### Dalton Transactions



### **PAPER**



**Cite this:** *Dalton Trans.*, 2015, **44**, 6040

Accepted 12th February 2015 DOI: 10.1039/c5dt00062a

Received 7th January 2015,

www.rsc.org/dalton

# O,N,N-Pincer ligand effects on oxidatively induced carbon-chlorine coupling reactions at palladium†

Luka A. Wright,<sup>a</sup> Eric G. Hope,<sup>a</sup> Gregory A. Solan,\*<sup>a</sup> Warren B. Cross<sup>a,b</sup> and Kuldip Singh<sup>a</sup>

The syntheses of two families of sterically tuneable O,N,N pro-ligands are reported, namely the 2-(phenyl-2'-ol)-6-imine-pyridines, 2-(C<sub>6</sub>H<sub>4</sub>-2'-OH),6-(CMe $\equiv$ NAr)C<sub>5</sub>H<sub>3</sub>N [Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (H**L1**<sub>a</sub>), 2,6-i- $Pr_2C_6H_3$  ( $HL1_b$ )] and the 2-(phenyl-2'-ol)-6-(amino-prop-2-yl)pyridines, 2-( $C_6H_4$ -2'-OH),6-( $CMe_2NHAr$ )- $C_5H_3N$  [Ar = 4-i-Pr $C_6H_4$  (H**L2**<sub>a</sub>), 2,6-i-Pr<sub>2</sub> $C_6H_3$  (H**L2**<sub>b</sub>)], using straightforward synthetic approaches and in reasonable overall yields. Interaction of  $HL1_{a/c}$  and  $HL2_{a/b}$  with palladium(III) acetate affords the O,N,N-1pincer complexes,  $[\{2-(C_6H_4-2'-O)-6-(CMe=NAr)C_5H_3N\}Pd(OAc)]$  (Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (**1a**), 2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (1b) and  $[\{2-(C_6H_4-2'-O)-6-(CMe_2NHAr)C_5H_3N\}Pd(OAc)]$  (Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (2a), 2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (2b)), which can be readily converted to their chloride derivatives, [{2-(C<sub>6</sub>H<sub>4</sub>-2'-O)-6-(CMe=NAr)C<sub>5</sub>H<sub>3</sub>N}PdCl]  $(Ar = 4-i-PrC_6H_4 \ (\textbf{3a}), \ 2,6-i-Pr_2C_6H_3 \ (\textbf{3b})) \ \ \text{and} \ \ [\{2-(C_6H_4-2'-O)-6-(CMe_2NHAr)C_5H_3N\}PdCl] \ \ (Ar = 4-i-PrC_6H_4 \ \ \textbf{3a}), \ \ 2,6-i-Pr_2C_6H_3 \ \ \textbf{3b})$  $PrC_6H_4$  (4a), 2,6-i- $Pr_2C_6H_3$  (4b)), respectively, on reaction with an aqueous sodium chloride solution. Treating each of 3a, 3b, 4a and 4b with two equivalents of di-p-tolyliodonium triflate at 100 °C in a toluene/acetonitrile mixture affords varying amounts of 4-chlorotoluene along with the 4-iodotoluene by-product with the conversions highly dependent on the steric and backbone properties of the pincer complex employed (viz. 4a > 3a > 4b > 3b); notably, the least sterically bulky and most flexible aminecontaining 4a reaches 90% conversion to 4-chlorotoluene in 15 h as opposed to 17% for imine-containing 3b. In the case of 3a, the inorganic palladium species recovered from the reaction has been identified as the Pd(II) salt  $[\{2-(C_6H_4-2'-O)-6-(CMe=N(4-i-PrC_6H_4)C_5H_3N\}Pd(NCMe)][O_3SCF_3]$  (5a), which was independently prepared by the reaction of 3a with silver triflate in acetonitrile. Single crystal X-ray structures are reported for HL1<sub>a</sub>, HL2<sub>a</sub>, 1a, 1b, 2a, 2b, 3a and 5a.

### Introduction

While hypervalent iodine salts of the type  $[Ar_2I][X]$  (X = OTf,  $BF_4$ ) have been widely used in Pd(0)/(II) cross coupling reactions, their application in Pd(II)/(IV) and/or Pd(II)/(III) chemistry has only started to emerge over the last decade. With regard to the Pd(II)/(IV) couple, stable palladium(IV) species have been characterised, computationally modelled and highlight the ability of the I(III) reagent to transfer an "Ar+" group to the palladium(II) centre; decomposition can ensue via reductive elimination of an aryl-containing product. The chlorination of Pd(II)-C and Pd(II)-Cl containing complexes with  $PhICl_2$  represents another transformation that has been more extensively studied and these reactions are considered to proceed via

In this article we report the stoichiometric reactivity of a range of palladium( $\pi$ ) chloride O,N,N-pincer complexes towards di-p-tolyliodonium triflate with a view to monitoring the effect that the O,N,N-spectator ligand has on the anticipated formation of 4-chlorotoluene. In particular, we target two families of pyridine-based  $O,N_{\rm py},N$  pincers in order to investigate how structural features within their respective  $O,N_{\rm py},N$  ligand manifold influence the C–Cl bond forming process; the effects of imine (L1) vs. amine (L2) nitrogen donor

<sup>&</sup>lt;sup>a</sup>Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK. E-mail: gas8@leicester.ac.uk

<sup>&</sup>lt;sup>b</sup>School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS. UK

 $<sup>\</sup>dagger$  CCDC 1040521–1040528. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c5dt00062a

**Fig. 1** Monoanionic 2-(phenyl-2'-olate)-6-ketimine-pyridine (**L1**) and 2-(phenyl-2'-olate)-6-(amino-prop-2-yl)pyridine (**L2**) pincer ligands.

and steric factors within the *N*-aryl group (Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub>, 2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) will be examined (Fig. 1). Full details of the synthetic and characterisation data for the pro-ligands, 2-(phenyl-2'-ol)-6-ketimine-pyridines (HL1) and 2-(phenyl-2'-ol)-6-(amino-prop-2-yl)pyridines (HL2), will be reported as will the corresponding data for their palladium( $\pi$ ) acetate (1 and 2) and chloride (3, 4) complexes.

### Results and discussion

#### (a) Preparation of pro-ligands HL1 and HL2

The 2-(phenyl-2'-ol)-6-imine-pyridines, 2-(C<sub>6</sub>H<sub>4</sub>-2'-OH),6- $(CMe=NAr)C_5H_3N$  [Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (HL1<sub>a</sub>), 2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (HL1<sub>b</sub>)], have been prepared in modest to good yield via sequential Suzuki coupling and condensation reactions from 2-hydroxyphenylboronic acid and 2-bromo-6-acetyl pyridine (Scheme 1). As a slight modification to the reported synthesis of ketone precursor, 2-(C<sub>6</sub>H<sub>4</sub>-2'-OH),6-(CMe=O)C<sub>5</sub>H<sub>3</sub>N, it was found that the cross coupling proceeds more efficiently and over a shorter reaction time using a catalyst composed of Pd-(OAc)<sub>2</sub> and PPh<sub>3</sub> in a reaction vessel open to the air. <sup>12</sup> Treatment of HL1a and HL1b with trimethylaluminium in toluene at elevated temperature followed by hydrolysis gave the 2-(phenyl-2'-ol)-6-(amino-prop-2-yl)pyridines, 2-(C<sub>6</sub>H<sub>4</sub>-2'-OH),6- $(CMe_2NHAr)C_5H_3N$  [Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (HL2<sub>a</sub>), 2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (HL2<sub>b</sub>)], in good yield. The new compounds, HL1<sub>a</sub>, HL2<sub>a</sub> and HL2<sub>b</sub>, have been characterised by a combination of <sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H} NMR, IR spectroscopy and ESI mass spectrometry (see Experimental).

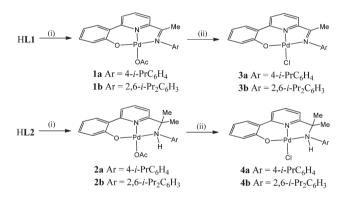
Compounds, HL1<sub>a</sub>, HL2<sub>a</sub> and HL2<sub>b</sub>, all display protonated molecular ions peaks in their electrospray mass spectra and

downfield shifted signals for the phenolic protons (range:  $\delta$  14.18–14.60) in their  $^1 H$  NMR spectra. For  $HL1_a$ , the imine methyl substituent is seen as a singlet at  $\delta$  2.32 in the  $^1 H$  NMR spectrum while the IR spectrum reveals a characteristic  $\nu(C\!\!=\!\!N)_{\rm imine}$  stretch at 1635 cm $^{-1}$ . For amine-containing  $HL2_a$  and  $HL2_b$ , broad singlets are visible for the NH protons between  $\delta$  3.3–4.0 in their  $^1 H$  NMR spectra along with sharp singlets for the equivalent gem-dimethyl protons. Further confirmation of the composition of  $HL1_a$  and  $HL2_a$  was achieved using single crystal X-ray diffraction.

Perspective views of  $\mathrm{HL1_a}$  and  $\mathrm{HL2_a}$  are depicted in Fig. 2a and b; selected bond distances and angles for both structures are listed in Table 1. Each structure consists of a central pyridine ring that is substituted at its 2-position by a phenyl-2'-ol group but differs at the 6-position with a *trans*-configured *N*-arylimine unit for  $\mathrm{HL1_a}$  [C(12)–N(2) 1.2692(19) Å] or a saturated  $\mathrm{CMe_2NH}(4\text{-i-PrC}_6\mathrm{H_4})$  unit for  $\mathrm{HL2_a}$  [C(11)–C(12)–N(2) 108.97(16)°]. In general, the pyridine nitrogen atoms adopt a *cis* conformation with respect to the neighbouring phenol oxygen as a result of a hydrogen-bonding interaction between the phenol hydrogen atom and the pyridine nitrogen [O(1)···N(1) 2.563 (HL1<sub>a</sub>), 2.537 Å (HL2<sub>a</sub>)], a conformation that has been observed in related structures.

### (b) Palladium(II) complexes of L1 and L2

Interaction of HL1<sub>a/b</sub> and HL2<sub>a/b</sub> with palladium(II) acetate the O,N,N-pincer complexes,  $[\{2-(C_6H_4-2'-O)-6-\}]$  $(CMe=NAr)C_5H_3NPd(OAc)$  (Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (1a), 2,6-i- $Pr_2C_6H_3$  (1b)) and  $[{2-(C_6H_4-2'-O)-6-(CMe_2NHAr)C_5H_3N}Pd-$ (OAc)] (Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (2a), 2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (2b)), in good yield (Scheme 2). Compounds 1 and 2 can be readily converted to their chloride analogues [{2-(C<sub>6</sub>H<sub>4</sub>-2'-O)-6-(CMe=NAr)C<sub>5</sub>H<sub>3</sub>N}-PdCl] (Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (3a), 2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (3b)) and  $[{2-(C_6H_4-2'-$ O)-6-(CMe<sub>2</sub>NHAr)C<sub>5</sub>H<sub>3</sub>N}PdCl] (Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (4a), 2,6-i- $Pr_2C_6H_3$  (4b)) by treating their chloroform or dichloromethane solutions with aqueous sodium chloride. Alternatively, 1a can be prepared more conveniently by the template reaction of 2-(C<sub>6</sub>H<sub>4</sub>-2'-OH),6-(CMe=O)C<sub>5</sub>H<sub>3</sub>N, Pd(OAc)<sub>2</sub> and 4-isopropylaniline in toluene. Complexes 1-4 are air stable and have been characterised using a combination of mass spectrometry (FAB, ESI and ToF), IR and NMR (<sup>1</sup>H and <sup>13</sup>C) spectroscopy and elemental analyses (see Experimental section). In addition,


OH OH OH (i) OH N (iii), (iv) OH N Me Ar 
$$= 4-i-\Pr_C_6H_4$$
  $+\text{IL}_1_a$  Ar  $= 4-i-\Pr_C_6H_4$   $+\text{IL}_2_a$  Ar  $= 2-6-i-\Pr_C_6H_4$   $+\text{IL}_1_b$  Ar  $= 2-6-i-\Pr_C_6H_5$   $+\text{IL}_2_b$  Ar  $= 2-6-i-\Pr_C_6H_5$  Ar  $= 2-6-i-\Pr_C_6H_5$   $+\text{IL}_2_b$  Ar  $= 2-6-i-\Pr_C_6H_5$   $+\text{IL}_2_b$  Ar  $= 2-6-i-\Pr_C_6H_5$   $+\text{IL}_2_b$  Ar  $= 2-6-i-\Pr_C_6H_5$   $+\text{IL}_2_b$  Ar  $= 2-6-i-\Pr_C_6H_5$   $+\text{IL}$ 

Scheme 1 Reagents and conditions: (i) 2-Br-6-{MeC(O)}C<sub>5</sub>H<sub>3</sub>N, cat. Pd(OAc)<sub>2</sub>/PPh<sub>3</sub>, toluene, 90 °C, 12 h; (ii) ArNH<sub>2</sub>, MeOH, cat. CH<sub>3</sub>COOH, reflux; (iii) AlMe<sub>3</sub>, toluene, 110 °C, 12 h; (iv) H<sub>2</sub>O.

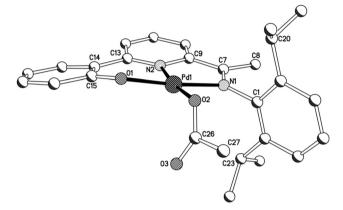

Fig. 2 (a) Molecular structure of HL1<sub>a</sub>, including a partial atom numbering scheme. All hydrogen atoms, apart from H1, have been omitted for clarity. (b) Molecular structure of HL2<sub>a</sub>, including a partial atom numbering scheme. All hydrogen atoms, apart from H1 and H2, have been omitted for clarity.

Table 1 Selected bond distances (Å) and angles (°) for HL1<sub>a</sub> and HL2<sub>a</sub>

|                  | $HL1_a$    | $HL2_{b}$  |
|------------------|------------|------------|
| Bond lengths     |            |            |
| C(1)-O(1)        | 1.3455(19) | 1.353(2)   |
| C(12)-N(2)       | 1.2692(19) | 1.460(2)   |
| C(6)-C(7)        | 1.466(2)   | 1.480(2)   |
| C(11)-C(12)      | 1.482(2)   | 1.530(3)   |
| Bond angles      |            |            |
| C(11)-C(12)-N(2) | 115.71(15) | 108.97(16) |
| C(12)-N(2)-C(14) | 123.06(15) | 125.80(16) |
|                  |            |            |



Scheme 2 Reagents and conditions: (i)  $Pd(OAc)_2$ , toluene, 75–80 °C; (ii) NaCl(aq.),  $CHCl_3$  or  $CH_2Cl_2$ , RT.



**Fig. 3** Molecular structure of **1b** including a partial atom numbering scheme. All hydrogen atoms have been omitted for clarity.

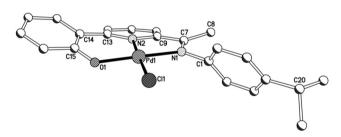



Fig. 4 Molecular structure of **3a** including a partial atom numbering scheme. All hydrogen atoms have been omitted for clarity.

crystals of 1a, 1b, 2a, 2b and 3a have been the subject of single crystal X-ray diffraction studies.

