Accepted Manuscript

Zirconium(IV)-catalyzed one-pot synthesis and oxidation of bis- and tris(indolyl)methanes into conjugated chromophores as new pH indicators or calorimetric chemosensors for transition metals

Alireza Khorshidi, Neda Mardazad, Zahra Shaabanzadeh

PII:	S0040-4039(14)00817-X
DOI:	http://dx.doi.org/10.1016/j.tetlet.2014.05.028
Reference:	TETL 44619
To appear in:	Tetrahedron Letters
Received Date:	21 January 2014
Revised Date:	19 April 2014
Accepted Date:	7 May 2014

Please cite this article as: Khorshidi, A., Mardazad, N., Shaabanzadeh, Z., Zirconium(IV)-catalyzed one-pot synthesis and oxidation of bis- and tris(indolyl)methanes into conjugated chromophores as new pH indicators or calorimetric chemosensors for transition metals, *Tetrahedron Letters* (2014), doi: http://dx.doi.org/10.1016/j.tetlet. 2014.05.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

2	Zirconium(IV)-catalyzed one-pot synthesis and oxidation of bis- and
3	tris(indolyl)methanes into conjugated chromophores as new pH indicators or
4	calorimetric chemosensors for transition metals
5	
6	Alireza Khorshidi*, Neda Mardazad, Zahra Shaabanzadeh
7	Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box: 41335-1914, Rasht, Iran.
8	
9	Abstract
10	Zirconium(IV) oxynitrate hydrate catalyzed efficiently the condensation reactions of indoles and
11	aldehydes in acetonitrile, under ambient conditions. The bis- or tris(indolyl)methane products were
12	then dehydrogenated in one pot by using a stoichiometric amount of DDQ, to give conjugated
13	chromophores that showed feasible applications as new pH indicators with excellent sensitivity in
14	the pH range 8-10. Hypsochromic effects were observed in the presence of transition metal cations
15	in acetonitrile with a significant color change for cobalt(II).
16	Keywords: Zirconium(IV) oxynitrate hydrate; Chromophore; Dehydrogenation; pH indicator;
17	(indolyl)methane
18	6
19	Numerous indole derivatives occur in many pharmacologically and biologically active compounds. ¹
20	In particular, bis(indolyl)methanes possess a wide range of biological activity and their synthesis
21	has received a considerable amount of interest. ^{2,3} Generally, bis(indolyl)methanes are prepared by

^{*} Corresponding author. Tel: +98 911 339 7159, Fax: +98 131 322 0066 Email-address: khorshidi@guilan.ac.ir 2

22 the condensation of indoles with various aldehydes or ketones in the presence of either protic or Lewis acids; many other methods have also been devised for their preparation.⁴ Little attention 23 24 however, has been paid to the dehydrogenation of bis- or tris(indolyl)methanes. Contributions in this context include a few examples and their application mainly as anion receptors.⁵⁻⁸ Our interest in the 25 26 study of indole-type molecules, their derivatives, and the catalytic activity of transition metal species in the synthesis of these compounds,⁹⁻¹³ prompted us to evaluate the synthesis of bis- and 27 28 tris(indolyl)methanes, the oxidation of the meso hydrogen, and the study of the spectroscopic and chromogenic behavior of the products at different pH values and toward various transition metal 29 NA 30 cations.

31

During our previous work on the preparation of bis- and tris(indolyl)methanes,⁹ we noticed that 32 during the purification step, the products were unstable on chromatographic silica gel plates and 33 their color changed slightly. This observation was attributed to the possible oxidation of the 34 products on exposure to air. Therefore, we were decided to investigate the oxidation of the aliphatic 35 36 C-H bond at the *meso* position of bis- or tris(indolyl)methanes. With a one-pot procedure in mind, 37 2-methylindole and 3-phenoxybenzaldehyde were selected as substrates, and the reaction conditions 38 were optimized with respect to the oxidant, solvent and temperature. Since most bis- or 39 tris(indolyl)methanes are insoluble in alcohols such as methanol and ethanol, aprotic solvents were 40 considered, and the best solvent was found to be CH₃CN (Table 1). The best catalyst in this solvent 41 was found to be zirconium(IV) oxynitrate hydrate with an optimum loading of 5 mol% (entry 3).

