a modified *Koster's* method.


Since all the 2-benzoxazolinone derivatives have analgesic activities, further experiments are carried out to elucidate their antiinflammatory activities and their inhibition of prostaglandin synthesis.

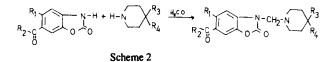

The title compounds were prepared by *Mannich* reaction. 2-Benzoxazolinone derivatives as active hydrogene compounds and piperidine derivatives as amines were used (Scheme 2).

Table 1: 3-Arylpiperidinomethyl-2-Benzoxazolinones

$$\begin{array}{c} R_{1} \\ R_{2} \\ \end{array} \\ \begin{array}{c} N - CH_{2} - N \\ 0 \\ \end{array} \\ \begin{array}{c} R_{3} \\ R_{4} \\ \end{array} \\ \begin{array}{c} R_{4} \\ R_{4} \\ \end{array}$$

Comp.No:	R ¹	R ²	R ³	R ⁴
1	н	Н	-OH	C ₆ H ₅ -
2	Н	н	-H	C ₆ H ₅ -CH ₂ -
3	н	C ₆ H ₅ -CO-	-OH	C6H5-
4	н	C ₆ H ₅ -CO-	-H	C ₆ H ₅ -
5	h	C ₆ H ₅ -CO-	-H	C ₆ H ₅ -CH ₂ -
6	н	(0)Cl-C6H4-CO-	-OH	C ₆ H ₅ -
7	н	(0)Cl-C6H4-CO-	-H	C ₆ H ₅ -CH ₂
8	н	(0)Cl-C6H4-CO-	-H	C6H₂-
9	Cl	н	-OH	C ₆ H ₅ -
10	Cl	(0)Cl-C6H4-CO-	-OH	C6H3-
11	Ċi	н	-H	C ₆ H ₅ -CH ₂ -
12	Cl	(o)Cl-C6H4-CO-	-H	C6H3-
13	Cl	C6H5-CO-	-OH	C ₆ H ₅ -
14	Cl	C ₆ H ₅ -CO-	-H	C6H3-
15	Cl	(m)Cl-C ₆ H ₄ -CO-	-OH	C6H5-
16	Cl	(m)Cl-C ₆ H ₄ -CO-	-H	C ₆ H ₅ -

IR- and ¹H-NMR-spectra are in accordance with the anticipated structures.

Experimental Part

Material and Methods

1. Chemistry

2-Benzoxazolinone, 5-chloro-2-benzoxazolinone, 4-hydroxy-4-phenylpiperidine, 4-benzylpiperidine and 4-phenylpiperidine were purchased from Merck and Aldrich.

Melting points: Buchi SMP-20, uncorrected. – UV spectra: Hitachi 2205 Spectrophotometer, methanol $6\cdot10^{-4}$ M concentration. – IR spectra: Perkin Elmer 457 IR Grating Spectrophotometer, KBr pellets. – ¹H-NMR spectra: Brucker 200 MHz, [D₆]DMSO, tetramethylsilane as int. standard. – Elemental analysis: Beller Mikroanalytisches Laboratorium, D-3400 Göttingen, Theaterstraße 23, West Germany.

 Table 2: 3-Piperidinemethyl-2-Benzoxazolinone Derivatives.
 Melting

 points, % yield and elemental analyses.

Comp.No.	m.p	Recrys.	%Yield	Elemental Analyses		
	°C			%C	%H	%N
1	195-6	Acetonit.	65	Calcd. 70.4	6.2	8.6
				Found 70.5	6.3	8.7
2	142-3	EtOH	60	74.5	6.9	8.7
				74.6	6.9	8.7
3	144-5	Acetonit.	74	72.9	5.6	6.5
				73.0	5.8	6.5
4	153-4	EtOH	75	75.7	5.9	6.9
				75.5	5.8	6.8
5	159-60	Iso-PrOH	93	76.0	6.1	6.6
				76.0	6.2	6.5
6	175-6	Iso-PrOH	51	67.5	5.0	6.5
				67.6	5.0	6.1
7	172-3	EtOH	65	70.4	5.5	6.1
				70.4	5.4	6.0
8	158-9	EtOH	59	69.9	5.2	6.3
				69.7	5.3	6.3
9	184-5	Acetonit.	81	63.6	5.3	7.8
				63.8	5.4	7.9
10	185-6	Acetonit.	76	62.8	4.5	5.6
				62.8	4.6	6.0
11	101-2	Acetonit.	74	67.3	5.9	7.9
				67.5	5.9	7.8
12	1 59-6 0	Iso-PrOH	79	64.9	4.6	5.8
				64.8	4.8	5.8
13	186-7	Iso-ProH	90	67.5	5.0	6.1
				67.5	5.2	6.0
14	177-8	Iso-PrOH	89	69.8	5.2	6.3
			~ ~	69.8	5.3	6.3
15	160-1	Iso-ProH	85	62.8	4.5	5.6
				62.9	4.6	5.8
16	114-5	Iso-PrOH	72	64.9	4.6	5.8
				65.1	4.7	5.8

a) 6-Acyl-2-benzoxazolinones¹³⁾

200 g polyphosphoric acid were added to 0.1 M benzoxazolinone and 0.1 M aromatic acid (acylating agent) were added in small portions. This mixture was heated and stirred at 150 °C until a dark brown colour was reached, than poured into 900 ml ice water and stirred for a further 7 h. The precipitate so formed was washed, dried and crystallized from appropriate solvents.

b)3-(4-Arylpiperidine-1-yl)methyl-2-benzoxazolinones

A solution of 0.01 M 5-chloro-2-benzoxazolinone (chlorzoxazone) and 0.01 M 1-arylpiperidine in 30 ml methanol was heated to reflux and 1 ml (0.01 M) 37% formaldehyde(w/v) was added dropwise. After stirring a few min the precipitate so formed was crystallized by appropriate solvents (Table 2).