The molecular structures of imine-based **1a**, **1b** and **3a** are closely related and will be discussed together; amine-containing **2a** and **2b** will be discussed later. Views of **1b** and **3a** are given in Fig. 3 and 4; selected bond distances and angles are collected for all three structures in Table 2. There are four independent molecules for **1a** in the unit cell (molecules A–D) which differ most noticeably in the relative inclinations of the adjacent phenolate and pyridine rings (*vide infra*). The structures (**1a**, **1b** and **3a**) each consist of a single palladium(n) centre bound by a tridentate monoanionic 2-(phenyl-2'-olate)-6-ketimine-pyridine ligand along with a monodentate O-bound acetate (**1**) or chloride (**3**) to complete a distorted square

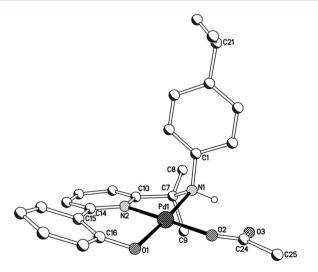

planar geometry. Both 5- and 6-membered chelate rings are present within the complexes with the bite angle for the 6-membered ring being slightly more compatible with the geometrical requirements of the palladium(II) centre  $[O(1)-Pd(1)-N(2)_{6-membered}$ :  $96.4(4)_{av}$ . (1a), 94.4(1) (1b), 93.8 (2)° (3a) vs.  $N(2)-Pd(1)-N(1)_{5-membered}$   $82.1(4)_{av}$ . (1a), 81.7(1) (1b), 81.7(2)° (3a)]. In all cases some twisting of the phenolate unit with respect to the pyridyl plane is apparent  $[tors. N(2)-C(13)-C(14)-C(15) 0.0(3)_A, 2.5(3)_B, 5.7(3)_C, 9.5(3)_D$  (1a), 14.1(3) (1b), 22.1(3)° (3a)]. In general, the Pd-N<sub>imine</sub> bond distance is the longest of the three metal-ligand interactions involving the  $O_2N_2N_2$ -ligand followed by the Pd-N<sub>pyridine</sub> distance and then by the Pd-O<sub>phenolate</sub> distance which is best exemplified for complex 3a  $[Pd(1)-N(1)_{imine} 2.011(4) > Pd(1)-N(2)_{pyridine}$ 

Table 2 Selected bond distances (Å) and angles (°) for 1a, 1b and 3a

|                  | 1a         |            |            |            |            |            |
|------------------|------------|------------|------------|------------|------------|------------|
|                  | Molecule A | Molecule B | Molecule C | Molecule D | 1b         | 3a         |
| Bond lengths     |            |            |            |            |            |            |
| Pd(1)-O(1)       | 1.947(7)   | 1.928(8)   | 1.951(8)   | 1.934(8)   | 1.953(3)   | 1.961(3)   |
| Pd(1)-N(1)       | 1.972(9)   | 1.980(9)   | 1.978(10)  | 1.961(10)  | 2.006(3)   | 2.011(4)   |
| Pd(1)-N(2)       | 1.961(9)   | 1.972(9)   | 1.980(9)   | 2.005(10)  | 1.969(3)   | 1.972(4)   |
| Pd(1)-Cl(1)      | _          | _ ` `      | _ ` `      | _ ` ´      | _ ``       | 2.3039(14) |
| Pd(1)-O(2)       | 2.038(8)   | 2.033(8)   | 2.016(8)   | 2.025(8)   | 2.036(3)   | _ ` `      |
| C(7)-N(1)        | 1.319(12)  | 1.295(13)  | 1.303(13)  | 1.302(14)  | 1.292(5)   | 1.301(6)   |
| C(7)-C(8)        | 1.484(13)  | 1.496(14)  | 1.515(15)  | 1.514(15)  | 1.509(5)   | 1.497(7)   |
| C(15)-O(1)       | 1.306(12)  | 1.310(13)  | 1.347(13)  | 1.321(14)  | 1.317(5)   | 1.317(6)   |
| Bond angles      |            |            |            |            |            |            |
| N(1)-Pd(1)-N(2)  | 82.9(4)    | 82.2(4)    | 81.8(4)    | 81.9(4)    | 81.68(13)  | 81.65(17)  |
| N(1)-Pd(1)-O(1)  | 177.5(4)   | 177.5(4)   | 177.2(4)   | 178.2(4)   | 174.49(12) | 174.56(16) |
| N(2)-Pd(1)-O(1)  | 95.2(4)    | 96.1(4)    | 96.2(4)    | 96.4(4)    | 94.35(12)  | 93.84(16)  |
| N(2)-Pd(1)-Cl(1) | _ ` ´      | _ ` ′      | _ ` ′      | _ ` `      | _ ` ´      | 177.97(13) |
| N(2)-Pd(1)-O(2)  | 176.9(3)   | 175.0(4)   | 175.8(4)   | 176.1(4)   | 172.47(12) | _ ` `      |

1.972(4) > Pd(1)–O(1)<sub>phenolate</sub> 1.961(3) Å]. Replacing an O-bound acetate for a chloride has little effect on the *trans* Pd–N<sub>pyridine</sub> distance [1.972(4) Å (3a)  $\nu s$ . 1.980(10)<sub>av.</sub> (1a)]. The *N*-aryl group in 1b is inclined towards orthogonality with regard to the neighbouring C=N<sub>imine</sub> vector [tors. C(7)–N(2)–C(1)–C(2) 86.1(3)°], while in the less sterically bulky 1a and 3a the aryl group is tilted [tors. C(7)–N(2)–C(1)–C(2) 66.4(4)<sub>av</sub> (1a), 57.8(6) (3a)°]. There are no intermolecular contacts of note. The structural features resemble related aldimine-based palladium complexes [{2-(3-C<sub>12</sub>H<sub>8</sub>-2-O)-6-(CH=NAr)C<sub>5</sub>H<sub>3</sub>N}-PdX] (X = OAc, Cl) reported elsewhere. 14,15

A view of amine-based 2a is given in Fig. 5; selected bond distances and angles are given for both 2a and 2b in Tables 3. The structures are similar to imine-containing 1a and 1b with a distorted square planar palladium( $\pi$ ) centre bound by a monoanionic O,N,N ligand and a monodentate O-bound



**Fig. 5** Molecular structure of **2a** including a partial atom numbering scheme. All hydrogen atoms, apart from H1, have been omitted for clarity.

acetate. In this case the more flexible 2-(phenyl-2'-olate)-6-(amino-prop-2-yl)pyridine acts as the O,N,N ligand again forming both 5-membered and 6-membered chelate rings. The presence of both a gem-dimethyl sp<sup>3</sup>-hybridised carbon (N(1)-C(7)-C(10) 108.9(8) (2a) and 109.7(2)° (2b)) and secondary amine nitrogen donor results in some puckering of the 5-membered chelate ring while the 6-membered chelate ring shows similar properties to those observed in 1a, 1b and 3a with some twisting of the phenolate unit with respect to the pyridyl plane evident [tors. N(2)-C(14)-C(15)-C(16) 18.3(3) (2a), 21.6° (2b)]. The Pd-O<sub>phenolate</sub> and Pd-N<sub>pyridine</sub> distances are comparable to those in 1a, 1b and 3a while the Pd-Namine length is ca. 0.05 Å longer than the average Pd-N<sub>imine</sub> distance in 1a, 1b and 3a consistent with the poorer donor characteristics of an amine. The pendant oxygen atom on the acetate ligand undergoes an intramolecular hydrogen bond interaction with the amine hydrogen atom  $[O(3)\cdots N(1) 2.750 (2a),$ 2.895 (2b) Å]. It is worthy of note that the isopropyl group on

Table 3 Selected bond distances (Å) and angles (°) for 2a and 2b

|                     | 2a        | 2b         |
|---------------------|-----------|------------|
| Bond lengths        |           |            |
| Pd(1)-O(1)          | 1.951(6)  | 1.9541(19) |
| Pd(1)-N(1)          | 2.061(6)  | 2.045(2)   |
| Pd(1)-N(2)          | 1.983(7)  | 1.972(2)   |
| Pd(1)-O(2)          | 2.008(6)  | 2.034(2)   |
| C(7) - C(8)         | 1.519(11) | 1.533(4)   |
| C(7)-C(9)           | 1.557(11) | 1.529(4)   |
| C(7)-N(1)           | 1.467(10) | 1.525(4)   |
| Bond angles         |           |            |
| N(1)-Pd(1)-N(2)     | 81.8(3)   | 84.46(9)   |
| N(1)-Pd(1)-O(1)     | 176.1(3)  | 179.16(9)  |
| N(2)-Pd(1)-O(1)     | 94.5(3)   | 94.99(9)   |
| N(1)-Pd(1)-O(2)     | 96.2(3)   | 94.71(9)   |
| N(2) - Pd(1) - O(2) | 176.8(3)  | 174.90(8)  |
| O(1)-Pd(1)-O(2)     | 87.6(2)   | 85.90(8)   |
| N(1)-C(7)-C(10)     | 108.9(8)  | 109.7(2)   |

Scheme 3 Oxidation of 3 and 4 with di-p-tolyliodonium triflate to give 4-chlorotoluene and 4-iodotoluene.

C(2) in **2b** occupies a position above the axial site of the N(1)–N(2)–O(1)–Pd(1) square plane (*vide infra*). There are no intermolecular contacts of note.

Complexes 1-4, display either molecular ion peaks and/or fragmentation peaks corresponding to the loss of an acetate or a chloride in their mass spectra. For imine-based 1 and 3, the  $\nu$ (C=N)<sub>imine</sub> stretch shifts by ca. 35 cm<sup>-1</sup> to lower wavenumber when compared to those for the corresponding free HL1, supportive of imine coordination.<sup>16</sup> In 1b and 3b two distinct doublets are seen for the isopropyl methyl groups in their <sup>1</sup>H NMR spectra consistent with restricted rotation about the N-aryl or Ar-i-Pr bonds in solution. In contrast, there are four distinct doublets in **2b** and **4b** implying all four methyl groups are now inequivalent in the amine-based pincer complexes. The N-H protons in 2a and 2b are downfield shifted (between  $\delta$  8.7–9.9) consistent with the NH···O<sub>acetate</sub> hydrogen bonding as seen in the solid state, whilst in their chloride derivatives, 4a and 4b, the corresponding protons are found more upfield (between  $\delta$  6.1–6.7). The acetate methyl groups in 1 and 2 can be seen at  $\delta$  ca. 1.6 in their <sup>1</sup>H NMR spectra with the MeC(O)O carbon atoms observable at  $\delta$  ca. 178.8 in their  $^{13}$ C NMR spectra. In addition strong bands assignable to the symmetric and asymmetric  $\nu(COO)$  vibrations in 1 and 2, are in agreement with those expected for monodentate acetate ligands. 17

### (c) Reactivity of 3 and 4 towards [p-tolyl<sub>2</sub>I][O<sub>3</sub>SCF<sub>3</sub>]

All four palladium(II) chloride pincer complexes, **3a**, **3b**, **4a** and **4b**, were assessed on their ability to undergo oxidation with a hypervalent iodonium reagent and mediate the formation of a carbon–chlorine coupled product. Typically, **3** and **4** were treated with two equivalents of di-*p*-tolyliodonium triflate at 100 °C in a mixture of toluene–acetonitrile and their reaction mixtures monitored by gas chromatography using an internal standard to quantify the conversions (Scheme 3).

The results of the screening are collected in Table 4. Several points emerge from inspection of the data. Firstly, all the palladium pincer complexes screened afford 4-chlorotoluene in varying amounts along with the expected 4-iodotoluene byproduct. Secondly, two structure/reactivity relationships are apparent namely: (i) within each *N,N,O* family the least sterically bulky *N*-aryl group promotes the highest conversions to 4-chorotoluene, *e.g.*, 4a (93%, entry 6) *vs.* 4b (26%, entry 7) and 3a (80%, entry 4) *vs.* 3b (17%, entry 5); (ii) amine-containing 4a and 4b yield higher conversions than their direct imine counterparts 3a and 3b, respectively. Thirdly, periodic moni-

**Table 4** Percentage conversion to 4-chorotoluene and 4-iodotoluene on reaction of **3** or **4** with  $[(p-\text{tolyl})_2][O_3SCF_3]^a$ 

| Entry | Pd(II)<br>chloride<br>pincer | Time/h | Conversion/% to 4-chlorotoluene <sup>b</sup> | Conversion/% to<br>4-iodotoluene <sup>b</sup> |
|-------|------------------------------|--------|----------------------------------------------|-----------------------------------------------|
| 1     | 3a                           | 1      | 33                                           | 27                                            |
| 2     | 3a                           | 2.5    | 57                                           | 42                                            |
| 3     | 3a                           | 6      | 74                                           | 67                                            |
| 4     | 3a                           | 15     | 80                                           | 71                                            |
| 5     | 3b                           | 15     | 17                                           | 7                                             |
| 6     | 4a                           | 15     | 93                                           | 89                                            |
| 7     | 4b                           | 15     | 26                                           | 10                                            |

 $^a$  Conditions: 3 or 4 (0.05 mmol), [(p-tol)\_zI][OTf] (0.1 mmol), ([Pd]/[(p-tol)\_zIOTf] = 2), toluene/MeCN, 100 °C.  $^b$  Determined using gas chromatography using naphthalene as an internal standard.

toring of the conversion for **3a** reveals a rapid initial reaction (33% in 1 h, entry 1) which reaches a plateau over time.

It is uncertain as to the origin of these ligand effects but it would seem likely that the sterically bulky 2,6-i-Pr<sub>2</sub>Ph substitution pattern in **3b** and **4b** is inhibiting the oxidative transfer of the aryl group to the palladium centre. Indeed, work-up of the reaction between imine-containing **3b** and di-*p*-tolyliodonium triflate at 100 °C over 15 hours (entry 5) gave unreacted starting materials as the major identifiable inorganic components. The increased flexibility of the ligand manifold in amine-containing **4** may, in part, contribute to the improved performance over the corresponding imine.

Unfortunately we were unable to prove or disprove the involvement of a transient Pd(IV) species (e.g., [(ONN)PdCl(p-tolyl)-(NCMe) [O<sub>3</sub>SCF<sub>3</sub>]) by NMR spectroscopy due to the poor solubility of the reaction mixtures at lower temperatures. Nevertheless, we were able, in one case, to identify the palladiumcontaining decomposition product of the presumed reductive elimination event. Solid residues isolated from the reaction of 3a with di-p-tolyliodonium triflate (entry 4) could be extracted into acetonitrile and found to contain unreacted di-p-tolyliodonium triflate and the Pd(II) salt [{2-(C<sub>6</sub>H<sub>4</sub>-2'-O)-6-(CMe=N(4-i- $PrC_6H_4$ ) $C_5H_3N$ Pd(NCMe) $[O_3SCF_3]$  (5a). Confirmation of the presence of 5a was obtained through spiking an <sup>1</sup>H NMR solution of the mixture with a genuine sample of 5a (prepared from the reaction of 3a with AgO<sub>3</sub>SCF<sub>3</sub> in acetonitrile). Indeed 5a has been fully characterised by mass spectrometry, IR and NMR (<sup>1</sup>H, <sup>19</sup>F and <sup>13</sup>C) spectroscopy and has been the subject of a single crystal X-ray diffraction study.

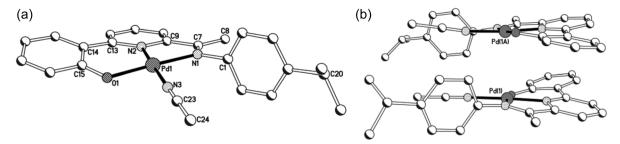



Fig. 6 (a) Molecular structure of the cationic unit in 5a including a partial atom numbering scheme. All hydrogen atoms have been omitted for clarity. (b) Intermolecular packing of the two independent cationic units in 5a.

