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Abstract: New pyrimidine and triazine intermedi-

ates for herbicidal sulfonylureas are prepared as

follows: 2,4-dichloro-6-methylpyrimidine is con-

verted via a halogenation, halogen exchange and

substitution sequence to 2-amino-4-tri¯uoro-

methyl-6-tri¯uoromethoxypyrimidine. New ¯uoro-

methyl-triazines are available starting from

guanidine, trichloroacetonitrile and di¯uoroacetic

anhydride, or alternatively from thiocarbamoyl

guanidine and chlorodi¯uoroacetic ester ring clo-

sure. To obtain new o-¯uoroalkyl-benzenesulfona-

mide precursors, o-chlorobenzaldehyde was

¯uorinated with sulfur tetra¯uoride, or a bromo-

benzene derivative was subjected to a substitution

reaction with sodium penta¯uoropropionate. Sulfo-

nylureas derived from tri¯uoromethylpyrimidines

with an m-methylthio substituent are selective post-

emergence herbicides in cotton, presumably due to

sulfone metabolization. Selectivity in wheat is ob-

tained by combining 4-methoxy-6-tri¯uoromethyl-

pyrimidine with a lipophilic di¯uoromethyl-

benzenesulfonamide moiety. Also in the di¯uoro-

methyl-triazine series, the combination with the

di¯uoromethyl-benzenesulfonamide moiety is a

good choice for wheat selectivity. Chlorodi¯uoro-

methyl- and tri¯uoromethyltriazines, however,

combine better with an aromatic ester for best

activity and selectivity in wheat. Selected com-

pounds are undergoing broad ®eld tests in wheat.

Keywords: side-chain-¯uorinated pyrimidines; tri-
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1 INTRODUCTION
Due to their low use rates and low mammalian toxicity

sulfonylureas have emerged as commercially impor-

tant innovative herbicides. Acetolactate binding site

models1 showed small substituents in the 4,6-positions

of the pyrimidine and triazine moieties, preferentially

methyl, methoxy and chlorine, to be the best choice for

herbicidal activity, with metsulfuron-methyl2 and

chlorimuron-ethyl3 selected for wheat and soybean

selectivity. In the case of primisulfuron-methyl4, a

pseudohalide like the di¯uoromethoxy group contri-

butes signi®cantly to corn selectivity. We have recently

shown that chlorodi¯uoromethoxy and tri¯uoro-

methoxy groups point in the same direction,5 revealing

the importance of an alternative hydrophobic surface

in the heterocyclic moiety.

We then became interested in the in¯uence of

¯uorinated methyl groups on structure/activity rela-

tionships. In addition, O-demethylation of methoxy-

pyrimidines ± being the predominant pathway for

metabolism6 ± should be enhanced by an electron-

withdrawing tri¯uoromethyl group, thus providing an

opportunity for crop selectivity.

2 MATERIALS AND METHODS
2.1 Synthesis
2.1.1 2-Amino-4-tri¯uoromethyl-6-tri¯uoromethoxypyri-

midine

2,4-Dichloro-6-methylpyrimidine (Fig 1; A) is con-

verted by a sequence of chlorination and substitution

steps to 2-chloro-4-trichloromethyl-6-trichloro-

methoxypyrimidine (B) in a 73% overall yield, which

is the starting material for the ®nal ¯uorination to C.

Leaving-group ability of the tri¯uoromethoxy group is

shown in the side reaction of C with ammonia, even at

ÿ75°C, resulting in 21% of the 4-amino displacement

product E, while formation of D (48% yield) is still

preferred (Fig 1).

2.1.2 4-Substituted-2-amino-6-tri¯uoromethylpyrimidines

Condensation of guanidine hydrochloride with ethyl

4,4,4-tri¯uoroacetoacetate7 and chlorination with

phosphorus oxychloride8 resulted in 2-amino-4-

chloro-6-tri¯uoromethylpyrimidine (G), which, upon

reaction with nucleophiles, gave high yields of the
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corresponding 4-methoxy-, 4-methylthio- and 4-

methylaminopyrimidines (H±J),8 (Fig 2).

