Synthesis of Quinazoline Analogues with Differential Activity for HER2-overexpressing Breast Cancer Cells

Sun-Young Jang,^{†,‡,§} Seul Lee,^{‡,§} Mira Kim,^{†,‡} Young Jin Ham,[†] Mi Young Cha,[†] Kwee Hyun Suh,[†] Young Hoon Kim,[†] Ara Kwon,[‡] Hae Ju Kang,[‡] Kyung Hoon Min,^{‡,*} and Kwang-Ok Lee^{†,*}

[†]Hanmi Research Center, Hanmi Pharm. Co. Ltd, Gyeonggi-do 445-813, Republic of Korea. *E-mail: kolee@hanmi.co.kr

[‡]College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea. *E-mail: khmin@cau.ac.kr Received March 18, 2015, Accepted March 26, 2015, Published online June 23, 2015

Keywords: HER2, Tyrosine kinase inhibitor, Quinazoline analogues

HER2 (also known as ErbB2) is a member of the epidermal growth factor receptor (EGFR) family, which also includes EGFR, HER2, HER3, and HER4. It is a receptor tyrosine kinase^{1,2} and plays a pivotal role in oncogenic transformation and tumorigenesis via homodimerization or heterodimerization with EGFR family members to activate intracellular signaling.^{3,4} Overexpression or amplification of HER2 receptor is seen in a variety of cancers, including breast, gastric, pancreatic, and bladder cancer.⁵ Recent cancer genome sequencing has shown that somatic mutations in HER2 are driver events in breast⁶ and non-small cell lung cancers.⁷ Drugs targeting HER2 include monoclonal HER2 antibodies, such as trastuzumab⁸ and pertuzumab,⁹ and tyrosine kinase inhibitors, such as lapatinib.¹⁰ These drugs are used clinically in combination with other anticancer drugs for the treatment of HER2-positive breast cancer. Lapatinib is an inhibitor of both EGFR and HER2 and exhibits potent antiproliferative activity against EGFR- and HER2-dependent cancer cells. However, potent inhibition of EGFR causes side effects, including diarrhea and skin rash, which diminish patient quality of life during long-term treatment. These adverse events are common with EGFR tyrosine kinase inhibitors such as gefitinib¹¹ and erlotinib¹² (Figure 1). Thus, when using lapatinib, it is important to minimize the side effects by reducing the inhibition of EGFR activity and maximizing the drug efficacy.¹³ Herein, we describe potent inhibitors with differential activity in HER2-dependent breast cancer cells and EGFR-dependent cancer cells.

We commenced with the synthesis of a series of quinazoline derivatives (Table 1), in which an amide replaced the substituted furan moiety of lapatinib at the C_6 position, as well as the C_7 position (Figure 2). The aniline moiety at the C_4 position was fixed as 3-chloro-4-(pyridin-2-ylmethoxy)aniline, because it was a useful substituent to increase growth inhibitory activity against SkBr3 cells according to our previous report.¹⁴

The synthesis of C₆-modified quinazoline analogues is outlined in Scheme 1. 7-Nitro-4(3*H*)-quinazolinone **2** was obtained from the reaction of 2-amino-5-nitrobenzoic acid **1** with formamide at $170 \degree$ C. Chlorination of 7-

nitroquinazoinone 2 using thionyl chloride in the presence of phosphoryl chloride and DMF (dimethylformamide) afforded 4-chloroquinazoline 3, which was converted to aminoquinazoline 4 through the addition of 3-chloro-4-(pyridin-2-ylmethoxy) aniline and subsequent reduction using iron. Coupling of *N*-Boc-protected amino acids and aminoquinazoline 4 followed by deprotection of the *N*-Boc group using trifluoroacetic acid provided the desired analogues (6–14).

The synthetic route for C₇-modified quinazoline analogues is illustrated in Scheme 2. 6-Fluoro-7-nitroquinazolinone **15** was synthesized from commercially available 2-amino-4fluoro-5-nitrobenzoic acid using the same synthetic method used for compound **2**. Nucleophilic substitution with alcohols or amine in the presence of potassium trimethylsilanolate in DMSO (dimethyl sulfoxide) gave the quinazolinone **16**, which was converted to chloroquinazoline **17** and reduced to 7-aminoquinazline **18**. Finally, *N*-Boc-_L-proline was coupled with 7-aminoquinazoline **18** in the presence of EDCI (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), and *N*-Boc group was deprotected to provide C₆-modified quinazoline analogues (**20–23**).

