Tetrahedron Letters 53 (2012) 1210-1213

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

Palladium-catalyzed bisfunctionalization of active alkenes by β -acetonitrile- α -allyl addition: application to the synthesis of unsymmetric 1,4-di(organo)fullerene derivatives

Shirong Lu^{a,b}, Tienan Jin^{c,*}, Ming Bao^a, Abdullah M. Asiri^{d,e}, Yoshinori Yamamoto^{c,*}

^a State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China

^b Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8548, Japan

^c Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

^d Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia

^e Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia

ARTICLE INFO

Article history: Received 27 October 2011 Revised 7 December 2011 Accepted 19 December 2011 Available online 5 January 2012

Keywords:

 $\begin{array}{l} \beta \text{-Acetonitrile-} \alpha \text{-allyl addition} \\ \text{Bisfunctionalization of active alkenes} \\ \text{All-carbon quarternary center} \\ \text{Unsymmetric 1,4-disubstituted } C_{60} \end{array}$

Palladium-catalyzed β -nucleophilic- α -allyl addition of active olefins through π -allyl-palladium intermediates has emerged as a mild and efficient multiple bond-forming method for the simultaneous construction of all-carbon quaternary and tertiary centers,^{1,2} which are important structural units in a wide range of bioactive substances and natural products.³ Over the past decade, we and other groups have been interested in developing new palladiumcatalyzed β -nucleophilic- α -allyl addition reactions toward active alkenes through various π -allyl palladium intermediates, including heteroatom- and carbon-nucleophile addition/allylation,^{2e-k} bisallylation,^{2a-d} acetonation/allylation,^{2l,m} amidoallylation,²ⁿ and iminoallylation (Fig. 1).²⁰ The palladium-catalyzed decarboxylative reaction for the formation of π -allyl palladium species is an environmentally friendly and economical process^{1c,4,5}; the reaction proceeds under essentially neutral conditions with high atom economy. Based on this concept, we envisioned that the bis- π allylpalladium^{2a} analogue acetonitrile-(π -allyl)palladium complex should be formed by the reaction of cyanoacetic acid allyl ester with a palladium catalyst, which will undergo acetonitrile/allyl addition to the active alkenes (Fig. 1). Furthermore, in continuation

of our interest in transition metal catalyzed functionalization of [60]fullerene (C_{60}),⁶ we reasoned that if successful, this methodology would be applicable to the selective bisfunctionalization of C_{60} because of its electrophilic nature and specialized alkene component. Transition metal catalyzed functionalization of C_{60} has emerged as a promising method for preparing functionalized C_{60} derivatives with high selectivity and high functional group compatibility under mild reaction conditions.⁷ However, investigations on the synthesis of unsymmetric 1,4-di(organo)fullerenes have been seldom studied,⁸ in particular, a one-step catalytic method has not been reported.

Herein, we report a new Pd-catalyzed bisfunctionalization of various malononitriles **1** with cyanoacetic acid allyl ester (**2**), that affords the β -acetonitrile- α -allyl addition products **3** in good to high yields (Eq. 1). Moreover, we have successfully applied this method to the synthesis of unsymmetric 1-acetonitrile-4-allyl-[60]fullerene **4a** in good yield in one step.

ABSTRACT

A new, efficient palladium-catalyzed bisfunctionalization of ethylidene malononitriles by addition of acetonitrile and allyl groups is developed for the construction of all-carbon quarternary and tertiary centers simultaneously. This methodology is successfully applied to the synthesis of unsymmetric 1,4-disubstituted C_{60} .

© 2011 Elsevier Ltd. All rights reserved.

^{*} Corresponding authors. Tel.: +81 22 217 6177; fax: +81 22 217 6165 (T.J.); tel.: +81 22 217 6164; fax: +81 22 217 5979 (Y.Y.).