2. Pharmacology

Local breed, female albino mice, weighing $22\pm2g$ were used. The animals were housed in groups of 6, with food and water ad libitum and were allowed to get accustomed to their environment for at least 2 days before the experiments.

Drugs and routes of administration

The synthesized compounds and aspirin were suspended in 5% gum arabic syrup and were administered orally. 3% acetic acid solution was administered intraperitoneally.

All results were statistically analysed by Student's-T test for paired observations.

Analgesic activity test

Modified Koster's Test was employed. Aspirin was used as reference, pain was induced by i.p. acetic acid (300 mg/kg) injection. -1 h prior to this injection, the compounds were administered orally to mice grouped in 6, at dose levels given in Table 3. -2 control groups (n = 6) received gum arabic syrup 1 h before injecting acetic acid. - Animals were placed in glass cages 5 min after acetic acid administration and the number of "streching" per animal was recorded during the following 10 min; % analgesic activity was calculated:

% Analgesic activity
$$=\frac{n-n'}{n}x100$$

n = average number of "streching" of control group n'= average number of "streching" of test group

Toxicity Tests

Compounds with high analgesic activity were employed in toxicity tests: 22 2g mice were grouped in 3. Compounds were administered orally at 1000 mg/kg dose level. Mortality rates and behavioral activity of animals were determined within the following 7 days. When compounds were lethal at 1000 mg/kg, the same procedure was undertaken at 500 mg/kg. Results are given in Table 4.

References

- A. Cesur, H. Erdogan, and N. Yulug, Turkish J. Med. and Pharm. 10, 118 (1986); C.A. 105, 168764n (1986).
- 2 S. Ünlü, H. Erdogan, and N. Yulug, Hacettepe University, J. Faculty of Pharmacy. 7, 65 (1987); C.A. 109, 125683a (1988).
- 3 R. Koster, M. Anderson, and M. Debeer, Fed. Proc. 18, 412 (1959).

Table 3: Analgesic activity test results.

Comp.No.	Dose mg/kg (oral)	% Analgesic activity	Statistical results
1	100	60	p<0.01
2	100	55	p<0.05
3	100	53	p<0.05
4	100	62	p<0.01
5	100	60	p<0.01
6	100	57	p<0.05
7	100	64	p<0.01
8	100	61	p<0.01
9	100	67	p<0.01
10	100	69	p<0.01
11	100	66	p<0.01
12	100	77	p<0.01
13	100	61	p<0.01
14	100	68	p<0.01
15	100	71	p<0.01
16	100	69	p<0.01
aspirin	100	48	p<0.05

- 4 A. Lespagnol, M. Durbet, and G. Mongy, Comp. Rend. Soc. Biol. Lille. 135, 1255 (1941); C.A. 38, 5587⁸ (1944).
- 5 R. Aries, France Pat. 1, 593, 066 03 Jul (1970); C.A. 74, 87950j (1971).
- 6 J. P. Bonte, D. Lesieur, and C. Lespagnol, Eur. J. Med. Chem.-Chim. Ther. 9, 491 (1974).
- 7 C. Lespagnol, D. Lesieur, and J. C. Cazin, Eur. J. Med. Chem.-Chim. Ther. 11, 33 (1976).
- 8 J. S. Oxford and C. V. Richmond, U.S. Pat. 3, 369, 022 13 Feb (1968).
- 9 P. Renard, D. Lesieur, and C. Lespagnol, Eur. J. Med. Chem.-Chim. Ther. 15, 453 (1980).

Table 4: Toxicity test results

Comp.no.	Dose (mg/kg) oral	Mortality rate	Observed Toxicity
1	1000	0/3	-
2	1000	0/3	-
3	1000	0/3	-
4	1000	0/3	-
5	1000	0/3	-
6	1000	0/3	-
7	1000	0/3	-
8	1000	0/3	-
9	1000	1/3	muscular hypotony
	500	0/3	-
10	1000	0/3	-
11	1000	0/3	-
12	1000	1/3	muscular hypotony
	500	0/3	-
13	1000	0/3	-
14	1000	1/3	muscular hypotony
	500	0/3	-
15	1000	1/3	muscular hypotony
	500	0/3	-
16	1000	1/3	mild muscular atony
	500	0/3	-

- 10 W. J. Close, B. D. Tiffany, and M. A. Spielman, J. Am. Chem. Soc. 71, 1265 (1945).
- 11 C. Lespagnol, M. Cazin, J. C. Cazin, D. Lesieur, and C. Dupont, Chem. Ther. 2, 347 (1967).
- 12 A. Lespagnol, J. Mercier, R. Sestier, and P. Marinacce, Bull. Soc. Chim. Biol. 34, 397 (1952); C.A. 47, 2355e (1953).
- 13 H. Erdogan, Turkish J. Pharmacol. Clin. Res. 3, 12 (1985); C.A. 102, 149229p (1985).

[Ph518]