Antiproliferation assay¹⁵ was performed to determine the selectivity between A-431, an EGFR-overexpressing cancer cell line, and SKBr-3, an HER2-overexpressing breast cancer cell line (Table 1). Gefitinib was used as an EGFR selective inhibitor and lapatinib was used as an EGFR/HER2 dual inhibitor. Acyclic amino acid derivative 6 showed higher selectivity for SKBr-3 cells than the corresponding cyclic derivative 8. (S)-Isomer 7 exhibited ~10-fold greater potency than racemic compound 8. Ring-expanded compounds (R)-9 and (S)-10 were also synthesized. (S)-Isomer 10,¹⁶ which had a GI₅₀ of 8.8 nM, showed more than 200-fold greater potency than (*R*)-isomer 9, which had a GI_{50} of 2148 nM in SKBr-3 cells. In terms of selectivity, the activity of (S)-isomer 10 in SKBr-3 cells was ~21-fold greater than that in A-431 cells. However, (R)-isomer 9 did not show differential activity in A-431 and SKBr-3 cells. N-methylation of the pyrrolidine group of compound 10 led to a complete loss of activity. Piperidine derivatives 12-14 had similar activity in both A431 and SKBr-3 cells, but were less active than compound 10.

[§] These authors contributed equally to this work.

Next, we synthesized the derivatives of compound 10 by introducing various substituents at the C₇ position. However, introduction of fluoro (20), dimethylamino (22), and 1methyl-piperidinyl methyloxy (23) groups resulted in a loss of activity, except for the introduction of methoxy group. Only methoxy analogue 21 showed moderate activity and selectivity. Among the derivatives, (*S*)-proline derivative 10 was the most potent, with high selectivity for SKBr-3 over A431 cells. The kinase activity of compound 10 for EGFR

Figure 1. Chemical structures of EGFR tyrosine kinase inhibitors (gefitinib, erlotinib, and lapatinib).

 Table 1. Activity of synthesized quinazoline derivatives in A-431

 and SKBr-3 cells.¹⁵

	(GI ₅₀ , nM)		
Compound	A-431	SKBr-3	Fold ratio ^a
6	4697	213	22
7	471	29	16
8	1298	276	4.7
9	1390	2148	0.65
10	184	8.8	21
11	>1000	>5000	_
12	208	58	3.6
13	323	73	4.4
14	142	51	2.8
20	>1000	>1000	_
21	483	56	8.5
22	>1000	>1000	_
23	2888	2487	1.2
Gefitinib	28	206	0.14
Lapatinib	98	29	3.4

^{*a*} GI_{50} for A431/ GI_{50} for SKBr3.

and HER2 was explored *in* vitro.¹⁷ Unlike the results from the cell-based assay, EGFR and HER2 were inhibited by 99% and 90%, respectively, by 1 μ M of compound **10**. Data from cell-based assays and *in vitro* kinase assay were not consistent. Thus, further investigation, including biochemical experiments such as western blotting, is required to investigate the high differential activity of compound **10**.

In summary, we discovered novel quinazoline analogues that had high potency and selectivity for HER2overexpressing cancer cells compared with EGFRoverexpressing cancer cells. The most potent compound, **10**, could be a useful chemical tool to find a therapeutic target for the treatment of HER2-dependent cancer patients.

Acknowledgments. This research was supported by Korea Drug Development Fund (KDDF) funded by Ministry of Science, ICT and Future Planning, Ministry of Trade, Industry & Energy, and Ministry of Health & Welfare (KDDF-201208-07), and by the Chung-Ang University Research Scholarship Grants in 2014.

Figure 2. Design of quinazoline derivatives based on lapatinib.

Scheme 1. Reagents and conditions: (a) formamide, $170 \,^{\circ}$ C; (b) SOCl₂, POCl₃, DMF (cat.); (c) 3-chloro-4-(pyridin-2-ylmethoxy) aniline, *i*PrOH, reflux; (d) Fe, *c*-HCl (cat.), 50% EtOH, reflux; (e) *N*-Boc-amino acid, EDCI, pyridine, rt; (f) TFA, DCM, rt.