Table 5 Selected bond distances (Å) and angles (°) for 5a

|                                  | Molecule A         | Molecule B |
|----------------------------------|--------------------|------------|
| Bond lengths                     |                    |            |
| Pd(1)-N(1)                       | 2.017(8)           | 1.997(8)   |
| Pd(1)-N(2)                       | 1.953(8)           | 1.951(8)   |
| Pd(1)-N(3)                       | 2.007(9)           | 1.994(10)  |
| Pd(1)-O(1)                       | 1.959(7)           | 1.979(7)   |
| C(7)-N(1)                        | 1.277(13)          | 1.297(13)  |
| C(9)-C(7)                        | 1.515(14)          | 1.473(15)  |
| C(23)-N(3)                       | 1.138(13)          | 1.176(14)  |
| Range S(1)-O <sub>triflate</sub> | 1.416(9)-1.434(11) | . ,        |
| Bond angles                      |                    |            |
| N(1)-Pd(1)-N(2)                  | 82.0(3)            | 82.5(3)    |
| N(1)-Pd(1)-O(1)                  | 175.0(3)           | 176.1(3)   |
| N(1)-Pd(1)-N(3)                  | 95.9(3)            | 94.5(3)    |
| N(2)-Pd(1)-O(1)                  | 94.5(3)            | 95.0(3)    |
| N(2)-Pd(1)-N(3)                  | 177.3(3)           | 174.9(3)   |
|                                  |                    |            |

A view of 5a is given in Fig. 6a; selected bond distances and angles are collected in Table 5. There are two independent cations and associated anions in the unit cell with the main differences between the cations being the inclinations of N-aryl groups. The structure of 5a comprises a cationic palladium(II) unit charged balanced by a non-coordinating triflate anion. The cationic unit adopts a distorted square planar geometry [max. distortion: N(1)-Pd(1)-N(2) 82.0(3)<sub>A</sub>, 82.5(3)<sub>B</sub>°] with the 2-(phenyl-2'-olate)-6-ketimine-pyridine ligand occupying three coordination sites and the  $\eta^{1}$ -N acetonitrile molecule the fourth. The structural parameters displayed by the pincer ligand closely mirror the features observed in neutral precursor 3a with the Pd-N  $_{\rm imine}$  distance again the longest [Pd(1)– N(1) 2.017(8) Å, 1.997(8) Å] of the three donor atoms. Interestingly, the independent cations assemble in such a way as to maintain the Pd(II) centres in close proximity (Pd(1)···Pd(1A) 3.313 Å) and only slightly further apart than the sum of the van der Waals radii (3.26 Å) (Fig. 6b). Further confirmation of the salt-like nature of 5a comes from the positive ESI mass spectrum (recorded in MeCN) which reveals peaks corresponding to the cationic unit while the negative spectrum the triflate anion. The <sup>19</sup>F NMR spectrum (in CD<sub>3</sub>CN) displays a single peak at  $\delta$  -79.3 comparable with that observed in related triflate salts of Pd-acetonitrile species. 18

### Conclusions

Two families of palladium(II) chloride O,N,N pincer complexes (3 and 4), differing in the type of exterior nitrogen donor and, within each family, the steric properties of the N-aryl ring, have been prepared via their respective acetate analogues (1 and 2) and fully characterised. Oxidation of 3 and 4 with dip-tolyliodonium triflate leads in all cases to carbon-chloride coupling to give 4-chlorotoluene with the conversion highly dependent on the O,N,N pincer framework employed; the recovery of 5a with an intact pincer framework highlights the robustness of the ligand manifold to oxidation. Notably, the least sterically hindered member of each family (3a and 4a) leads to the highest conversion with amine-containing 4a the highest. These observations set the stage for an investigation of these and related pincer systems in various Pd(II)/ (iv)-mediated C-X coupling reactions. These results will be reported in due course.

### Experimental

#### General

All operations, unless otherwise stated, were carried out under an inert atmosphere of dry, oxygen-free nitrogen using standard Schlenk and cannular techniques or in a nitrogen purged glove box. Solvents were distilled under nitrogen from appropriate drying agents<sup>19</sup> or were employed directly from a Solvent Purification System (Innovative Technology, Inc). The electrospray (ESI) mass spectra were recorded using a micromass Quattra LC mass spectrometer with acetonitrile or methanol as the matrix. FAB mass spectra (including high resolution) were recorded on a Kratos Concept spectrometer with NBA as matrix or on a Water Xevo QToF mass spectrometer equipped with an atmospheric solids analysis probe (ASAP). The infrared spectra were recorded in the solid state with Universal ATR sampling accessories on a Perkin Elmer Spectrum One FTIR instrument. NMR spectra were recorded on a Bruker DPX 300 spectrometer operating at 300.03 (<sup>1</sup>H) and 75.4 MHz (<sup>13</sup>C) or a Bruker DRX400 spectrometer at 400.13 (1H), 376.46 (19F) and 100.61 MHz (13C) or a Bruker Avance III 500 spectrometer at 125 MHz (13C), at ambient temperature unless otherwise

stated; chemical shifts (ppm) are referred to the residual protic solvent peaks and coupling constants are expressed in hertz (Hz). Melting points (mp) were measured on a Gallen-kamp melting point apparatus (model MFB-595) in open capillary tubes and were uncorrected. Elemental analyses were performed at the Science Technical Support Unit, London Metropolitan University. The reagents 2,6-diisopropylaniline, 4-isopropylaniline, silver triflate and trimethylaluminium (2 M solution in toluene) were purchased from Aldrich Chemical Co. and used without further purification. The compounds 2-hydroxyphenylboronic acid,  $^{12}$  2-bromo-6-acetyl pyridine  $^{20}$  and di-p-tolyliodonium triflate  $^{21}$  and  $\rm HL1_b^{12}$  were prepared using literature procedures. All other chemicals were obtained commercially and used without further purification.

### Synthesis of 2-(phenyl-2'-ol)-6-acetyl-pyridine

A round-bottomed flask equipped with stirrer bar and reflux condenser, open to the air, was loaded with 2-bromo-6-acetylpyridine (2.10 g, 10.00 mmol), Pd(OAc)<sub>2</sub> (0.047 g, 0.21 mmol), triphenylphosphine (0.110 mg, 0.42 mmol) and 2-hydroxyphenyl boronic acid (1.88 g, 13.7 mmol). Toluene (40 mL), ethanol (22 mL) and aqueous 2 M K<sub>2</sub>CO<sub>3</sub> (13 mL, 26.00 mmol) were added and the mixture heated to 90 °C for 12 h. The resultant black reaction mixture was cooled to room temperature followed by the addition of 1 mL H<sub>2</sub>O<sub>2</sub> (30% in water) and stirred for a further 30 min. The organic phase was separated and the aqueous phase washed with toluene (3 × 10 mL). The combined organic extracts were washed with water (3 × 30 mL) and brine (10 mL) and concentrated to afford a brown solid. This solid was slurried in methanol (10 mL) for 1 h and the resultant solid filtered and washed with methanol (3 mL) and dried under reduced pressure. 2-(Phenyl-2'-ol)-6-acetyl-pyridine was collected as a yellow solid (1.885 g, 84%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  2.71 (s, 3H, CH<sub>3</sub>C=O), 6.90 (ddd,  ${}^{3}J_{HH}$  8.4,  ${}^{3}J_{HH}$ 7.4,  ${}^{4}J_{HH}$  1.4, 1H, Ar-H), 7.00 (dd,  ${}^{3}J_{HH}$  8.3,  ${}^{4}J_{HH}$  1.3, 1H, Ar-H), 7.30 (ddd,  ${}^{3}J_{HH}$  8.5,  ${}^{3}J_{HH}$  7.5,  ${}^{4}J_{HH}$  1.7, 1H, Ar-H), 7.78 (dd,  ${}^{3}J_{HH}$ 8.1,  ${}^{4}J_{HH}$  1.7, 1H, Ar-H), 7.94 (m, 2H, Py-H), 8.06 (dd,  ${}^{3}J_{HH}$  7.1,  $^{4}J_{HH}$  2.1, 1H, Py-H), 13.64 (s, 1H, O-H). ESIMS m/z: 214  $[M + H]^{+}$ . The data was consistent with that reported in ref. 13.

# Synthesis of 2-( $C_6H_4$ -2'-OH),6-{CMe=N(4-i-Pr $C_6H_4$ )} $C_5H_3N$ (HL1<sub>a</sub>)

2-(Phenyl-2'-ol)-6-acetyl-pyridine (0.405 g, 1.90 mmol), 4-isopropyl aniline (0.473 g, 3.50 mmol) and MgSO $_4$  (2.76 g, 23.0 mmol) were suspended in bench methanol (10 mL) and one drop of acetic acid added. The mixture was stirred and heated at reflux for 9 days whereupon a further drop of acetic acid was added and the mixture stirred at reflux for an additional 12 h. On cooling to room temperature the reaction mixture was filtered and the MgSO $_4$  washed with chloroform (30 mL) and the filtrate concentrated under reduced pressure. The resultant solid was heated in MeOH (10 mL), cooled to room temperature and the suspension collected by filtration and dried under reduced pressure affording HL1 $_4$  as yellow solid (0.381 g, 61%). Single crystals suitable for an X-ray determination were grown by slow cooling of a saturated solution of

HL1<sub>a</sub> in EtOH. Mp: 123-125 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$  1.20 (d,  ${}^{3}J_{HH}$  7.1, 6H, CHMe<sub>2</sub>), 2.32 (s, 3H, CH<sub>3</sub>C=N), 2.84 (sept,  ${}^{3}J_{HH}$  7.1, 1H, CHMe<sub>2</sub>), 6.69 (d,  ${}^{3}J_{HH}$  8.4, 2H, Ar<sub>mipp</sub>-H), 6.85 (app. td,  ${}^{3}J_{HH}$  8.1,  ${}^{4}J_{HH}$  1.2, 1H, Ar<sub>phenol</sub>-H), 6.96 (dd,  ${}^{3}J_{HH}$ 8.2,  ${}^{4}J_{HH}$  1.2, 1H, Ar<sub>phenol</sub>-H), 7.16 (d,  ${}^{3}J_{HH}$  8.3, 2H, Ar<sub>mino</sub>-H), 7.25 (app. td,  ${}^{3}J_{HH}$  8.2,  ${}^{4}J_{HH}$  1.5, 1H, Ar<sub>phenol</sub>-H), 7.75 (dd,  ${}^{3}J_{HH}$ 8.1, <sup>4</sup>J<sub>HH</sub> 1.4, 1H, Ar<sub>phenol</sub>-H), 7.79-7.91 (m, 2H, Py-H), 8.12 (dd,  ${}^{3}J_{HH}$  7.6,  ${}^{4}J_{HH}$  1.1, 1H, Py-H), 14.18 (s, 1H, O-H).  ${}^{13}C\{{}^{1}H\}$ NMR (CDCl<sub>3</sub>, 75 MHz):  $\delta$  15.5 (CH<sub>3</sub>C=N), 23.1 (CHMe<sub>2</sub>), 32.6 (CHMe<sub>2</sub>), 117.4 (CH), 117.7 (C), 118.0 (CH), 118.3 (CH), 118.8 (CH), 119.1 (CH), 125.4 (CH), 125.9 (CH), 130.6 (CH), 137.2 (CH), 143.6 (C), 147.2 (C), 152.7 (C), 155.6 (C), 158.6 (C), 163.6  $(C=N_{imine})$ . IR  $(cm^{-1})$ :  $\nu(C=N)_{imine}$  1635,  $\nu(C=N)_{pyridine}$  1587. ESIMS m/z: 331 [M + H]<sup>+</sup>, 329 [M – H]. HRMS (ASAP): Calc. for  $C_{22}H_{23}N_2O [M + H]^+$  331.1810, found 331.1803. Anal calc. for (C<sub>22</sub>H<sub>22</sub>N<sub>2</sub>O) C 79.97, N 8.48, H 6.71. Found: C 79.97, N 8.41, H 6.64%.

### Synthesis of 2-(C<sub>6</sub>H<sub>4</sub>-2'-OH),6-(CMe<sub>2</sub>NHAr)C<sub>5</sub>H<sub>3</sub>N (HL2)

(a) Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (HL2<sub>a</sub>): A Schlenk flask equipped with stir bar was evacuated and backfilled with nitrogen. The vessel was loaded with HL1<sub>a</sub> (0.510 g, 1.50 mmol) and toluene (20 ml) and trimethylaluminium (2.0 ml, 4.00 mmol, 2 M solution in toluene) introduced dropwise. The solution was then stirred and heated to reflux for 12 h before being cooled to room temperature and concentrated under reduced pressure. Petroleum ether (20 ml, 40/60) was added and the solution cooled to 5 °C prior to the slow addition of water (20 ml). The mixture was then stirred for 1 h at room temperature before the organic phase was isolated. The aqueous phase was extracted with chloroform (4 × 50 ml) and the combined organic extracts washed with water  $(3 \times 10 \text{ mL})$  and brine  $(1 \times 10 \text{ mL})$  and then dried over MgSO4. The solvent was removed under reduced pressure to provide HL2a as an orange oil which solidified slowly over time (0.500 g, 96%). Single crystals suitable for an X-ray determination were grown by slow cooling of a saturated solution of HL2<sub>a</sub> in ethanol. Mp: 109–112 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  1.07 (d,  ${}^{3}J_{\rm HH}$  7.0, 6H, CHMe<sub>2</sub>), 1.66 (s, 6H, N-C- $(CH_3)_2$ , 2.66 (sept,  ${}^3J_{HH}$  7.0, 1H,  $CHMe_2$ ), 3.97 (br s, 1H, N-H), 6.19 (d  ${}^{3}J_{HH}$  8.6, 2H, Ar<sub>mipp</sub>-H), 6.81 (d,  ${}^{3}J_{HH}$  8.6, 2H, Ar<sub>mipp</sub>-H), 6.86 (app. td,  ${}^{3}J_{HH}$  8.1,  ${}^{4}J_{HH}$  1.2, 1H, Ar–H), 6.96 (dd,  ${}^{3}J_{HH}$ 8.3, <sup>4</sup>*J*<sub>HH</sub> 1.2, 1H, Ar–H), 7.25 (ddd, <sup>3</sup>*J*<sub>HH</sub> 8.5, <sup>3</sup>*J*<sub>HH</sub> 7.2, <sup>4</sup>*J*<sub>HH</sub> 1.6, 1H, Ar-H), 7.49-7.53 (1H, m, Ar-H), 7.69-7.73 (2H, m, Ar-H), 7.77 (dd,  ${}^{3}J_{HH}$  8.0,  ${}^{4}J_{HH}$  1.6, 1H, Py–H), 14.55 (s, 1H, O–H).  ${}^{13}C$  $\{^{1}H\}$  NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  23.06 (CHMe<sub>2</sub>), 28.2 (N-C-(CH<sub>3</sub>)<sub>2</sub>), 32.0 (CHMe<sub>2</sub>), 56.5 (C-N), 114.3 (CH), 115.8 (CH), 117.4 (CH), 117.7 (C), 177.8 (CH), 118.1 (CH), 125.2 (CH), 125.7 (CH), 130.4 (CH), 137.1 (C), 137.6 (CH), 142.2 (C), 155.9 (C), 158.9 (C), 162.8 (C). IR (cm<sup>-1</sup>): 1592 (C=N)<sub>pyridine</sub>. ESIMS m/z: 347  $[M + H]^+$ . HRMS (EI): Calc. for:  $C_{23}H_{27}N_2O [M + H]^+$ 347.2123, found: 347.2140.

(b) Ar = 2,6-i- $Pr_2C_6H_3$  (HL2<sub>b</sub>): A similar procedure to that described for HL2<sub>a</sub> was followed using HL1<sub>b</sub> (0.601 g, 2.70 mmol), toluene (20 ml) and trimethylaluminium (3.40 ml, 6.70 mmol 2 M solution in toluene). On work-up, HL2<sub>b</sub> was afforded as an orange oil which solidified slowly

over time (0.549 g, 88%). Mp: 70–72 °C.  $^{1}$ H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  0.98 (d,  $^{3}J_{\rm HH}$  7.0, 12H, CH $Me_2$ ), 1.49 (s, 6H, N–C-(CH<sub>3</sub>)<sub>2</sub>), 2.95 (sept,  $^{3}J_{\rm HH}$  7.0, 2H, C $H_{\rm Me_2}$ ), 3.34 (br s, 1H, N–H), 6.85 (ddd,  $^{3}J_{\rm HH}$  8.2,  $^{3}J_{\rm HH}$  7.4,  $^{4}J_{\rm HH}$  1.3, 1H, Ar–H), 6.94 (dd,  $^{3}J_{\rm HH}$  8.2,  $^{4}J_{\rm HH}$  1.2, 1H, Ar–H), 6.98 (m (app. s), 3H, Ar–H), 7.23 (ddd,  $^{3}J_{\rm HH}$  8.4,  $^{3}J_{\rm HH}$  7.2,  $^{4}J_{\rm HH}$  1.6, 1H, Ar–H), 7.59 (dd,  $^{3}J_{\rm HH}$  7.4,  $^{4}J_{\rm HH}$  1.2, 1H, Py–H), 7.72–7.79 (3H, m, Ar–H), 14.60 (s, 1H, O–H).  $^{13}$ C{ $^{1}$ H} NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  22.8 (CH $Me_2$ ), 27.4 (CH $Me_2$ ), 28.2 (N–C(CH<sub>3</sub>)<sub>2</sub>), 58.1 (C–N), 115.7 (CH), 117.2 (CH), 117.4 (CH), 117.7 (CH), 118.1 (C), 122.1 (CH), 123.5 (CH), 125.3 (CH), 130.3 (CH), 137.0 (CH), 138.7 (C), 144.3 (C), 155.5 (C), 159.0 (C), 165.1 (C). IR (cm<sup>-1</sup>): 1591 (C=N)<sub>pyridine</sub>. ESIMS m/z: 389 [M + H] $^+$ . HRMS (EI): Calc. for C<sub>26</sub>H<sub>33</sub>N<sub>2</sub>O [M + H] $^+$  389.2593, found 389.2606.