E-mail addresses: tjin@m.tohoku.ac.jp (T. Jin), yoshi@m.tohoku.ac.jp (Y. Yamamoto).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.12.075

Figure 1. Bisfunctionalization of active alkenes with various π -allylpalladium species.

Initially, according to our previous results,^{1b} we focused on screening transition metal catalysts and ligands for the efficient formation of bisfunctionalized product 3a via the reaction of malononitrile **1a** and cvanoacetic acid allvl ester (**2a**) under an Ar atmosphere at room temperature in THF as the solvent (Table 1). The use of the typical catalyst, $Pd(PPh_3)_4$ (10 mol %), afforded the corresponding product **3a** in 40% isolated yield (entry 1). The use of Pd₂(dba)₃·CHCl₃ (5 mol %) combined with PPh₃ (40 mol %) ligand gave a slightly increased yield, although without the phosphine ligand, the reaction did not proceed at all (entries 2 and 3). These results indicated that the use of a phosphine ligand was crucial, and implied that a change of phosphine ligand species would increase the efficiency of the present transformation. We investigated various phosphine ligands using Pd₂(dba)₃·CHCl₃ as the catalyst (5 mol %). The electronic characteristics of monodentate triarylphosphine ligands (40 mol %), such as $PPh_2(2-MeO-C_6H_4)$ (63%), PPh₂(4-F-C₆H₄) (47%), and P(4-F-C₆H₄)₃ (50%) did not exhibit any obvious influence on the catalytic activity (entries 4-6). The use of the triheteroarylphosphine ligand, P(2-furyl)₃ gave only a trace amount of **3a** (entry 7). The bulky monodentate trialkylphosphine ligand $P(t-Bu)_3$ showed lower reactivity compared to that of triarylphosphine ligands (entry 8). Bidentate phosphine ligands, such as dppf, dppe, and dppp showed comparable catalytic activity

Table 1

Screening of the reaction conditions for the formation of **3a**^a

1a	2		Ph CN
Ph CN		THF, rt, 3 d	→ ← CN
CN		Pd-cat/P-Ln	

Entry	Pd-catalyst/P-ligand (10/40 mol %)	Yield ^b (%)
1	$Pd(PPh_3)_4$	45 (40)
2	Pd ₂ (dba) ₃ ·CHCl ₃	0
3	Pd ₂ (dba) ₃ ·CHCl ₃ /PPh ₃	50
4	Pd ₂ (dba) ₃ ·CHCl ₃ /PPh ₂ (2-MeO-C ₆ H ₄)	63
5	Pd ₂ (dba) ₃ ·CHCl ₃ /PPh ₂ (4-F-C ₆ H ₄)	47
6	$Pd_2(dba)_3 \cdot CHCl_3/P(4-F-C_6H_4)_3$	50
7	Pd ₂ (dba) ₃ ·CHCl ₃ /P(2-furyl) ₃	Trace
8	$Pd_2(dba)_3 \cdot CHCl_3/P(t-Bu)_3$	36
9	Pd ₂ (dba) ₃ ·CHCl ₃ /dppf	57
10	Pd ₂ (dba) ₃ ·CHCl ₃ /dppe	58
11	Pd ₂ (dba) ₃ ·CHCl ₃ /dppp	78
12	Pd ₂ (dba) ₃ ·CHCl ₃ /BINAP	84 (79)

dba = *trans*, *trans*-dibenzylideneacetone, *t*-Bu = *tert*-butyl, dppf = bis(diphenyl-phosphino)ferrocene, dppe = bis(diphenylphosphino)ethane, dppp = bis(diphenylphosphino)propane, BINAP = (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl).

^a To a mixture of palladium catalyst (10 mol %), phosphine ligand (40 mol %) and phenylethylidene malononitrile (**1a**) (0.2 mmol) in THF (0.2 M) was added cyano-acetic acid allyl ester (**2**) (0.24 mmol). The mixture was stirred at room temperature for 3 days.