Scheme 2. Reagents and conditions: (a) alcohols or amine, KOTMS, DMSO, rt; (b) SOCl₂, POCl₃, DMF (cat.); (c) 3-chloro-4-(pyridin-2-ylmethoxy)aniline, *i*PrOH, reflux; (d) Fe, *c*-HCl (cat.), EtOH/H₂O (1:1), reflux; (e) *N*-Boc-_L-proline, EDCI, pyridine, rt; (f) TFA, DCM, rt.

References

- L. Coussens, T. L. Yang-Feng, Y.-C. Liao, E. Chen, A. Gray, J. McGrath, P. H. Seeburg, T. A. Libermann, J. Schlessinger, U. Franke, A. Levinson, A. Ullrich, *Science* **1986**, *230*, 1132.
- T. Akiyama, C. Sudo, H. Ogawara, K. Toyoshima, T. Yamamoto, *Science* 1986, 232, 1644.
- 3. C. I. Bargmann, M.-C. Hung, R. A. Weinberg, *Nature* **1986**, *319*, 226.
- D. Graus-Porta, R. R. Beerli, J. M. Daly, N. E. Hynes, *EMBO J.* 1997, 16, 1647.
- S. Scholl, P. Beuzeboc, P. Pouillart, Ann. Oncol. 2001, 12 (Suppl. 1), S81.
- 6. W. Pao, N. Girard, Lancet Oncol. 2011, 12, 175.

- R. Bose, S. M. Kavuri, A. C. Searleman, W. Shen, D. Shen, D. C. Koboldt, J. Monsey, N. Goel, A. B. Aronson, S. Li, C. X. Ma, L. Ding, E. R. Mardis, M. J. Ellis, *Cancer Discov.* 2013, 3(2), 224.
- 8. M. M. Goldenberg, Clin. Ther. 1999, 21, 309.
- S. J. Malenfant, K. R. Eckmann, C. M. Barnett, *Pharmacotherapy* 2014, *34*, 60.
- F. Montemurro, G. Valabrega, M. Aglietta, *Expert Opin. Biol. Ther.* 2007, 7, 257.
- 11. J. Vansteenkiste, Expert Rev. Anticancer Ther. 2004, 4, 57.
- P. A. Tang, M. S. Tsao, M. J. Moore, *Expert Opin. Pharmacother.* 2006, 7, 177.
- 13. B. Moy, P. E. Goss, Oncologist 2007, 12, 756.
- M. Y. Cha, K. O. Lee, J. W. Kim, C. G. Lee, J. Y. Song, Y. H. Kim, G. S. Lee, S. B. Park, M. S. Kim, *J. Med. Chem.* 2009, 52, 6880.
- 15. The number of viable cells was determined using a Cell Counting Kit 8 (Dojindo Co. Japan) according to the manufacturer's instruction.
- 16. Spectral data of compound **13**: ¹H-NMR (CDCl₃, 600 MHz): δ 10.12 (s, 1H), 8.87 (d, 1H, J = 2.4 Hz), 8.66 (1H, s), 8.09 (d, 1H, J = 4.2 Hz), 8.05 (d, 1H, J = 1.2 Hz), 7.82 (d, 1H, J = 9Hz), 7.75(s, 1H), 7.53 (dd, 1H, J = 9 Hz, 2.4 Hz), 7.48 (dd, 1H, J = 9 Hz, 2.4 Hz), 7.53 (dd, 1H, J = 9 Hz), 7.25–7.29 (m, 1H), 6.94–6.99 (m, 2H), 6.88 (dt 1H, J = 8.4 Hz, 1.8 Hz), 5.58 (s,2H), 3.92 (q, 1H, J = 9.6 Hz, 5.4 Hz), 3.12 (dt, 1H, J = 10.2Hz, 6.6 Hz), 2.24–2.27 (m, 1H), 2.03–2.09 (m, 1H), 1.76–1.82 (m, 2H), ¹³C-NMR (CDCl₃, 150 MHz): δ 174.1, 163.8, 162.2, 157.8, 154.1, 146.9, 139.3, 139.2, 137.4, 135.8, 133.7, 131.5, 130.3, 130.3, 129.5, 125.5, 124.6, 123.9, 122.7, 122.7, 115.3, 114.9, 114.7, 114.2, 114.1, 109.5, 108.7, 61.01, 52.5, 52.5, 47.4, 30.8, 26.4, HRMS (ESI): exact mass calcd. for C₂₇H₂₄FN₇O [M+H]⁺, 482.2099, found 482.2086.
- 17. *In vitro* kinase assay was performed by Eurofins Pharma Discovery Service (Dundee, UK).