### Synthesis of $[{2-(C_6H_4-2'-O)-6-(CMe=NAr)C_5H_3N}Pd(OAc)](1)$

(a) Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (1a): A Schlenk flask equipped with stir bar was evacuated and backfilled with nitrogen. The vessel was loaded with HL1<sub>a</sub> (0.100 g, 0.300 mmol), Pd(OAc)<sub>2</sub> (0.068 g, 0.300 mmol) and toluene (10 ml) and then stirred and heated at 80 °C for 12 h. On cooling to room temperature the volatiles were removed under reduced pressure. The resultant solid was dissolved in dichloromethane (5 mL) and hexane (100 mL) introduced affording 1a as a red solid (0.136 g, 90%). Single crystals suitable for an X-ray determination were grown by slow diffusion of hexane into a solution of 1a in chloroform. Mp: >240 °C (decomp.).  ${}^{1}$ H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  1.22 (d,  $^{3}J_{\rm HH}$  6.9, 6H, CH $Me_{2}$ ), 1.48 (s, 3H, CH $_{3}$ C(O)O-), 2.07 (s, 3H, CH<sub>3</sub>C=N), 2.90 (sept,  ${}^{3}J_{HH}$  6.9, 1H, CHMe<sub>2</sub>), 6.61 (ddd,  ${}^{3}J_{HH}$ 8.2, <sup>3</sup>J<sub>HH</sub> 6.6, <sup>4</sup>J<sub>HH</sub> 1.5, 1H, Ar<sub>phenolate</sub>-H), 7.04 (dd, <sup>3</sup>J<sub>HH</sub> 8.5,  $^{4}J_{HH}$  1.3, 1H, Ar-H), 7.09-7.14 (m, 4H, Ar-H), 7.23 (d,  $^{3}J_{HH}$  8.2, 2H, Ar<sub>mipp</sub>-H), 8.02 (d,  ${}^{3}J_{HH}$  8.5, 1H, Py-H), 8.06 (dd,  ${}^{3}J_{HH}$  8.5,  $^{3}J_{HH}$  8.5, 1H, Py-H), 8.97 (d,  $^{3}J_{HH}$  8.7, 1H, PyH).  $^{13}C\{^{1}H\}$  NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  16.5 (CH<sub>3</sub>C=N), 21.7 (CH<sub>3</sub>C(O)O-), 22.9 (CHMe<sub>2</sub>), 32.9 (CHMe<sub>2</sub>), 114.5 (CH), 118.2 (C), 122.3 (CH), 122.3 (CH), 122.4 (CH), 125.6 (CH), 126.2 (CH), 128.5 (CH), 130.6 (CH), 137.5 (CH), 141.2 (C), 147.5 (C), 150.0 (C), 162.0 (C), 172.4 (C= $N_{imine}$ ), 177.0 (C=O). IR (cm<sup>-1</sup>): 1613 (C=N)<sub>imine</sub>, 1590 (COO<sub>asymm</sub>/C=N<sub>pyridine</sub>), 1456 (COO<sub>symm</sub>). FABMS m/z: 435 [M - OAc]<sup>+</sup>. Anal calc. for (C<sub>24</sub>H<sub>24</sub>N<sub>2</sub>O<sub>3</sub>Pd): C 58.25; H 4.89; N 5.66 Found: C 58.12; H 4.83; N 5.67%.

(b) Ar = 2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (**1b**): A similar procedure to that described for **1a** was followed using HL1<sub>b</sub> (0.100 g, 0.27 mmol), Pd(OAc)<sub>2</sub> (0.061 g, 0.27 mmol) afforded **1b** as a red solid (0.135 g, 93%). Crystals suitable for an X-ray determination were grown by slow diffusion of hexane into a solution of **1b** in chloroform. Mp: >240 °C (decomp.). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  1.04 (d,  ${}^{3}J_{\rm HH}$  6.9, 6H, CHMe<sub>2</sub>), 1.41 (d,  ${}^{3}J_{\rm HH}$  6.7, 6H, CHMe<sub>2</sub>), 1.43 (s, 3H, CH<sub>3</sub>C(O)C-), 2.24 (s, 3H, CH<sub>3</sub>C=N), 3.22 (sept,  ${}^{3}J_{\rm HH}$  6.8, 2H, CHMe<sub>2</sub>), 6.64 (ddd,  ${}^{3}J_{\rm HH}$  8.3,  ${}^{3}J_{\rm HH}$  6.3,  ${}^{4}J_{\rm HH}$  1.9, 1H, Ar<sub>phenolate</sub>-H), 7.14-7.22 (4H, m, under CHCl<sub>3</sub>), 7.28 (dd,  ${}^{3}J_{\rm HH}$  8.2,  ${}^{3}J_{\rm HH}$  7.3, 1H, Ar-H), 7.60 (dd,  ${}^{3}J_{\rm HH}$  7.5,  ${}^{4}J_{\rm HH}$  1.0, 1H, Py-H), 7.79 (d,  ${}^{3}J_{\rm HH}$  8.6, 1H, Ar<sub>phenolate</sub>-H), 8.08 (dd,  ${}^{3}J_{\rm HH}$  8.8,  ${}^{3}J_{\rm HH}$  7.5, 1H, Py-H), 8.43 (d,  ${}^{3}J_{\rm HH}$  8.7, 1H, Py-H). <sup>13</sup>C ( ${}^{1}H$ ) NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta$  18.5 (CHMe<sub>2</sub>), 22.5 (CHMe<sub>2</sub>), 23.7 (CH<sub>3</sub>C(O)O-), 24.4 (CH<sub>3</sub>C=N), 28.8 (CHMe<sub>2</sub>), 115.8 (CH),

119.2 (C), 122.6 (CH), 123.8 (CH), 123.9 (CH), 126.6 (CH), 128.4 (CH), 128.5 (CH), 132.3 (CH), 137.1 (CH), 139.5 (C), 140.8 (C), 152.7 (C), 154.2 (C), 164.1 (C), 174.2 (C= $N_{imine}$ ), 177.3 (C=O). IR (cm<sup>-1</sup>): 1600 (C= $N_{imine}$ /COO<sub>asymm</sub>/C= $N_{pyridine}$ ), 1456 (COO<sub>symm</sub>). ESIMS m/z: 477 [M - OAc]<sup>+</sup>, 518 [(M - OAc + MeCN]<sup>+</sup>. HRMS (ASAP): Calc. for:  $C_{27}H_{30}N_2O_3Pd$  [M]<sup>+</sup> 536.1291 Found 536.1333.

### Synthesis of $[{2-(C_6H_4-2'-O)-6-(CMe_2NHAr)C_5H_3N}Pd(OAc)](2)$

(a) Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (2a): A Schlenk flask equipped with a stir bar was evacuated, back-filled with nitrogen and then loaded with HL2<sub>a</sub> (0.040 g, 0.12 mmol), Pd(OAc)<sub>2</sub> (0.026 g, 0.12 mmol) and toluene (4 mL). After stirring and heating at 75 °C for 12 h, the reaction mixture was allowed to cool to room temperature and the volatiles removed under reduced pressure. The residue was dissolved in dichloromethane (1 mL) before hexane (20 mL) was added to precipitate the product. The product was collected on a Celite plug, washed with hexane (10 mL) before being dissolved in dichloromethane (10 mL) and the solution collected. On evaporation of the volatile components, 2a was obtained as a red powder (0.057 g, 93%). Single crystals suitable for an X-ray determination were grown by slow diffusion of hexane into a solution of 2a in chloroform. Mp: >240 °C (decomp.).  ${}^{1}$ H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  1.09 (d,  $^{3}J_{HH}$  6.9, 6H, CHMe<sub>2</sub>), 1.36 (s, 3H, N-C(CH<sub>3</sub>)<sub>2</sub>), 2.00 (s, 3H,  $CH_3C(O)C-$ ), 2.40 (s, 3H, N-C( $CH_3$ )<sub>2</sub>), 2.72 (sept,  ${}^3J_{HH}$  6.9, 1H, CHMe<sub>2</sub>), 6.60 (ddd, <sup>3</sup>J<sub>HH</sub> 8.1, <sup>3</sup>J<sub>HH</sub> 6.5, <sup>4</sup>J<sub>HH</sub> 1.8, 1H, Ar<sub>phenolate</sub>-H), 6.67 (d,  ${}^{3}J_{HH}$  8.4, 2H, Ar<sub>mipp</sub>-H), 6.87 (dd,  ${}^{3}J_{HH}$  6.1,  ${}^{4}J_{HH}$ 2.3, 1H, Py-H), 6.94 (d,  ${}^{3}J_{HH}$  8.3, 2H, Ar<sub>mipp</sub>-H), 7.06-7.14 (m, 2H, Ar<sub>phenolate</sub>-H), 7.57 (d, <sup>3</sup>J<sub>HH</sub> 8.5, 1H, Ar<sub>phenolate</sub>-H), 7.80 (d, <sup>3</sup>J<sub>HH</sub> 8.5, 1H, Py–H), 7.82 (dd, <sup>3</sup>J<sub>HH</sub> 8.5, <sup>3</sup>J<sub>HH</sub> 6.2, 1H, Py–H), 9.92 (br s, 1H, NH).  $^{13}$ C $^{1}$ H $^{1}$  NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  23.8 (CHMe<sub>2</sub>), 24.1 (CH<sub>3</sub>C(O)O-), 24.4 (N-C(CH<sub>3</sub>)<sub>2</sub>), 33.6 (CHMe<sub>2</sub>), 33.6 (N-C(CH<sub>3</sub>)<sub>2</sub>), 70.2 (C-N), 116.0 (CH), 116.3 (CH), 121.4 (CH), 121.8 (C), 122.9 (CH), 123.0 (CH), 127.5 (CH), 128.9 (CH), 132.3 (CH), 138.9 (C), 139.7 (C), 147.2 (C), 153.5 (C), 164.4 (C), 168.0 (C), 181.6 (C=O). IR (cm<sup>-1</sup>): 3400 (NH), 1574 (COO<sub>asymm</sub>/ C= $N_{pyridine}$ ), 1448 (COO<sub>symm</sub>). ESIMS: m/z 510 [M]<sup>+</sup>, 592 [M -OAc + MeCN]<sup>+</sup>. HRMS (FAB): m/z Calc. for  $C_{25}H_{28}N_2O_3Pd$  [M]<sup>+</sup> 510.6296. Found 510.1125.

(b) Ar = 2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (**2b**): A similar procedure to that outlined for 2a was employed using HL2<sub>b</sub> (0.024 g, 0.61 mmol) and Pd(OAc)<sub>2</sub> (0.014 g, 0.061 mmol) gave 2b as a yellow solid (0.033 g, 98%). Single crystals suitable for an X-ray determination were grown by slow diffusion of hexane into a solution of **2b** in dichloromethane. Mp: >240 °C (decomp.). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  0.72 (d,  ${}^{3}J_{HH}$  6.9, 3H, CHMe<sub>2</sub>), 1.18 (s, 3H,  $NC(CH_3)_2$ , 1.19 (d,  ${}^3J_{HH}$  6.9, 3H,  $CHMe_2$ ), 1.22 (d,  ${}^3J_{HH}$  6.9, 3H,  $CHMe_2$ ), 1.54 (d,  ${}^3J_{HH}$  6.7, 3H,  $CHMe_2$ ), 1.91 (s, 3H,  $CH_3C(O)$ -O-), 2.31 (s, 3H, N-C(CH<sub>3</sub>)<sub>2</sub>), 3.16 (sept,  ${}^{3}J_{HH}$  6.7, 1H, CH- $(Me)_2$ , 3.72 (sept,  ${}^3J_{HH}$  6.8, 1H,  $CH(Me)_2$ ), 6.61 (ddd,  ${}^3J_{HH}$  8.5,  $^{3}J_{\rm HH}$  6.4,  $^{4}J_{\rm HH}$  2.0, 1H, Ar<sub>phenolate</sub>–H), 6.84 (dd,  $^{3}J_{\rm HH}$  6.9,  $^{4}J_{\rm HH}$ 2.1, 1H, Py H), 7.02–7.18 (m, 5H, Ar–H), 7.54 (d,  ${}^{3}J_{HH}$  8.3, 1H, Ar<sub>phenolate</sub>-H), 7.74-7.80 (m, 2H, Py-H), 8.66 (br s, 1H, NH). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub> 100 MHz):  $\delta$  21.9 (CHMe<sub>2</sub>), 22.3 (CH<sub>3</sub>C(O)-O-), 23.7 (CH<sub>3</sub>), 24.1 (CH<sub>3</sub>), 24.5 (CHMe<sub>2</sub>), 24.6 (CH<sub>3</sub>), 27.4

(CHMe<sub>2</sub>), 27.7 (CHMe<sub>2</sub>), 32.3 (N–C(CH<sub>3</sub>)<sub>2</sub>), 70.8 (C–N), 115.0 (CH), 115.6 (CH), 110.0 (CH), 120.8 (C), 121.5 (CH), 124.2 (CH), 124.7 (CH), 126.9 (CH), 127.9 (CH), 131.4 (CH), 134.5 (C), 137.8 (CH), 143.0 (C), 143.5 (C), 152.3 (C), 163.1 (C), 169.3 (C), 179.2 (C=O). IR (cm<sup>-1</sup>): 3064 (NH), 1590 (COO<sub>asymm</sub>/C=N<sub>pyridine</sub>), 1450 (COO<sub>symm</sub>). TOFMS (ASAP): m/z 553 [M + H]<sup>+</sup>, 493 [M – OAc]<sup>+</sup>. Anal. calc. for (C<sub>28</sub>H<sub>34</sub>N<sub>2</sub>O<sub>3</sub>Pd·3CH<sub>2</sub>Cl<sub>2</sub>): C 46.09, H 4.99 N 3.47% Found: C 46.00, H 4.64, N 3.61%.

### Synthesis of $[{2-(C_6H_4-2'-O)-6-(CMe=NAr)C_5H_3N}PdCl]$ (3)

(a) Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (3a): A round bottomed flask equipped with stirrer bar and open to the air was loaded with 1a (0.568 g, 1.15 mmol), chloroform (30 mL) and brine (30 mL). After stirring vigorously at room temperature for 1 h the organic phase was separated, washed with water (3 × 30 ml) and filtered through a Celite plug. The plug was washed with chloroform (10 mL) and the solution concentrated to a smaller volume (ca. 5 mL) before hexane (100 mL) was added to precipitate the title compound as dark red solid (0.537 g, 99%). Single crystals suitable for an X-ray determination were grown by slow diffusion of hexane into a solution of 3a in chloroform. Mp: >240 °C (decomp).  $^{1}$ H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  1.22 (d,  $^{3}J_{\rm HH}$ 6.9, 6H, CHMe<sub>2</sub>), 2.28 (s, 3H, CH<sub>3</sub>C=N), 2.88 (sept,  ${}^{3}J_{HH}$  6.9, 1H, CHMe<sub>2</sub>), 6.67 (ddd, <sup>3</sup>J<sub>HH</sub> 8.3, <sup>3</sup>J<sub>HH</sub> 6.1, <sup>4</sup>J<sub>HH</sub> 2.0, 1H, Ar<sub>phenolate</sub>-H), 7.04 (d, <sup>3</sup>J<sub>HH</sub> 8.4, 2H, Ar<sub>mipp</sub>-H), 7.16-7.24 (m, 4H, Ar-H), 7.61 (dd,  ${}^{3}J_{HH}$  7.6,  ${}^{4}J_{HH}$  1.0, 1H, Py-H), 7.68 (d,  ${}^{3}J_{HH}$ 8.4, 1H, Ar<sub>phenolate</sub>-H), 7.89 (dd, <sup>3</sup>J<sub>HH</sub> 8.6, <sup>3</sup>J<sub>HH</sub> 7.5, 1H, Py-H), 8.18 (d,  ${}^{3}J_{HH}$  8.7, 1H, Py–H).  ${}^{13}C\{{}^{1}H\}$  NMR (CDCl<sub>3</sub>, 125 MHz): δ 18.5 (CH<sub>3</sub>C=N), 23.9 (CHMe<sub>2</sub>), 33.7 (CHMe<sub>2</sub>), 116.0 (CH), 119.1 (C), 123.2 (CH), 123.6 (CH), 124.1 (CH), 125.7 (CH), 126.5 (CH), 128.9 (CH), 132.1 (CH), 138.0 (CH), 143.7 (C), 148.2 (C), 150.5 (C), 154.7 (C), 162.4 (C), 175.7 (C=N<sub>imine</sub>). IR (cm<sup>-1</sup>):  $\nu$ (C=N)<sub>imine</sub> 1598. FABMS m/z: 470 [M]<sup>+</sup>, 435 [M – Cl]<sup>+</sup>. Anal calc. for (C<sub>22</sub>H<sub>21</sub>N<sub>2</sub>OPdCl): C 56.07; H 4.49; N 5.94. Found: C 55.99; H 4.38; N 6.01%.