^b ¹H NMR yields determined by using dichloroethane as an internal standard. Isolated yields are shown in parentheses. (entries 9–11), and finally racemic BINAP gave **3a** in 79% isolated yield (entry 12). It is noted that the use of a 1:1 Pd-BINAP ratio decreased the yield of **3a**.⁵

Various ethylidene malononitriles were examined under the optimized reaction conditions: 5 mol % Pd₂(dba)₃·CHCl₃, 20 mol % BINAP, cvanoacetic acid allyl ester (2) (1.2 equiv), and THF (0.2 M) at room temperature (Table 2). The reactions of **1b–d**, substituted with an electron-donating group on the benzene ring at meta or para positions, gave the corresponding products in good to high yields (entries 1-3). In contrast, the use of phenylethylidene malononitrile 1e having an electron-withdrawing group (-Cl) on the benzene ring decreased the yield of 3e dramatically even after longer reaction times (6 days) (entry 4). The electronic characteristics of the aromatic ring of **1** exert a significant influence on the yields of products 3. Not only naphthyl-substituted alkene 1f, but also the heteroaromatic 2-thienyl (1g) substituted alkene afforded the corresponding β -acetonitrile- α -allyl addition products **3f** and **3g** in high yields (entries 5 and 6). The reaction with ethylidene malononitriles bearing an alkyl group at R, such as cyclopropyl (1h) or n-octyl (1i), occurred smoothly, giving the corresponding products **3h** and **3i** in 75% and 74% yields, respectively (entries 7 and 8). Ethylidene malononitriles bearing a bulky cyclohexyl (1j) or t-butyl (1k) group at R showed a lower reactivity, giving the corresponding addition products 3j and 3k in 64% and 40% yields, respectively (entries 9 and 10). It should be noted that in the case of lower yields of **3** (entries 4, 9, and 10), the major side-product was the decarboxylative selfcoupling product 2-allylpent-4-enenitrile.^{4c}

A plausible reaction mechanism is shown in Scheme 1. Initially, the reaction of cyanoacetic acid allyl ester (2) with the Pd(0) catalyst

Table 2

Nucleophilic addition of various activated alkenes^a

		5 mol% Pd ₂ dba ₃ •CHCl ₃ 20 mol% BINAP			
R CN	R CN 0		THF, rt		
1	2				3
Entry	R	1	Time (d)	Product	Yield ^b (%)
1	3-Me-C ₆ H ₄	1b	3.5	3b	72
2	4-Me-C ₆ H ₄	1c	3.5	3c	76
3	3-MeO-C ₆ H ₄	1d	4	3d	68
4	4-Cl-C ₆ H ₄	1e	6	3e	35
5	2-Naphthyl	1f	3	3f	83
6	2-Thienyl	1g	4.5	3g	70
7	Cyclopropyl	1h	4.5	3h	75
8	n-Octyl	1i	3	3i	74
9	Cyclohexyl	1j	4.5	3j	64
10	t-Butyl	1k	6	3k	40

^a To a THF (0.2 M) solution of Pd₂(dba)₃·CHCl₃ (5 mol %) and BINAP (20 mol %) were added ethylidene malononitrile **1** (0.2 mmol) and cyanoacetic acid allyl ester (**2**) (0.24 mmol). The mixture was stirred at room temperature under Ar for the time shown in the table.

^b Isolated yield.

Scheme 1. A plausible reaction mechanism.

forms π -allylpalladium complex **A**', which should be in equilibrium with σ -allylpalladium complex **A**, along with the exclusion of CO₂ gas. The β -nucleophilic addition of acetonitrile to ethylidene malononitrile **1a** gives the ion-paired (π -allyl)palladium intermediate **B**. Reductive elimination of **B** produces the β -acetonitrile- α -allyl adduct **3a**.