2.1.3 2-Amino-4-di¯uoromethyl-6-methoxytriazine

Likewise, the trichloromethyl group in triazine K,

introduced by condensation of guanidine with tri-

chloroacetonitrile and subsequent di¯uoroacetic an-

hydride ring closure, serves as an excellent leaving

group for the synthesis of 2-amino-4-di¯uoromethyl-

6-methoxytriazine (Fig 3; L)

2.1.4 2-Amino-4-chlorodi¯uoromethyl-6-methoxytriazine

The 4-chlorodi¯uoromethyltriazines M and N are

accessible from cyanoguanidine by reaction with

hydrogen sul®de, methylation, methyl chlorodi¯uoro-

acetate ring closure and subsequent methanolysis (Fig

4).

2.1.5 o-Fluoroalkyl-benzenesulfonamides

Key steps for the synthesis of new o-¯uoroalkyl-

benzene sulfonamides9 are (a) the conversion of an

aromatic aldehyde function with sulfur tetra¯uoride,

or (f) bromine substitution by sodium penta¯uoro-

propionate. Standard procedures (b±d)10 allow intro-

duction of the sulfonamide moiety in place of the

remaining aromatic halide (Fig 5).

Figure 1. Synthesis route to 2-amino-4-trifluoromethyl-6-trifluoromethoxypyrimidine.

Figure 2. Synthetic routes to 4-substituted-2-amino-6-trifluoromethylpyrimidines.

Figure 3. Synthetic route to 2-amino-4-
difluoromethyl-6-methoxytriazine.
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2.2 Biological tests
2.2.1 Greenhouse experiments

All the data were taken from screening-type trials in

the greenhouse. For post-emergence tests, plants were

cultivated in plastic pots of 8.6cm diameter containing

loamy sand with about 1.2% humus as the substrate.

The test plants were sown, grown in the test pots to a

height of 4±12cm and then treated with the test

compound in a spray chamber at a rate of 15.6g haÿ1.

The number of replicates was one and, for compari-

son, four untreated control pots were included in each

test. After the application, the plants were kept for 18±

20 days at 18±27°C, during which period the plants

were maintained and their reaction to the individual

treatments was assessed and recorded.

The assessments of injury to the plants were on a

scale from 0 to 100 in comparison to the untreated

controls, 0 denoting no damage and 100 denoting

complete destruction of at least the visible plant parts.

2.2.2 Test species

The following plant species were used: Gossypium
hirsutum L (Goshi), Abutilon theophrasti (L) Medic

(Abuth) Amaranthus retro¯exus L (Amare), Chenopo-
dium album L (Cheal), Chrysanthemum coronarium L

(Cimco), Echinochloa crus-galli Beauv (ECHGG),

Lamium amplexicaule L (Lamam), Matricaria inodora
L (Mamn), Polygonum persicaria L, Setaria faberi
Herrm (Setfa), Sinapis alba L (Sinal), Solanum nigrum
L (Solni), Stellaria media Vill (Steme) and Triticum
aestivum. L (Trzaw).

Figure 4. Synthetic route to 2-amino-4-
chlorodifluoromethyl-6-methoxytriazine.

Figure 5. Synthetic routes to o-fluoroalkyl-
benzenesulfonamides.

Figure 6. Metabolism-oriented design: reactive pyrimidine substituents.
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3 RESULTS AND DISCUSSION
3.1 Structure – activity relationships (SAR)

3.1.1 Metabolism-oriented design: Reactive tri¯uoromethyl-

pyrimidines (Fig 6)

Reactive tri¯uoromethylpyrimidine substituents

change the herbicidal activity of the sulfonylureas in

question. Compound 1 with methoxy has high activity

on broad-leaved weeds and grasses, whereas the

methylthio derivative 2 loses grass activity but gains

crop tolerance in cotton ± presumably by faster

metabolization to a sulfone intermediate. Tri¯uoro-

methoxy 3 and methylamino 4 reduce activity notably,

because they are too lipophilic or hydrophilic respec-

tively.