(b) Ar = 2.6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (3b): A similar procedure to that described for 3a was employed using 1b (0.289 g, 0.54 mmol) affording 3b as a red solid (0.221 g, 80%). Mp: >240 °C (decomp.). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  1.06 (d, <sup>3</sup> $J_{HH}$  6.9, 6H,  $CHMe_2$ ), 1.39 (d,  ${}^3J_{HH}$  6.8, 6H,  $CHMe_2$ ), 2.22 (s, 3H,  $CH_3C=N$ ), 3.06 (sept,  ${}^{3}J_{HH}$  6.8, 2H, CHMe<sub>2</sub>), 6.69 (ddd,  ${}^{3}J_{HH}$  8.4,  ${}^{3}J_{HH}$  6.8, <sup>4</sup>J<sub>HH</sub> 1.5, 1H, Ar<sub>phenolate</sub>-H), 7.16 (d, <sup>3</sup>J<sub>HH</sub> 7.9, 2H, Ar<sub>dipp</sub>-H), 7.20–7.32 (m, 3H, Ar–H), 7.71 (dd,  ${}^{3}J_{HH}$  7.5,  ${}^{4}J_{HH}$  1.0, 1H, Py– H), 7.82 (dd,  ${}^{3}J_{HH}$  8.6,  ${}^{4}J_{HH}$  1.4, 1H, Ar<sub>phenolate</sub>-H), 8.13 (dd, <sup>3</sup>*J*<sub>HH</sub> 8.8, <sup>3</sup>*J*<sub>HH</sub> 7.6, 1H, Py–H), 8.47 (d, <sup>3</sup>*J*<sub>HH</sub> 8.8, 1H, Py–H). <sup>13</sup>C  ${}^{1}H$  NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta$  18.2 (CHMe<sub>2</sub>), 23.7 (CHMe<sub>2</sub>), 23.9 (CH<sub>3</sub>C=N), 28.9 (CHMe<sub>2</sub>), 116.2 (CH), 118.7 (C), 122.8 (CH), 123.8 (CH), 124.2 (CH), 127.0 (CH), 128.4 (CH), 128.6 (CH), 132.6 (CH), 137.2 (CH), 139.8 (C), 141.3 (C), 152.3 (C), 154.1 (C), 163.5 (C), 175.2 (C= $N_{imine}$ ). IR (cm<sup>-1</sup>):  $\nu$ (C= $N_{imine}$ ) 1607. FABMS: m/z 512 [M]<sup>+</sup>, 477 [M - Cl]<sup>+</sup>. TOFMS (ASAP): m/z 513 [M + H]<sup>+</sup>, 477 [M - Cl]<sup>+</sup>. Anal. calc. for (C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>OPdCl): C 58.49, H 5.30, N 5.46 Found: C 58.38, H 5.27, N 5.52%.

### Synthesis of $[{2-(C_6H_4-2'-O)-6-(CMe_2NHAr)C_5H_3N}PdCl]$ (4)

(a) Ar = 4-i-PrC<sub>6</sub>H<sub>4</sub> (4a): A round bottomed flask equipped with stirrer bar and open to the air was loaded with 2a (0.281 g, 0.55 mmol), dichloromethane (20 mL) and brine (20 mL). After stirring vigorously at room temperature for 12 h the organic phase was separated, washed with water  $(3 \times 30 \text{ ml})$ and filtered through a Celite plug. Hexane (100 mL) was added to precipitate the product which was trapped on a Celite plug and washed with hexane (20 mL). The product was dissolved in dichloromethane and the solution collected. All volatiles were removed under reduced pressure affording 4a as a yellow solid (0.219 g, 82%). Mp: >240 °C (decomp.). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ 1.19 (d,  ${}^{3}J_{\rm HH}$  7.0, 6H, CHMe<sub>2</sub>), 1.53 (s, 3H, N-C- $(CH_3)_2$ , 2.51 (s, 3H, N-C(CH<sub>3</sub>)<sub>2</sub>), 2.83 (sept,  ${}^3J_{HH}$  7.0, 1H, CHMe<sub>2</sub>), 6.67 (br, s, 1H, NH), 6.69-6.73 (m, 1H, Ar-H), 6.94-6.99 (m, 3H, Ar-H), 7.07 (d, <sup>3</sup>J<sub>HH</sub> 8.7, 2H, Ar-H), 7.21 (d, <sup>3</sup>J<sub>HH</sub> 4.3, 2H, Ar–H), 7.69 (d, <sup>3</sup>J<sub>HH</sub> 8.4, 1H, Ar–H), 7.92–8.00 (m, 2H, Ar-H).  $^{13}$ C $^{1}$ H $^{1}$  NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta$  23.8 (CHMe<sub>2</sub>), 24.2 (N-C(CH<sub>3</sub>)<sub>2</sub>), 33.6 (CHMe<sub>2</sub>), 33.8 (N-C(CH<sub>3</sub>)<sub>2</sub>), 72.0 (C-N), 116.1 (CH), 116.3 (CH), 121.6 (CH), 121.9 (C), 123.0 (CH), 123.3 (CH), 127.5 (CH), 129.0 (CH), 132.4 (CH), 139.1 (CH), 139.4 (C), 147.5 (C), 152.6 (C), 164.2 (C), 167.0 (C). IR (cm<sup>-1</sup>):  $\nu$ (C=N<sub>pyridine</sub>) 1573,  $\nu$ (NH) 3171. FABMS: m/z 486 [M]<sup>+</sup>, 451  $[M - Cl]^+$ . HRMS (ASAP): m/z Calc. for  $C_{23}H_{26}N_2OPdCl$   $[M + H]^+$ 487.0768. Found 487.0792. Calc. for  $C_{23}H_{25}N_2OPd [M - Cl]^+$ 451.002. Found 451.1026. Calc. for (C<sub>23</sub>H<sub>25</sub>N<sub>2</sub>OPdCl·CHCl<sub>3</sub>): C 47.51; H 4.32; N 4.62 Found: C 47.54; H 4.19; N 4.71%.

(b) Ar = 2,6-i-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4b): A similar procedure to that described for 4a was employed using 2b (0.221 g, 0.40 mmol) affording 4b as a yellow solid (0.154 g, 73%). Mp: >240 °C (decomp).  $^{1}$ H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  0.83 (d,  $^{3}J_{HH}$  6.9, 3H,  $CHMe_2$ ), 1.23 (s, 3H, N-C(CH<sub>3</sub>)<sub>2</sub>), 1.27 (d,  ${}^3J_{HH}$  6.8, 3H,  $CHMe_2$ ), 1.41 (d,  ${}^3J_{HH}$  6.6, 3H,  $CHMe_2$ ), 1.51 (d,  ${}^3J_{HH}$  6.7, 3H,  $CHMe_2$ ), 2.16 (s, 3H, N-C(CH<sub>3</sub>)<sub>2</sub>), 3.02 (sept,  ${}^3J_{HH}$  6.7, 1H,  $CHMe_2$ ), 3.35 (sept,  ${}^3J_{HH}$  6.8, 1H,  $CHMe_2$ ), 6.10 (br, s, 1H, NH), 6.61 (ddd,  ${}^{3}J_{HH}$  8.2,  ${}^{3}J_{HH}$  6.3,  ${}^{4}J_{HH}$  2.1, 1H, Ar<sub>phenolate</sub>-H), 6.86 (dd,  ${}^{3}J_{HH}$  7.5,  ${}^{4}J_{HH}$  1.2, 1H, Py-H), 7.05-7.08 (m, 2H, Ar-H), 7.03–7.17 (m, 3H, Ar–H), 7.55 (d,  ${}^{3}J_{HH}$  8.3, 1H, Ar<sub>phenolate</sub>–H), 7.81 (dd,  ${}^{3}J_{HH}$  8.3,  ${}^{3}J_{HH}$  7.4, 1H, Py–H), 7.88 (d,  ${}^{3}J_{HH}$  8.4, 1H, Py-H).  $^{13}\text{C}\{^1\text{H}\}$  NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  22.6 (CHMe<sub>2</sub>), 24.3  $(N-C(CH_3)_2)$ , 24.4  $(CHMe_2)$ , 24.9  $(CHMe_2)$ , 25.5  $(CHMe_2)$ , 28.9 (CHMe<sub>2</sub>), 29.3 (CHMe<sub>2</sub>), 34.3 (N-C(CH<sub>3</sub>)<sub>2</sub>), 72.0 (C-N), 116.1 (CH), 116.1 (CH), 121.4 (C), 123.1 (CH), 124.5 (CH), 125.7 (CH), 128.0 (CH), 129.0 (CH), 132.3 (CH), 135.7 (C), 138.9 (CH), 142.2 (C), 143.0 (C), 153.4 (C), 164.0 (C), 169.0 (C). IR (cm<sup>-1</sup>):  $\nu(C=N_{\text{pyridine}})$ : 1573. FABMS: m/z 528 [M]<sup>+</sup>, 493 [M - Cl]<sup>+</sup>. HRMS (ASAP) m/z: Calc. for  $C_{26}H_{32}N_2OPdCl [M + H]^+ 529.1238$ . Found 529.1235. Calc. for  $C_{26}H_{31}N_2OPd [M - Cl]^+$  493.1471 Found 493.1413. Anal calc. for  $(C_{26}H_{31}N_2OPdCl\cdot 0.5CHCl_3)$ : C 54.03; H 5.39; N 4.76 Found: C 54.44, H 5.75, N 4.78%.

# Synthesis of [ $\{2-(C_6H_4-2'-O)-6-(CMe=N\{(4-i-PrC_6H_4)\}C_5H_3N\}-Pd(NCMe)][O_3SCF_3]$ (5a)

A Schlenk flask was loaded in the glovebox and  $3a\ (0.124\ g,\ 0.264\ mmol)$  along with AgOSO<sub>2</sub>CF<sub>3</sub> (68 mg, 0.264 mmol)

introduced. On removal from the glovebox, MeCN (10 mL) was added and the reaction mixture stirred at room temperature for 12 h in the absence of light. The resultant slurry was allowed to settle before the insoluble components were removed by cannular filtration and the filtrate collected in a second dry Schlenk flask. The solvent was removed under

reduced pressure affording **5a** as a hygroscopic orange solid (0.160 g, 97%). Single crystals suitable for an X-ray determination were obtained by layering of a solution of **5a** in MeCNtoluene (5:95 v/v) with hexane.  $^{1}$ H NMR (CD<sub>3</sub>CN, 400 MHz):  $\delta$  1.31 (d,  $^{3}J_{\rm HH}$  7.0, 6H, CH $Me_2$ ), 2.45 (s, 3H, CH<sub>3</sub>C=N), 3.05 (sept,  $^{3}J_{\rm HH}$  7.0, 1H, CH $Me_2$ ), 6.93 (ddd,  $^{3}J_{\rm HH}$  8.4,  $^{3}J_{\rm HH}$  7.0,

Table 6 Crystallographic and data processing parameters for HL1<sub>a</sub>, HL2<sub>a</sub>, 1a, 1b, 2a, 2b, 3a and 5a<sup>a</sup>

| Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HL1 <sub>a</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HL2 <sub>a</sub>                                                                                                                                                                                                                                                                                                                                | 1a                                                                                                                                                                                                                                                                                                                                                                                                          | 1b                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_{22}H_{22}N_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{23}H_{26}N_2O$                                                                                                                                                                                                                                                                                                                              | $C_{96}H_{96}N_8O_{12}Pd_4\cdot 7CHCl_3\cdot H_2O$                                                                                                                                                                                                                                                                                                                                                          | C <sub>27</sub> H <sub>30</sub> N <sub>2</sub> O <sub>3</sub> Pd·0.75C <sub>6</sub> H <sub>14</sub>                                                                                                                                                                                                                                                                                                                    |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 346.46                                                                                                                                                                                                                                                                                                                                          | 2833.00                                                                                                                                                                                                                                                                                                                                                                                                     | 623.10                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Crystal size (mm <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.41 \times 0.35 \times 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.35 \times 0.30 \times 0.26$                                                                                                                                                                                                                                                                                                                  | $0.43 \times 0.24 \times 0.15$                                                                                                                                                                                                                                                                                                                                                                              | $0.31 \times 0.24 \times 0.13$                                                                                                                                                                                                                                                                                                                                                                                         |
| Temperature (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 150(2)                                                                                                                                                                                                                                                                                                                                          | 150(2)                                                                                                                                                                                                                                                                                                                                                                                                      | 150(2)                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monoclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monoclinic                                                                                                                                                                                                                                                                                                                                      | Monoclinic                                                                                                                                                                                                                                                                                                                                                                                                  | Monoclinic                                                                                                                                                                                                                                                                                                                                                                                                             |
| Space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P2(1)/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P2(1)/c                                                                                                                                                                                                                                                                                                                                         | P2(1)/c                                                                                                                                                                                                                                                                                                                                                                                                     | C2/c                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.6425(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.166(6)                                                                                                                                                                                                                                                                                                                                        | 27.533(6)                                                                                                                                                                                                                                                                                                                                                                                                   | 26.910(8)                                                                                                                                                                                                                                                                                                                                                                                                              |
| b (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.027(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.955(11)                                                                                                                                                                                                                                                                                                                                      | 19.525(4)                                                                                                                                                                                                                                                                                                                                                                                                   | 14.159(4)                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( )                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                             | ( )                                                                                                                                                                                                                                                                                                                                                                                                                    |
| c (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.590(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.033(9)                                                                                                                                                                                                                                                                                                                                       | 23.435(5)                                                                                                                                                                                                                                                                                                                                                                                                   | 15.463(5)                                                                                                                                                                                                                                                                                                                                                                                                              |
| α (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90                                                                                                                                                                                                                                                                                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\beta$ (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93.528(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.965(11)                                                                                                                                                                                                                                                                                                                                     | 111.63(3)                                                                                                                                                                                                                                                                                                                                                                                                   | 110.788(6)                                                                                                                                                                                                                                                                                                                                                                                                             |
| γ (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90                                                                                                                                                                                                                                                                                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $U(\mathring{A}^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1731.8(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1974(2)                                                                                                                                                                                                                                                                                                                                         | 11 711(4)                                                                                                                                                                                                                                                                                                                                                                                                   | 5508(3)                                                                                                                                                                                                                                                                                                                                                                                                                |
| Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $D_{\rm c}  ({\rm Mg \ m}^{-3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.166                                                                                                                                                                                                                                                                                                                                           | 1.607                                                                                                                                                                                                                                                                                                                                                                                                       | 1.503                                                                                                                                                                                                                                                                                                                                                                                                                  |
| F(000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 744                                                                                                                                                                                                                                                                                                                                             | 5696                                                                                                                                                                                                                                                                                                                                                                                                        | 2608                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\mu(\text{Mo-K}_{\alpha})(\text{mm}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.071                                                                                                                                                                                                                                                                                                                                           | 1.144                                                                                                                                                                                                                                                                                                                                                                                                       | 0.712                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reflections collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 931                                                                                                                                                                                                                                                                                                                                          | 22 937                                                                                                                                                                                                                                                                                                                                                                                                      | 21 197                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Independent reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3471                                                                                                                                                                                                                                                                                                                                            | 22 937                                                                                                                                                                                                                                                                                                                                                                                                      | 5402                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $R_{ m int}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0595                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0834                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Restraints/parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0/229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/239                                                                                                                                                                                                                                                                                                                                           | 1134/1358                                                                                                                                                                                                                                                                                                                                                                                                   | 0/304                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Final <i>R</i> indices $(I > 2\sigma(I))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $R_1 = 0.0489$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $R_1 = 0.0528$                                                                                                                                                                                                                                                                                                                                  | $R_1 = 0.0958$                                                                                                                                                                                                                                                                                                                                                                                              | $R_1 = 0.0490$                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 mai 1 maices (1 20(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $WR_2 = 0.1054$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $WR_2 = 0.1289$                                                                                                                                                                                                                                                                                                                                 | $WR_2 = 0.1419$                                                                                                                                                                                                                                                                                                                                                                                             | $WR_2 = 0.1019$                                                                                                                                                                                                                                                                                                                                                                                                        |
| All data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $R_1 = 0.0705$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                               | =                                                                                                                                                                                                                                                                                                                                                                                                           | =                                                                                                                                                                                                                                                                                                                                                                                                                      |
| All data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $R_1 = 0.0708$                                                                                                                                                                                                                                                                                                                                  | $R_1 = 0.2822$                                                                                                                                                                                                                                                                                                                                                                                              | $R_1 = 0.0713$                                                                                                                                                                                                                                                                                                                                                                                                         |
| - 1 CC: -2 ( 11 1 . )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $wR_2 = 0.1147$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $wR_2 = 0.1385$                                                                                                                                                                                                                                                                                                                                 | $WR_2 = 0.1947$                                                                                                                                                                                                                                                                                                                                                                                             | $WR_2 = 0.1084$                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Λ 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.030                                                                                                                                                                                                                                                                                                                                           | 0.822                                                                                                                                                                                                                                                                                                                                                                                                       | 0.959                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Goodness of fit on $F^2$ (all data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.030                                                                                                                                                                                                                                                                                                                                           | 0.022                                                                                                                                                                                                                                                                                                                                                                                                       | 0.555                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 <b>b</b>                                                                                                                                                                                                                                                                                                                                      | 3a                                                                                                                                                                                                                                                                                                                                                                                                          | 5a                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2b                                                                                                                                                                                                                                                                                                                                              | 3a                                                                                                                                                                                                                                                                                                                                                                                                          | 5a                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2b                                                                                                                                                                                                                                                                                                                                              | 3a                                                                                                                                                                                                                                                                                                                                                                                                          | 5a                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Complex Formula M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>2a</b> C <sub>25</sub> H <sub>28</sub> N <sub>2</sub> O <sub>3</sub> Pd·1.5CHCl <sub>5</sub> 6889.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2b<br>3 C <sub>28</sub> H <sub>34</sub> N <sub>2</sub> O <sub>3</sub> Pd⋅CF<br>637.90                                                                                                                                                                                                                                                           | <b>3a</b><br>H <sub>2</sub> Cl <sub>2</sub> C <sub>22</sub> H <sub>21</sub> ClN <sub>2</sub> OPd⋅CHCl <sub>2</sub><br>590.63                                                                                                                                                                                                                                                                                | 5a<br>C <sub>25</sub> H <sub>24</sub> F <sub>3</sub> N <sub>3</sub> O <sub>4</sub> PdS·MeCN<br>666.99                                                                                                                                                                                                                                                                                                                  |