Next, the present methodology was successfully applied to the regioselective synthesis of a 1,4-di(organo)fullerene which has attracted much attention as potentially useful n-type materials in organic photovoltaic applications.⁹ Unfortunately, the reaction of C_{60} with cyanoacetic acid allyl ester (2) in the presence of the Pd₂(dba)₃·CHCl₃/BINAP catalyst system in ortho-dichlorobenzene (ODCB) afforded only a trace amount of the corresponding products 4a and 4b, and C₆₀ was recovered mainly. After a brief optimization of the palladium catalyst, we found that the reaction proceeded smoothly in the presence of $Pd(PPh_3)_4$ (1 mol %) to give an 87:13 mixture of the 1,4-disubstituted product 4a and 1,2disubstituted product 4b in 31% yield along with the recovery of C_{60} in 40% yield (**4a** was obtained as the major product) (Eq. 2). It should be noted that in contrast to the present acetonitrile/allylation, our previously reported acetonation/allylation method²¹ was not applicable for the functionalization of C₆₀: Under similar conditions to Eq. 2, the reaction of C_{60} with allyl acetoacetate gave a mixture of multi-adducts and a small amount of recovered C₆₀.

In conclusion, we have developed a novel palladium-catalyzed β -acetonitrile- α -allyl addition reaction of active alkenes with cyanoacetic acid allyl ester. This method has provided a new approach for the construction of an all-carbon quarternary carbon adjacent to a tertiary carbon. The present methodology was successfully applied to the unsymmetric bisfunctionalization of C₆₀ through the selective 1,4-addition of two different organic

functional groups in one step. Further extension of this method to the synthesis of various functionalized fullerenes and application to photovoltaic cells are in progress.

Acknowledgments

This work was supported by World Premier International Research Center Initiative (WPI), MEXT, Japan. S.L. acknowledges the support of the China Scholarship Council (CSC).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2011.12.075.