3.1.2 INTRODUCTION of ¯uorinated side chains into the

benzenesulfonamide moiety (Fig 7)

2-Tri¯uoromethylbenzenesulfonamide is the most

active side chain, whereas di¯uoromethyl is weaker

Figure 7. Introduction of fluorinated side-chains into the benzenesulfonamide moiety.

Figure 8. Combining fluorinated benzenesulfonamides with difluoromethyltriazines.

Figure 9. Influence of new triazine substituents: CCIF2/CF3.
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but has additional wheat tolerance. Penta¯uoroethyl

reduces activity notably.

3.1.3 Combining ¯uorinated benzenesulfonamide with di-

¯uoromethyltriazine (Fig 8)

After variation of the heterocyclic moiety from

tri¯uoromethylpyrimidine to di¯uoromethyltriazine,

tri¯uoromethyl as side chain on the benzenesulfon-

amide again leads to more active compounds than

di¯uoromethyl. Both show good wheat selectivity.

3.1.4 In¯uence of new triazine substituents: CCIF2 vs CF3

(Fig 9)

However, chlorodi¯uoromethyl- and tri¯uoromethyl-

triazine are different, in that each combines better with

an aromatic ester than with the ¯uorinated side chain.

Selectivity in wheat is common to all.

4 CONCLUSION
Side-chain-¯uorinated pyrimidines, triazines and

benzenesulfonamides are ideal building blocks for

the research chemist. They offer chemical and

biological ¯exibility for new sulfonylureas as post-

emergence herbicides. Selectivity in wheat and cotton

is observed, best herbicidal activity being obtained up

to the three- to four-leaf stage of the weeds. Selected

compounds are undergoing broad ®eld tests in wheat.
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behaviour in the gregarious desert locust
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Abstract: Bioassays have shown that sand freshly

contaminated by ovipositing females of the gregar-

ious desert locust Schistocerca gregaria (Forskal) is

more effective in inducing further oviposition from

conspeci®cs than contaminated sand stored for

three or six months, which contrasts with results

obtained previously with Locusta migratoria

(Reiche & Farmaire). The activity of contaminated

sand correlated with the levels of three unsaturated

aliphatic ketones, (Z)-6-octen-2-one, (E,E)-3,5-

octadien-2-one and its geometric isomer (E,Z)-3,5-

octadien-2-one present in the volatile emissions

from the sand.

Keywords: Schistocerca gregaria; (Z)-6-octen-2-one;
(E,E)-3,5-octadien-2-one; (E,Z)-3,5-octadien-2-one;
oviposition; seimiochemical; locust

Gregarious females of the desert locust Schistocerca
gregaria (Forskal) and Locusta migratoria (Reiche &

Farmaire) produce pheromones during oviposition

which attract conspeci®cs to lay their eggpods at

common sites.1±4 In L migratoria, repeated layings by

females increase the preference of the sand for further

oviposition.3,4 Of the two locust species, pheromone

identi®cation has been carried out for S gregaria in

recent work from our laboratory. Two aromatic

compounds, acetophenone and veratrole were identi-

®ed from the volatiles emitted by the froth plug of the

eggpod as oviposition pheromone components.5,6 In

the present study, the oviposition response of females

of S gregaria to sand in which conspeci®cs had laid

previously, but without the froth or eggs, was

compared to that of clean sand. On average, about

75% of the eggpods deposited by females were laid

into moist sand contaminated by conspeci®cs com-

pared to 25% into clean moist sand. However, much

of the activity of contaminated sand was lost after long

storage at room temperature, dropping to 56% after

three months, with a total loss of activity after six

months. These results contrast with those obtained

previously for L migratoria for which the activity of

contaminated sand can last for as long as six months.4

Gas chromatographic-electroantennographic detec-

tion (GC-EAD) analysis revealed the presence of

three candidate oviposition pheromone components in

the volatiles of freshly contaminated sand. These were

identi®ed by GC-MS as (Z)-6-octen-2-one, (E,E)-3,5-
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