| Complex  Formula  M  Crystal size (mm³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a<br>C <sub>25</sub> H <sub>28</sub> N <sub>2</sub> O <sub>3</sub> Pd·1.5CHCl <sub>5</sub><br>6889.95<br>0.23 × 0.15 × 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2b<br>3 C <sub>28</sub> H <sub>34</sub> N <sub>2</sub> O <sub>3</sub> Pd·CH<br>637.90<br>0.37 × 0.24 × 0.20                                                                                                                                                                                                                                     | $egin{array}{lll} {\bf 3a} & & & & & & \\ {\bf H_2Cl_2} & & {\bf C_{22}H_{21}ClN_2OPd\cdot CHCl_2} & & & \\ & & 590.63 & & & \\ & & 0.35\times0.29\times0.07 & & & \\ \hline \end{array}$                                                                                                                                                                                                                   | 5a<br>C <sub>25</sub> H <sub>24</sub> F <sub>3</sub> N <sub>3</sub> O <sub>4</sub> PdS·MeCN<br>666.99<br>0.45 × 0.43 × 0.04                                                                                                                                                                                                                                                                                            |
| Complex  Formula  M  Crystal size (mm³)  Temperature (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_5$ 6889.95 $0.23\times 0.15\times 0.04$ $150(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2b<br>63 C <sub>28</sub> H <sub>34</sub> N <sub>2</sub> O <sub>3</sub> Pd·CF<br>637.90<br>0.37 × 0.24 × 0.20<br>150(2)                                                                                                                                                                                                                          | $egin{array}{lll} {\bf 3a} & & & & & & & & \\ {\bf H}_2{\rm Cl}_2 & & {\bf C}_{22}{\bf H}_{21}{\rm ClN}_2{\rm OPd}\cdot{\rm CHCl}_2 \\ & & 590.63 & & & & & \\ & & 0.35\times0.29\times0.07 \\ & & & 150(2) & & & \\ \hline \end{array}$                                                                                                                                                                    | 5a<br>C <sub>25</sub> H <sub>24</sub> F <sub>3</sub> N <sub>3</sub> O <sub>4</sub> PdS⋅MeCN<br>666.99<br>0.45 × 0.43 × 0.04<br>150(2)                                                                                                                                                                                                                                                                                  |
| Complex  Formula  M Crystal size (mm³) Temperature (K) Crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_56889.95 \\ 0.23\times 0.15\times 0.04 \\ 150(2) \\ Monoclinic$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF_{637.90} \\ 0.37 \times 0.24 \times 0.20 \\ 150(2) \\ Monoclinic$                                                                                                                                                                                                                                              | $\begin{array}{ccc} & \textbf{3a} \\ & \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\textbf{H}_{21}\text{ClN}_2\text{OPd}\cdot\text{CHCl}_2\\ & 590.63 & \\ & 0.35\times0.29\times0.07 \\ & 150(2) & \\ & \text{Monoclinic} \end{array}$                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula  M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_3$ $6889.95$ $0.23\times 0.15\times 0.04$ $150(2)$ Monoclinic $P2(1)/c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF_{637.90}$ $0.37\times0.24\times0.20$ $150(2)$ Monoclinic $P2(1)/c$                                                                                                                                                                                                                                             | $\begin{array}{ccc} & & & & & & & \\ \textbf{3a} & & & & & & \\ \textbf{H}_2\textbf{Cl}_2 & & & \textbf{C}_{22}\textbf{H}_{21}\textbf{ClN}_2\textbf{OPd}\cdot\textbf{CHCl}_2\\ & & & & & \\ \textbf{590.63} & & & & \\ \textbf{0.35}\times\textbf{0.29}\times\textbf{0.07} \\ & & & & \\ \textbf{150(2)} & & & \\ \textbf{Monoclinic} \\ & & & \\ \textbf{P2(1)/c} & & & \\ \end{array}$                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula  M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group  a (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_2$ 6889.95 0.23 × 0.15 × 0.04 150(2) Monoclinic $P2(1)/c$ 16.155(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF$ 637.90 0.37 × 0.24 × 0.20 150(2) Monoclinic $P2(1)/c$ 16.640(6)                                                                                                                                                                                                                                               | $\begin{array}{ccc} & \mathbf{3a} & & & \\ \mathbf{H_2Cl_2} & & \mathbf{C_{22}H_{21}ClN_2OPd\cdot CHCl_2} \\ & & 590.63 \\ & & \mathbf{0.35\times0.29\times0.07} \\ & & \mathbf{150(2)} \\ & & \mathbf{Monoclinic} \\ & & \mathbf{P2(1)/c} \\ & & \mathbf{17.785(4)} \end{array}$                                                                                                                           | $\begin{array}{ccc} \textbf{5a} \\ & \textbf{C}_{25}\textbf{H}_{24}\textbf{F}_{3}\textbf{N}_{3}\textbf{O}_{4}\textbf{PdS}\cdot\textbf{MeCN} \\ \textbf{666.99} \\ & \textbf{0.45}\times\textbf{0.43}\times\textbf{0.04} \\ & \textbf{150(2)} \\ & \textbf{Triclinic} \\ & \textbf{PI} \\ & \textbf{13.264(11)} \end{array}$                                                                                            |
| Complex  Formula  M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group  a (Å) b (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_96889.95$ $0.23\times 0.15\times 0.04$ $150(2)$ Monoclinic $P2(1)/c$ $16.155(4)$ $13.910(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF$ 637.90 0.37 × 0.24 × 0.20 150(2) Monoclinic $P2(1)/c$ 16.640(6) 10.960(4)                                                                                                                                                                                                                                     | $\begin{array}{ccc} & \mathbf{3a} \\ & \mathbf{H_2Cl_2} & \mathbf{C_{22}H_{21}ClN_2OPd\cdot CHCl_2} \\ & 590.63 \\ & 0.35\times0.29\times0.07 \\ & 150(2) \\ & \mathbf{Monoclinic} \\ & \mathbf{P2(1)/c} \\ & 17.785(4) \\ & 8.6156(19) \end{array}$                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula  M Crystal size (mm³) Temperature (K) Crystal system Space group a (Å) b (Å) c (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_56889.95$ $0.23\times 0.15\times 0.04$ $150(2)$ Monoclinic $P2(1)/c$ $16.155(4)$ $13.910(3)$ $13.360(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF_{637.90}$ $0.37 \times 0.24 \times 0.20$ $150(2)$ Monoclinic $P2(1)/c$ $16.640(6)$ $10.960(4)$ $17.137(6)$                                                                                                                                                                                                     | $\begin{array}{ccc} & \mathbf{3a} \\ & \mathbf{H_2Cl_2} & \mathbf{C_{22}H_{21}ClN_2OPd\cdot CHCl.} \\ & 590.63 \\ & 0.35\times0.29\times0.07 \\ & \mathbf{150(2)} \\ & \mathbf{Monoclinic} \\ & \mathbf{P2(1)/c} \\ & \mathbf{17.785(4)} \\ & \mathbf{8.6156(19)} \\ & \mathbf{16.469(4)} \end{array}$                                                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula  M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group  a (Å) b (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_56889.95$ $0.23\times 0.15\times 0.04$ $150(2)$ Monoclinic $P2(1)/c$ $16.155(4)$ $13.910(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF$ 637.90 0.37 × 0.24 × 0.20 150(2) Monoclinic $P2(1)/c$ 16.640(6) 10.960(4)                                                                                                                                                                                                                                     | $\begin{array}{ccc} & \mathbf{3a} \\ & \mathbf{H_2Cl_2} & \mathbf{C_{22}H_{21}ClN_2OPd\cdot CHCl_2} \\ & 590.63 \\ & 0.35\times0.29\times0.07 \\ & 150(2) \\ & \mathbf{Monoclinic} \\ & \mathbf{P2(1)/c} \\ & 17.785(4) \\ & 8.6156(19) \end{array}$                                                                                                                                                        | $\begin{array}{ccc} \textbf{5a} \\ & \textbf{C}_{25}\textbf{H}_{24}\textbf{F}_{3}\textbf{N}_{3}\textbf{O}_{4}\textbf{PdS}\cdot\textbf{MeCN} \\ \textbf{666.99} \\ & \textbf{0.45}\times\textbf{0.43}\times\textbf{0.04} \\ & \textbf{150(2)} \\ & \textbf{Triclinic} \\ \textbf{PI} \\ & \textbf{13.264(11)} \\ & \textbf{13.822(11)} \end{array}$                                                                     |
| Complex  Formula  M Crystal size (mm³) Temperature (K) Crystal system Space group a (Å) b (Å) c (Å) a (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_56889.95$ $0.23\times 0.15\times 0.04$ $150(2)$ Monoclinic $P2(1)/c$ $16.155(4)$ $13.910(3)$ $13.360(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF_{637.90}$ $0.37 \times 0.24 \times 0.20$ $150(2)$ Monoclinic $P2(1)/c$ $16.640(6)$ $10.960(4)$ $17.137(6)$                                                                                                                                                                                                     | $\begin{array}{ccc} & \mathbf{3a} \\ & \mathbf{H_2Cl_2} & \mathbf{C_{22}H_{21}ClN_2OPd\cdot CHCl.} \\ & 590.63 \\ & 0.35\times0.29\times0.07 \\ & \mathbf{150(2)} \\ & \mathbf{Monoclinic} \\ & \mathbf{P2(1)/c} \\ & \mathbf{17.785(4)} \\ & \mathbf{8.6156(19)} \\ & \mathbf{16.469(4)} \end{array}$                                                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula $M$ Crystal size (mm³) Temperature (K) Crystal system Space group $a(\mathring{A})$ $b(\mathring{A})$ $c(\mathring{A})$ $a(^{\circ})$ $\beta(^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_56889.95$ $0.23\times 0.15\times 0.04$ $150(2)$ Monoclinic $P2(1)/c$ $16.155(4)$ $13.910(3)$ $13.360(3)$ $90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF_{637.90}$ $0.37 \times 0.24 \times 0.20$ $150(2)$ Monoclinic $P2(1)/c$ $16.640(6)$ $10.960(4)$ $17.137(6)$ $90$                                                                                                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula $M$ Crystal size (mm³) Temperature (K) Crystal system Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $\gamma$ (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_3$ 6889.95 0.23 × 0.15 × 0.04 150(2) Monoclinic $P2(1)/c$ 16.155(4) 13.910(3) 13.360(3) 90 109.643(5) 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2b $ \begin{array}{cccc} \textbf{2b} \\ & C_{28} H_{34} N_2 O_3 Pd \cdot CF \\ 637.90 \\ 0.37 \times 0.24 \times 0.20 \\ 150(2) \\ & \text{Monoclinic} \\ P2(1)/c \\ 16.640(6) \\ 10.960(4) \\ 17.137(6) \\ 90 \\ 116.252(5) \\ 90 \end{array} $                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula $M$ Crystal size (mm³) Temperature (K) Crystal system Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $\gamma$ (°) $U$ (ų)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_5$ 6889.95 0.23 × 0.15 × 0.04 150(2) Monoclinic $P2(1)/c$ 16.155(4) 13.910(3) 13.360(3) 90 109.643(5) 90 2827.5(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2b $\begin{array}{cccc} & \textbf{2b} \\ & C_{28} \textbf{H}_{34} \textbf{N}_2 \textbf{O}_3 \textbf{Pd} \cdot \textbf{CF} \\ & 637.90 \\ & 0.37 \times 0.24 \times 0.20 \\ & 150(2) \\ & \textbf{Monoclinic} \\ & \textit{P2}(1)/c \\ & 16.640(6) \\ & 10.960(4) \\ & 17.137(6) \\ & 90 \\ & 116.252(5) \\ & 90 \\ & 2803.1(16) \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula   M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $\beta$ (°) $U$ (ų) $Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{2a} \\ \textbf{C}_{25}\textbf{H}_{28}\textbf{N}_2\textbf{O}_3\textbf{Pd}\cdot\textbf{1.5}\textbf{CHCl}_3\\ 6889.95\\ 0.23\times0.15\times0.04\\ 150(2)\\ \textbf{Monoclinic}\\ \textbf{\textit{P2}(1)/c}\\ 16.155(4)\\ 13.910(3)\\ 13.360(3)\\ 90\\ 109.643(5)\\ 90\\ 2827.5(11)\\ 4 \end{array}$                                                                                                                                                                                                                                                                                                                              | 2b $ \begin{array}{cccc} \textbf{2b} \\ & C_{28} \textbf{H}_{34} \textbf{N}_2 \textbf{O}_3 \textbf{Pd} \cdot \textbf{CF} \\ 637.90 \\ 0.37 \times 0.24 \times 0.20 \\ 150(2) \\ & \textbf{Monoclinic} \\ P2(1)/c \\ 16.640(6) \\ 10.960(4) \\ 17.137(6) \\ 90 \\ 116.252(5) \\ 90 \\ 2803.1(16) \\ 4 \end{array} $                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula   M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $\gamma$ (°) $U$ (ų) $Z$ $D_c$ (Mg m $^{-3}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \textbf{2a} \\ & C_{25} H_{28} N_2 O_3 Pd \cdot 1.5 CHCl_{5689.95} \\ & 0.23 \times 0.15 \times 0.04 \\ & 150(2) \\ & \text{Monoclinic} \\ & P2(1)/c \\ & 16.155(4) \\ & 13.910(3) \\ & 13.360(3) \\ & 90 \\ & 109.643(5) \\ & 90 \\ & 2827.5(11) \\ & 4 \\ & 1.621 \end{array}$                                                                                                                                                                                                                                                                                                                                                       | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF_{637.90}$ 0.37 × 0.24 × 0.20 150(2) Monoclinic $P2(1)/c$ 16.640(6) 10.960(4) 17.137(6) 90 116.252(5) 90 2803.1(16) 4 1.512                                                                                                                                                                                     | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd}\text{-CHCl}_2\\ & 590.63\\ & 0.35\times0.29\times0.07\\ & 150(2)\\ & \text{Monoclinic}\\ & \textit{P2}(1)/c\\ & 17.785(4)\\ & 8.6156(19)\\ & 16.469(4)\\ & 90\\ & 110.168(4)\\ & 90\\ & 2368.8(9)\\ & 4\\ & 1.656 \end{array}$                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula $M$ Crystal size (mm³)  Temperature (K)  Crystal system  Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $\gamma$ (°) $U$ (ų) $Z$ $D_c$ (Mg m $^{-3}$ ) $F(000)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2a $C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_36889.95$ $0.23\times 0.15\times 0.04$ $150(2)$ Monoclinic $P2(1)/c$ $16.155(4)$ $13.910(3)$ $13.360(3)$ $90$ $109.643(5)$ $90$ $2827.5(11)$ $4$ $1.621$ $1396$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF$ 637.90 0.37 × 0.24 × 0.20 150(2) Monoclinic $P2(1)/c$ 16.640(6) 10.960(4) 17.137(6) 90 116.252(5) 90 2803.1(16) 4 1.512 1312                                                                                                                                                                                  | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd}\text{-CHCl}_2\\ 590.63 \\ 0.35\times0.29\times0.07\\ 150(2) \\ \text{Monoclinic} \\ P2(1)/c \\ 17.785(4) \\ 8.6156(19) \\ 16.469(4) \\ 90 \\ 110.168(4) \\ 90 \\ 2368.8(9) \\ 4 \\ 1.656 \\ 1184 \end{array}$                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula   M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $y$ (°) $U$ (ų) $Z$ $D_c$ (Mg m $^{-3}$ ) $F(000)$ $\mu$ (Mo-K $\alpha$ )(mm $^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2a $ C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_{26}\\ 6889.95\\ 0.23\times 0.15\times 0.04\\ 150(2)\\ Monoclinic\\ P2(1)/c\\ 16.155(4)\\ 13.910(3)\\ 13.360(3)\\ 90\\ 109.643(5)\\ 90\\ 2827.5(11)\\ 4\\ 1.621\\ 1396\\ 1.113$                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF$ 637.90 0.37 × 0.24 × 0.20 150(2) Monoclinic $P2(1)/c$ 16.640(6) 10.960(4) 17.137(6) 90 116.252(5) 90 2803.1(16) 4 1.512 1312 0.866                                                                                                                                                                            | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd}\text{-CHCl}_2\\ 590.63 \\ 0.35 \times 0.29 \times 0.07\\ 150(2) \\ \text{Monoclinic} \\ P2(1)/c \\ 17.785(4) \\ 8.6156(19) \\ 16.469(4) \\ 90 \\ 110.168(4) \\ 90 \\ 2368.8(9) \\ 4 \\ 1.656 \\ 1184 \\ 1.253 \\ \end{array}$                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula $M$ Crystal size (mm³)  Temperature (K)  Crystal system  Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $y$ (°) $U$ (ų) $Z$ $D_c$ (Mg m $^{-3}$ ) $F$ (000) $\mu$ (Mo-K $_{\alpha}$ )(mm $^{-1}$ )  Reflections collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2a $ C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_{6889.95} \\ 0.23\times 0.15\times 0.04 \\ 150(2) \\ Monoclinic \\ P2(1)/c \\ 16.155(4) \\ 13.910(3) \\ 13.360(3) \\ 90 \\ 109.643(5) \\ 90 \\ 2827.5(11) \\ 4 \\ 1.621 \\ 1396 \\ 1.113 \\ 22.017 $                                                                                                                                                                                                                                                                                                                                                                                                              | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF$ 637.90 $0.37\times0.24\times0.20$ 150(2) Monoclinic $P2(1)/c$ 16.640(6) 10.960(4) 17.137(6) 90 116.252(5) 90 2803.1(16) 4 1.512 1312 0.866 21 332                                                                                                                                                             | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd}\cdot\text{CHCl}_2\\ 590.63 \\ 0.35\times0.29\times0.07\\ 150(2) \\ \text{Monoclinic} \\ P2(1)/c \\ 17.785(4) \\ 8.6156(19) \\ 16.469(4) \\ 90 \\ 110.168(4) \\ 90 \\ 2368.8(9) \\ 4 \\ 1.656 \\ 1184 \\ 1.253 \\ 18002 \\ \end{array}$                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula   M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $y$ (°) $U$ (ų) $Z$ $D_c$ (Mg m $^{-3}$ ) $F(000)$ $\mu$ (Mo-K $\alpha$ )(mm $^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2a $ C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_{26}\\ 6889.95\\ 0.23\times 0.15\times 0.04\\ 150(2)\\ Monoclinic\\ P2(1)/c\\ 16.155(4)\\ 13.910(3)\\ 13.360(3)\\ 90\\ 109.643(5)\\ 90\\ 2827.5(11)\\ 4\\ 1.621\\ 1396\\ 1.113$                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF$ 637.90 0.37 × 0.24 × 0.20 150(2) Monoclinic $P2(1)/c$ 16.640(6) 10.960(4) 17.137(6) 90 116.252(5) 90 2803.1(16) 4 1.512 1312 0.866                                                                                                                                                                            | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd}\text{-CHCl}_2\\ 590.63 \\ 0.35 \times 0.29 \times 0.07\\ 150(2) \\ \text{Monoclinic} \\ P2(1)/c \\ 17.785(4) \\ 8.6156(19) \\ 16.469(4) \\ 90 \\ 110.168(4) \\ 90 \\ 2368.8(9) \\ 4 \\ 1.656 \\ 1184 \\ 1.253 \\ \end{array}$                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula $M$ Crystal size (mm³)  Temperature (K)  Crystal system  Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $y$ (°) $U$ (ų) $Z$ $D_c$ (Mg m $^{-3}$ ) $F$ (000) $\mu$ (Mo-K $_{\alpha}$ )(mm $^{-1}$ )  Reflections collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2a $ C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_{6889.95} \\ 0.23\times 0.15\times 0.04 \\ 150(2) \\ Monoclinic \\ P2(1)/c \\ 16.155(4) \\ 13.910(3) \\ 13.360(3) \\ 90 \\ 109.643(5) \\ 90 \\ 2827.5(11) \\ 4 \\ 1.621 \\ 1396 \\ 1.113 \\ 22.017 $                                                                                                                                                                                                                                                                                                                                                                                                              | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF$ 637.90 $0.37\times0.24\times0.20$ 150(2) Monoclinic $P2(1)/c$ 16.640(6) 10.960(4) 17.137(6) 90 116.252(5) 90 2803.1(16) 4 1.512 1312 0.866 21 332                                                                                                                                                             | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd}\cdot\text{CHCl}_2\\ 590.63 \\ 0.35\times0.29\times0.07\\ 150(2) \\ \text{Monoclinic} \\ P2(1)/c \\ 17.785(4) \\ 8.6156(19) \\ 16.469(4) \\ 90 \\ 110.168(4) \\ 90 \\ 2368.8(9) \\ 4 \\ 1.656 \\ 1184 \\ 1.253 \\ 18002 \\ \end{array}$                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula $M$ Crystal size (mm³) Temperature (K) Crystal system Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $b$ ( $a$ ) $f$ (°)                                                                                                                                                                                                                                                                                                                                                                                                 | 2a $ C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_5\\ 6889.95\\ 0.23\times 0.15\times 0.04\\ 150(2)\\ Monoclinic\\ P2(1)/c\\ 16.155(4)\\ 13.910(3)\\ 13.360(3)\\ 90\\ 109.643(5)\\ 90\\ 2827.5(11)\\ 4\\ 1.621\\ 1396\\ 1.113\\ 22\ 017\\ 5551$                                                                                                                                                                                                                                                                                                                                                                                                                     | 2b $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd}\text{-CHCl}_2\\ 590.63 & 0.35 \times 0.29 \times 0.07\\ 150(2) & \text{Monoclinic} \\ P2(1)/c & 17.785(4) & 8.6156(19) \\ 16.469(4) & 90 & 110.168(4) \\ 90 & 2368.8(9) & 4 & \\ 1.656 & \\ 1184 & \\ 1.253 & \\ 18002 & \\ 4659 & \end{array}$                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula   M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $\gamma$ (°) $U$ (ų) $Z$ $D_c$ (Mg m $^{-3}$ ) $F$ (000) $\mu$ (Mo-K $_{\alpha}$ )(mm $^{-1}$ )  Reflections collected Independent reflections $R_{\text{int}}$ Restraints/parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2a $ C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_{56}\\ 6889.95\\ 0.23\times 0.15\times 0.04\\ 150(2)\\ Monoclinic\\ P2(1)/c\\ 16.155(4)\\ 13.910(3)\\ 13.360(3)\\ 90\\ 109.643(5)\\ 90\\ 2827.5(11)\\ 4\\ 1.621\\ 1396\\ 1.113\\ 22.017\\ 5551\\ 0.1884\\ 277/285$                                                                                                                                                                                                                                                                                                                                                                                                | 2b $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula $M$ Crystal size (mm³) Temperature (K) Crystal system Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $b$ ( $a$ ) | $\begin{array}{c} \textbf{2a} \\ & \textbf{C}_{25}\textbf{H}_{28}\textbf{N}_2\textbf{O}_3\textbf{Pd}\cdot\textbf{1.5}\textbf{CHCl}_{56889.95} \\ & \textbf{0.23}\times\textbf{0.15}\times\textbf{0.04} \\ & \textbf{150(2)} \\ & \textbf{Monoclinic} \\ & \textbf{P2(1)/c} \\ & \textbf{16.155(4)} \\ & \textbf{13.910(3)} \\ & \textbf{13.360(3)} \\ & \textbf{90} \\ & \textbf{109.643(5)} \\ & \textbf{90} \\ & \textbf{2827.5(11)} \\ & \textbf{4} \\ & \textbf{1.621} \\ & \textbf{1396} \\ & \textbf{1.113} \\ & \textbf{22.017} \\ & \textbf{5551} \\ & \textbf{0.1884} \\ & \textbf{277/285} \\ & \textbf{R}_1 = \textbf{0.0695} \\ \end{array}$ | 2b $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd}\text{-CHCl}_2\\ 590.63 \\ 0.35 \times 0.29 \times 0.07\\ 150(2) \\ \text{Monoclinic} \\ P2(1)/c \\ 17.785(4) \\ 8.6156(19) \\ 16.469(4) \\ 90 \\ 110.168(4) \\ 90 \\ 2368.8(9) \\ 4 \\ 1.656 \\ 1184 \\ 1.253 \\ 18002 \\ 4659 \\ 0.1264 \\ 0/283 \\ R_1 = 0.0554 \\ \end{array}$             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula $M$ Crystal size (mm³) Temperature (K) Crystal system Space group $a$ (Å) $b$ (Å) $c$ (Å) $\alpha$ (°) $\beta$ (°) $\gamma$ (°) $U$ (ų) $Z$ $D_c$ (Mg m $^{-3}$ ) $F(000)$ $\mu$ (Mo-K $_{\alpha}$ )(mm $^{-1}$ ) Reflections collected Independent reflections $R_{\rm int}$ Restraints/parameters Final $R$ indices ( $I > 2\sigma(I)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{2a} \\ & C_{25} H_{28} N_2 O_3 Pd \cdot 1.5 CHCls \\ 6889.95 \\ & 0.23 \times 0.15 \times 0.04 \\ & 150(2) \\ & \text{Monoclinic} \\ & P2(1)/c \\ & 16.155(4) \\ & 13.910(3) \\ & 13.360(3) \\ & 90 \\ & 109.643(5) \\ & 90 \\ & 2827.5(11) \\ & 4 \\ & 1.621 \\ & 1396 \\ & 1.113 \\ & 22 \ 017 \\ & 5551 \\ & 0.1884 \\ & 277/285 \\ & R_1 = 0.0695 \\ & wR_2 = 0.1575 \\ \end{array}$                                                                                                                                                                                                                                       | 2b $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd-CHCl}_2\\ 590.63 & 0.35 \times 0.29 \times 0.07\\ 150(2) & \text{Monoclinic}\\ P2(1)/c & 17.785(4)\\ 8.6156(19) & 16.469(4)\\ 90 & 110.168(4)\\ 90 & 2368.8(9)\\ 4 & 1.656\\ 1184 & 1.253\\ 18.002 & 4659\\ 0.1264 & 0/283\\ R_1 = 0.0554\\ \text{WR}_2 = 0.0830 \end{array}$                  | $\begin{array}{c} \textbf{5a} \\ & C_{25}H_{24}F_3N_3O_4PdS\cdot MeCN \\ 666.99 \\ & 0.45\times0.43\times0.04 \\ & 150(2) \\ & \text{Triclinic} \\ & P\bar{1} \\ & 13.264(11) \\ & 13.822(11) \\ & 17.160(14) \\ & 80.989(15) \\ & 78.907(15) \\ & 64.369(13) \\ & 2774(4) \\ & 4 \\ & 1.597 \\ & 1352 \\ & 0.805 \\ & 21 653 \\ & 10 758 \\ & 0.1073 \\ & 36/740 \\ & R_1 = 0.0999 \\ & WR_2 = 0.2351 \\ \end{array}$ |
| Complex  Formula   M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group $a$ (Å) $b$ (Å) $c$ (Å) $a$ (°) $\beta$ (°) $\gamma$ (°) $U$ (ų) $Z$ $D_c$ (Mg m $^{-3}$ ) $F$ (000) $\mu$ (Mo-K $_{\alpha}$ )(mm $^{-1}$ )  Reflections collected Independent reflections $R_{\text{int}}$ Restraints/parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2a $ C_{25}H_{28}N_2O_3Pd\cdot 1.5CHCl_{16}\\ 6889.95\\ 0.23\times 0.15\times 0.04\\ 150(2)\\ Monoclinic\\ P2(1)/c\\ 16.155(4)\\ 13.910(3)\\ 13.360(3)\\ 90\\ 109.643(5)\\ 90\\ 2827.5(11)\\ 4\\ 1.621\\ 1396\\ 1.113\\ 22\ 017\\ 5551\\ 0.1884\\ 277/285\\ R_1=0.0695\\ \text{w}R_2=0.1575\\ R_1=0.1940$                                                                                                                                                                                                                                                                                                                                                | 2b $C_{28}H_{34}N_2O_3Pd\cdot CF_{637.90}$ $0.37 \times 0.24 \times 0.20$ $150(2)$ Monoclinic $P2(1)/c$ $16.640(6)$ $10.960(4)$ $17.137(6)$ $90$ $116.252(5)$ $90$ $2803.1(16)$ $4$ $1.512$ $1312$ $0.866$ $21.332$ $5505$ $0.0497$ $0/341$ $R_1 = 0.0373$ $wR_2 = 0.0935$ $R_1 = 0.0439$                                                       | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd-CHCl}_2\\ 590.63 & 0.35 \times 0.29 \times 0.07\\ 150(2) & \text{Monoclinic}\\ P2(1)/c & 17.785(4) & 8.6156(19)\\ 16.469(4) & 90 & 110.168(4)\\ 90 & 2368.8(9) & 4 & 1.656\\ 1184 & 1.253 & 18 002\\ 4659 & 0.1264\\ 0/283 & R_1 = 0.0554\\ \text{wR}_2 = 0.0830\\ R_1 = 0.1026 & \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                   |
| Complex  Formula  M  Crystal size (mm³)  Temperature (K)  Crystal system  Space group $a$ (Å) $b$ (Å) $c$ (Å) $\alpha$ (°) $\beta$ (°) $\gamma$ (°) $U$ (ų) $Z$ $D_c$ (Mg m $^{-3}$ ) $F(000)$ $\mu$ (Mo-K $_{\alpha}$ )(mm $^{-1}$ )  Reflections collected  Independent reflections $R_{int}$ Restraints/parameters  Final $R$ indices ( $I > 2\sigma(I)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \textbf{2a} \\ & C_{25} H_{28} N_2 O_3 Pd \cdot 1.5 CHCls \\ 6889.95 \\ & 0.23 \times 0.15 \times 0.04 \\ & 150(2) \\ & \text{Monoclinic} \\ & P2(1)/c \\ & 16.155(4) \\ & 13.910(3) \\ & 13.360(3) \\ & 90 \\ & 109.643(5) \\ & 90 \\ & 2827.5(11) \\ & 4 \\ & 1.621 \\ & 1396 \\ & 1.113 \\ & 22 \ 017 \\ & 5551 \\ & 0.1884 \\ & 277/285 \\ & R_1 = 0.0695 \\ & wR_2 = 0.1575 \\ \end{array}$                                                                                                                                                                                                                                       | 2b $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textbf{3a} \\ \textbf{H}_2\text{Cl}_2 & \textbf{C}_{22}\text{H}_{21}\text{ClN}_2\text{OPd-CHCl}_2\\ 590.63 & 0.35 \times 0.29 \times 0.07\\ 150(2) & \text{Monoclinic}\\ P2(1)/c & 17.785(4)\\ 8.6156(19) & 16.469(4)\\ 90 & 110.168(4)\\ 90 & 2368.8(9)\\ 4 & 1.656\\ 1184 & 1.253\\ 18.002 & 4659\\ 0.1264 & 0/283\\ R_1 = 0.0554\\ \text{WR}_2 = 0.0830 \end{array}$                  | $\begin{array}{c} \textbf{5a} \\ & C_{25}H_{24}F_3N_3O_4PdS\cdot MeCN \\ 666.99 \\ & 0.45\times0.43\times0.04 \\ & 150(2) \\ & \text{Triclinic} \\ & P\bar{1} \\ & 13.264(11) \\ & 13.822(11) \\ & 17.160(14) \\ & 80.989(15) \\ & 78.907(15) \\ & 64.369(13) \\ & 2774(4) \\ & 4 \\ & 1.597 \\ & 1352 \\ & 0.805 \\ & 21 653 \\ & 10 758 \\ & 0.1073 \\ & 36/740 \\ & R_1 = 0.0999 \\ & WR_2 = 0.2351 \\ \end{array}$ |