References and notes

- For reviews, see: (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127–2198; (b) Patil, N. T.; Yamamoto, Y. Synlett 2007, 1994–2005; (c) Weaver, J. D.; Recio, A., III; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846–1913.
- (a) Nakamura, H.; Shim, J. G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113-8114; (b) Nakamura, H.; Aoyagi, K.; Shim, J. G.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 372-377; (c) George, S. C.; John, J.; Anas, S.; John, J.; Yamamoto, Y.; Suresh, E.; Radhakrishnan, K. V. Eur. J. Org. Chem. 2010, 5489-5497; (d) George, S. C.; Thulasi, S.; Radhakrishnan, K. V.; Yamamoto, Y. Org. Lett. 2011, 13, 4984-4987; (e) Shim, J. G.; Yamamoto, Y. J. Org. Chem. 1998, 63, 3067-3071; (f) Nakamura, H.; Sekido, M.; Ito, M.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 6838-6839; (g) Nakamura, H.; Shibata, H.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 2911-2914; (h) Aoyagi, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 2002, 67, 5977-5980; (i) Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Org. Chem. 2006, 71, 2503-2506; (j) Wang, C.; Tunge, J. A. J. Am. Chem. Soc. 2008, 130, 8118-8119; (k) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. Org. Lett. 2003, 5, 881-884; (1) Shim, J. G.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 1998, 63, 8470-8474; (m) Streuff, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M. Nat. Chem. 2010, 2, 192-196; (n) Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Org. Chem. 2006, 71, 6991-6995; (o) Yeagley, A. A.; Lowder, M. A.; Chruma, J. J. Org. Lett. 2009, 11, 4022-4025.
- For selected reviews, see: (a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921–2944; (b) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395–422.
- For pioneering works, see: (a) Shimizu, I.; Yamada, T.; Tsuji, J. Tetrahedron Lett. 1980, 21, 3199–3202; (b) Shimizu, I.; Tsuji, J. J. Am. Chem. Soc. 1982, 104, 5844– 5846; (c) Tsuda, T.; Chujo, Y.; Nishi, S.-i.; Tawara, K.; Saegusa, T.J. Am. Chem. Soc. 1980, 102, 6381–6384; (d) Trost, B. M. Tetrahedron 1977, 33, 2615–2649; (e) Trost, B. M.; Hung, M. H. J. Am. Chem. Soc. 1984, 106, 6837–6839.
- 5. Recio, A., III; Tunge, J. A. Org. Lett. 2009, 11, 5630-5633.
- (a) Lu, S.; Jin, T.; Bao, M.; Yamamoto, Y. J. Am. Chem. Soc. 2011, 133, 12842– 12848; (b) Lu, S.; Jin, T.; Kwon, E.; Bao, M.; Yamamoto, Y. Angew. Chem. Int. Ed. 2011. doi:10.1002/anie.201107505.
- 7. For selected transition metal catalyzed functionalization of fullerenes, see: (a) Hsiao, T. Y.; Santhosh, K. C.; Liou, K. F.; Cheng, C. H. J. Am. Chem. Soc. **1998**, *120*, 12232–12236; (b) Gan, L.; Huang, S.; Zhang, X.; Zhang, A.; Cheng, B.; Cheng, H.; Li, X.; Shang, G. J. Am. Chem. Soc. **2002**, *124*, 13384–13385; (c) Martín, N.; Altable, M.; Filippone, S.; Martín-Domenech, A.; Poater, A.; Solà, M. Chem. Eur. J. **2005**, *11*, 2716–2729; (d) Matsuo, Y.; Iwashita, A.; Nakamura, E. Chem. Lett. **2006**, *35*, 858–859; (e) Nambo, M.; Noyori, R.; Itami, K. J. Am. Chem. Soc. **2007**, *129*, 8080–8081; (f) Mori, S.; Nambo, M.; Oty, L. C.; Bouffard, J.; Itami, K. Org. Lett. **2008**, *10*, 4609–4612; (g) Nambo, M.; Wakamiya, A.; Yamaguchi, S.; Itami, K. J. Am. Chem. Soc. **2009**, *131*, 15112–15113; (h) Nambo, M.; Itami, K. Chem. Eur. J. **2009**, *15*, 4760–4764; (i) Zhu, B.; Wang, G. W. J. Org. Chem. **2009**, *74*, 4426–4428; (j) Zhu, B.; Wang, G. W. Org. Lett. **2009**, *11*, 4334–4337; (k) Filippone, S.; Maroto, E. E.; Martín-Domenech, A.; Suarez, M.; Martín, N. Nat. Chem. **2009**, *1*, 578–582; (l) Xiao, Z.; Matsuo, Y.; Nakamura, E. J. Am. Chem. Soc. **2010**, *132*, 12234–12236.

- (a) Keshavarz-K, M.; Knight, B.; Srdanov, G.; Wudl, F. J. Am. Chem. Soc. 1995, 117, 11371–11372; (b) Fukuzumi, S.; Suenobu, T.; Hirasaka, T.; Arakawa, R.; Kadish, K. M. J. Am. Chem. Soc. 1998, 120, 9220–9227; (c) Kitagawa, T.; Tanaka, T.; Takata, Y.; Takeuchi, K.; Komatsu, K. Tetrahedron 1997, 53, 9965–9976; (d) Kitagawa, T.; Lee, Y.; Hanamura, M.; Sakamoto, H.; Konno, H.; Takeuchi, K.; Komatsu, K. Chem. Commun. 2002, 3062–3063.
- (a) Matsuo, Y.; Iwashita, A.; Abe, Y.; Li, C. Z.; Matsuo, K.; Hashiguchi, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 15429–15436; (b) Matsuo, Y.; Sato, Y.; Niinomi, T.; Soga, I.; Tanaka, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 16048–16050; (c) Varotto, A.; Treat, N. D.; Jo, J.; Shuttle, C. G.; Batara, N. A.; Brunetti, F. G.; Seo, J. H.; Chabinyc, M. L.; Hawker, C. J.; Heeger, A. J.; Wudl, F. Angew. Chem., Int. Ed. 2011, 50, 5166–5169.