<sup>&</sup>lt;sup>a</sup> Data in common: graphite-monochromated Mo-K<sub>α</sub> radiation,  $\lambda = 0.71073$  Å;  $R_1 = \sum ||F_0| - |F_c||/\sum |F_0|$ ,  $wR_2 = [\sum w(F_0^2 - F_c^2)^2/\sum w(F_0^2)^2]^{1/2}$ ,  $w^{-1} = [\sigma^2(F_0)^2 + (aP)^2]$ ,  $P = [\max(F_0^2, 0) + 2(F_c^2)]/3$ , where a is a constant adjusted by the program; goodness of fit  $= [\sum (F_0^2 - F_c^2)^2/(n-p)]^{1/2}$  where n is the number of reflections and p the number of parameters.

<sup>4</sup>J<sub>HH</sub> 1.3, 1H, Ar<sub>phenolate</sub>-H), 7.13 (dd, <sup>3</sup>J<sub>HH</sub> 8.6, <sup>4</sup>J<sub>HH</sub> 1.3, 1H, Ar<sub>phenolate</sub>-H), 7.26 (d, <sup>3</sup>J<sub>HH</sub> 8.5, 2H, Ar<sub>mipp</sub>-H), 7.40 (ddd, <sup>3</sup>J<sub>HH</sub> 8.5,  ${}^{3}J_{HH}$  6.8,  ${}^{4}J_{HH}$  1.5, 1H, Ar<sub>phenolate</sub>–H), 7.49 (d,  ${}^{3}J_{HH}$  8.5, 2H,  $Ar_{mipp}$ -H), 8.08-8.13 (2H, m, Ar-H), 8.39 (dd,  ${}^{3}J_{HH}$  8.7,  ${}^{3}J_{HH}$ 7.5, 1H, Py-H), 8.67 (d,  ${}^{3}J_{HH}$  8.8, 1H, Py-H), the coordinated CH<sub>3</sub>CN ligand was not observed due to rapid exchange with bulk CD<sub>3</sub>CN.  $^{13}$ C $^{1}$ H $^{1}$  NMR (CD<sub>3</sub>CN, 100 MHz):  $\delta$  17.4 (CH<sub>3</sub>C=N), 22.8 (CHMe<sub>2</sub>), 33.3 (CHMe<sub>2</sub>), 116.9 (CH), 118.5 (C), 120.7 (CH), 122.4 (CH), 125.6 (CH), 126.8 (CH), 127.2 (CH), 129.5 (CH), 132.9 (CH), 139.4 (CH), 142.9 (C), 149.5 (C), 150.3 (C), 155.2 (C), 160.0 (C), 177.8 (C=N<sub>imine</sub>), CF<sub>3</sub>SO<sub>3</sub> not observed. <sup>19</sup>F NMR (CD<sub>3</sub>CN, 376 MHz):  $\delta$  –79.3 (s, 3F, CF<sub>3</sub>SO<sub>3</sub>). IR  $(cm^{-1})$ :  $\nu(C=N)_{imine}$  1597. ESIMS (+ve): m/z 476  $[M - CF_3SO_3]^+$ . ESIMS (-ve): m/z 149  $[CF_3SO_3]^-$ . HRMS (ASAP): m/z Calc. for  $C_{23}H_{21}N_2O_4SF_3Pd [M - MeCN]^+$  584.0218 Found 584.0482.

# General procedure for reactions of Pd–Cl complexes with the iodonium salt

A microwave vessel equipped with stirrer bar and open to the air was loaded with 3 or 4 (0.05 mmol) and di-p-tolyliodonium triflate (0.10 mmol, 2 eq.) and the contents suspended in toluene (4.5 mL) and MeCN (0.5 mL) before the system was sealed. The mixture was then stirred and heated to 100 °C for the specified time period. On cooling to room temperature the internal standard naphthalene (1 eq.) was added in hexane (2 mL). 1 mL of this reaction mixture was removed, diluted with a further 2 mL of hexane and the solids removed by filtration through a silica plug. The plug was washed with hexane (1 mL) and the filtrate was subject to analysis by GC. GC conditions: Hold oven temperature at 40 °C for 2 min; ramp 10 °C min<sup>-1</sup> for 10 min; hold oven temperature at 180 °C for 12 min; injection temperature 250 °C; injection volume 1 µL; split ratio: 50:1. All reactions were repeated in triplicate.

#### Crystallographic studies

Data for  $\rm HL1_a$ ,  $\rm HL2_a$ ,  $\rm 1a$ ,  $\rm 1b$ ,  $\rm 2a$ ,  $\rm 2b$ ,  $\rm 3a$  and  $\rm 5a$  were collected on a Bruker APEX 2000 CCD diffractometer. Details of data collection, refinement and crystal data are listed in Table 6. The data were corrected for Lorentz and polarisation effects and empirical absorption corrections applied. Structure solution by direct methods and structure refinement based on full-matrix least-squares on  $F^2$  employed SHELXTL version 6.10.  $^{22}$  Hydrogen atoms were included in calculated positions (C–H = 0.93–1.00 Å) riding on the bonded atom with isotropic displacement parameters set to  $1.5 U_{\rm eq}(\rm C)$  for methyl H atoms and  $1.2 U_{\rm eq}(\rm C)$  for all other H atoms. All non-H atoms were refined with anisotropic displacement parameters. Disordered solvent was omitted using the SQUEEZE option in PLATON for 1b and  $\rm 2a.^{23}$ 

CCDC reference numbers 1040521-1040528.

### Acknowledgements

We thank the University of Leicester for financial assistance. Johnson Matthey PLC are thanked for their generous loan of palladium salts.

### References

- 1 For reviews see: (a) N. R. Deprez and M. S. Sanford, *Inorg. Chem.*, 2007, 46, 1924–1935; (b) P. J. Stang and V. V. Zhdankin, *Chem. Rev.*, 1996, 96, 1123–1178; (c) A. Varvoglis, *Tetrahedron*, 1997, 53, 1179–1255; (d) T. Wirth and U. H. Hirt, *Synthesis*, 1999, 1271–1287; (e) T. Okuyama, *Acc. Chem. Res.*, 2002, 35, 12–18; (f) V. V. Zhdankin and P. Stang, *Chem. Rev.*, 2002, 102, 2523–2584; (g) Hypervalent Iodine Chemistry, Modern Developments in Organic Synthesis, in *Topics in Current Chemistry*, ed. T. Wirth, Springer, New York, 2003, vol. 224; (h) A. J. Canty, T. Rodemann and J. H. Ryan, *Adv. Organomet. Chem.*, 2008, 55, 279–313; (i) K. Muñiz, *Angew. Chem., Int. Ed.*, 2009, 48, 9412–9423.
- (a) J. Aydin, J. M. Larsson, N. Selander and K. J. Szabo, Org. Lett., 2009, 11, 2852–2854; (b) E. A. Marritt and B. Olofsson, Angew. Chem., Int. Ed., 2009, 48, 9052–9070; (c) L.-M. Xu, B.-J. Li, Z. Yang and Z.-J. Shi, Chem. Soc. Rev., 2010, 39, 712–733; (d) P. D. Chaudhuri, R Guo and H. C. Malinakova, J. Organomet. Chem., 2007, 693, 567–573; (e) H. C. Malinakova, Top. Organomet. Chem., 2011, 35, 85–110; (f) Y. Ye, N. D. Ball, J. W. Kampf and M. S. Sanford, J. Am. Chem. Soc., 2010, 132, 14682–14687; (g) K. M. Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012, 45, 788–802; (h) X.-G. Zhang, H.-X. Dai, M. Wasa and J.-Q. Yu, J. Am. Chem. Soc., 2012, 134, 11948–11951; (i) H. Zhang and A. Lei, Dalton Trans., 2011, 40, 8745–8754.
- (a) D. Kalyanai, N. R. Deprez, L. V. Desai and M. S. Sanford, J. Am. Chem. Soc., 2005, 127, 7330–7331; (b) E. W. Kalberer, S. R. Whifield and M. S. Sanford, J. Mol. Catal. A: Chem., 2006, 251, 108–113; (c) N. R. Deprez and M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 11234–11241; (d) A. J. Canty, A. Ariafard, M. S. Sanford and B. F. Yates, Organometallics, 2013, 32, 544–555; (e) A. J. Canty, Dalton Trans., 2009, 10409–10417.
- 4 (a) A. J. Canty, J. Patel, T. Rodemann, J. H. Ryan, B. W. Skelton and A. H. White, *Organometallics*, 2004, 23, 3466–3473; (b) A. Bayler, A. J. Canty, J. H. Ryan, B. W. Skelton and A. H. White, *Inorg. Chem. Commun.*, 2000, 3, 575–578.
- 5 K. J. Szabó, J. Mol. Catal. A: Chem., 2010, 324, 56-63.
- 6 (a) J. Vicente, M. T. Chicote, J. Martin, M. Artigao, X. Solans, M. Font-Altaba and M. Aguilo, J. Chem. Soc., Dalton Trans., 1988, 141–147; (b) A. J. Canty, S. D. Fritshe, H. Jin, B. W. Skelton and A. H. White, J. Organomet. Chem., 1995, 490, C18–C19; (c) A. J. Canty, H. Jin, A. S. Roberts, B. W. Skelton and A. H. White, Organometallics, 1996, 15, 5713–5722; (d) R. van Belzen, C. J. Elsevier, A. Dedieu,

N. Veldman and A. L. Spek, *Organometallics*, 2003, **22**, 722–736; (*e*) S. R. Whitfield and M. S. Sanford, *J. Am. Chem. Soc.*, 2007, **129**, 15141–15143.

- 7 C–Cl bond forming reductive elimination from Pd(IV) is considered highly thermodynamically favourable when compared with the corresponding elimination from Pd(II): See ref. 1*a* and A. H. Hoy and J. F. Hartwig, *Organometallics*, 2004, 23, 1533–1541.
- 8 (a) M.-C. Lagunas, R. A. Gossage, A. L. Spek and G. van Koten, Organometallics, 1998, 17, 731–741; (b) A. J. Canty, M. C. Denney, G. van Koten, B. W. Skelton and A. H. White, Organometallics, 2004, 23, 5432–5439; (c) L. T. Pilarski, N. Selander, D. Boese and K. J. Szabó, Org. Lett., 2009, 11, 5518–5521; (d) N. Selander, B. Willy and K. J. Szabó, Angew. Chem., Int. Ed., 2010, 49, 4051–4053.
- 9 P. L. Alsters, P. F. Engel, M. P. Hogerheide, M. Copijn, A. L. Spek and G. van Koten, *Organometallics*, 1993, **12**, 1831–1844.
- 10 (a) J. Vicente, A. Arcas, F. Julia-Hernández and D. Bautista, Chem. Commun., 2010, 46, 7253–7255; (b) J. Vicente, A. Arcas, F. Julia-Hernández and D. Bautista, Inorg. Chem., 2011, 50, 5339–5341; (c) J. Vicente, A. Arcas, F. Julia-Hernández and D. Bautista, Angew. Chem., Int. Ed., 2011, 50, 6896–6899.
- (a) T. Furuya and T. Ritter, J. Am. Chem. Soc., 2008, 130, 10060–10061; (b) T. Furuya, D. Benitez, E. Tkatchouk, A. E. Strom, P. Tang, W. A. Goddard III and T. Ritter, J. Am. Chem. Soc., 2010, 132, 3793–3807; (c) M. G. Campbell and T. Ritter, Org. Process Res. Dev., 2014, 18, 474–480.
- 12 W. Alkarekshi, A. P. Armitage, O. Boyron, C. J. Davies, M. Govere, A. Gregory, K. Singh and G. A. Solan, *Organo-metallics*, 2013, 32, 249–259.

- 13 C. J. Davies, A. Gregory, P. Griffith, T. Perkins, K. Singh and G. A. Solan, *Tetrahedron*, 2008, **64**, 9857–9864.
- 14 O. Adeyi, W. B. Cross, G. Forrest, L. Godfrey, E. G. Hope, A. McLeod, A. Singh, K. Singh, G. A. Solan, Y. Wang and L. A. Wright, *Dalton Trans.*, 2013, 42, 7710–7723.
- 15 W. B. Cross, E. G. Hope, G. Forrest, K. Singh and G. A. Solan, *Polyhedron*, 2013, **59**, 124–132.
- 16 (a) M. Lopez-Torres, P. Juanatey, J. J. Fernandez, A. Fernandez, A. Suarez, D. Vazquez-Garcia and J. M. Vila, *Polyhedron*, 2002, 21, 2063–2069; (b) H. Onoue and I. Moritani, *J. Organomet. Chem.*, 1972, 43, 431–436; (c) H. Onoue, K. Minami and K. Nakagawa, *Bull. Chem. Soc. Jpn.*, 1970, 43, 3480–3485.
- 17 K. Nakamoto, *IR and Raman Spectra of Inorganic and Coordination Compounds*, Wiley, New York, 5th edn, 1997, Part B, p. 271.
- (a) E. T. J. Strong, J. T. Price and N. D. Jones, *Dalton Trans.*,
   2009, 9123–9125; (b) D. M. Pearson, N. R. Conley and
   R. M. Waymouth, *Organometallics*, 2011, 30, 1445–1453.
- 19 W. L. F. Armarego and D. D. Perrin, in *Purification of Laboratory Chemicals*, Butterworth Heinemann, 4th edn, 1996.
- 20 J. E. Parks, B. E. Wagner, R. H. Holm and J. E. Parks, J. Organomet. Chem., 1974, 56, 53-66.
- 21 M. Bielawski and B. Olofsson, *Chem. Commun.*, 2007, 2521–2523.
- 22 G. M. Sheldrick, *SHELXTL Version 6.10*, Bruker AXS, Inc., Madison, Wisconsin, USA, 2000.
- 23 A. L. Spek, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 1990, 46, C34.

Copyright of Dalton Transactions: An International Journal of Inorganic Chemistry is the property of Royal Society of Chemistry and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.