42	With respect to the oxidant, the best result was obtained by using 1.5 equivalents of 2,3-dichloro-
43	5,6-dicyano-1,4-benzoquinone (DDQ). Finally, it was found that employing elevated temperatures
44	had no significant effect on the yield of the target product.
45	< <table 1="">></table>
46	The optimized conditions for the one-pot synthesis and oxidation of bis- and tris(indolyl)methanes
47	are summarized in Scheme 1.
48	< <scheme 1="">></scheme>
49	With optimized conditions in hand, a variety of indoles and aldehydes were used in this reaction to
50	demonstrate the generality and scope of the process. Typical results are shown in Table 2.
51	< <table 2="">></table>
52	Indoles and aldehydes bearing different functional groups yielded the desired products. To the best
53	of our knowledge, this is the first report on the one-pot application of zirconium(IV) oxynitrate
54	hydrate in the condensation reaction of indoles with aldehydes and subsequent oxidation of the
55	products with DDQ. Oxidation of the aliphatic C-H bond at the meso position of bis- and
56	tris(indolyl)methanes is associated with deep color changes due to the formation of a highly
57	conjugated chromophore system. Thus we can propose products 4a-j as potential dye molecules.
58	The structures of the products were established from their spectra (FTIR, ¹ H-NMR and ¹³ C-NMR).
59	Generally, the bis- and tris(indolyl)methanes exhibited a singlet for the aliphatic C-H proton (meso
60	position) at about 5.5-6.0 ppm, ⁹ which disappeared upon oxidation. Since all of the products were
61	soluble in DMSO- d_6 , the broad singlets for the NH protons were diminished due to exchange with

62	residual water present in DMSO. Intermolecular hydrogen bonding may be responsible for the
63	reduced intensity of the NH stretching vibrations in the FTIR spectra. The presence of both an anion
64	receptor subunit ⁵ (NH) and a cation receptor moiety (N) prompted us to evaluate the behavior of the
65	products as potential pH indicators. Many dyes have been used as pH indicators due to the
66	reversible action of acids and bases. It was found that our products could act as pH indicators in the
67	range 9.0-10.5 with an extremely sharp and clear color change. For example, the color transition
68	along with the conjugated acid-base structures of compound 4d, are depicted in Figure 1.
69	< <figure 1="">></figure>
70	A dilute solution of 4d (5×10 ⁻⁶ M, EtOH 70%), appeared red in color and displayed strong
70 71	A dilute solution of 4d (5×10 ⁻⁶ M, EtOH 70%), appeared red in color and displayed strong absorption bands at 400 and 550 nm, which may be attributable to the intramolecular charge transfer
70 71 72	A dilute solution of 4d (5×10 ⁻⁶ M, EtOH 70%), appeared red in color and displayed strong absorption bands at 400 and 550 nm, which may be attributable to the intramolecular charge transfer (ICT) arising from the π -extended conjugated structure of this compound, according to Shao et al. ⁵
70717273	A dilute solution of 4d (5×10 ⁻⁶ M, EtOH 70%), appeared red in color and displayed strong absorption bands at 400 and 550 nm, which may be attributable to the intramolecular charge transfer (ICT) arising from the π -extended conjugated structure of this compound, according to Shao et al. ⁵ Upon addition of dilute acid (0.1 M HCl) or alkali (0.1 M NH ₄ OH) to this solution, however, color
 70 71 72 73 74 	A dilute solution of 4d (5×10 ⁻⁶ M, EtOH 70%), appeared red in color and displayed strong absorption bands at 400 and 550 nm, which may be attributable to the intramolecular charge transfer (ICT) arising from the π -extended conjugated structure of this compound, according to Shao et al. ⁵ Upon addition of dilute acid (0.1 M HCl) or alkali (0.1 M NH ₄ OH) to this solution, however, color changes were observed. Figure 2 shows the spectroscopic behavior of 4d at different pH values.
 70 71 72 73 74 75 	A dilute solution of 4d (5×10 ⁻⁶ M, EtOH 70%), appeared red in color and displayed strong absorption bands at 400 and 550 nm, which may be attributable to the intramolecular charge transfer (ICT) arising from the π -extended conjugated structure of this compound, according to Shao et al. ⁵ Upon addition of dilute acid (0.1 M HCl) or alkali (0.1 M NH ₄ OH) to this solution, however, color changes were observed. Figure 2 shows the spectroscopic behavior of 4d at different pH values. While decreasing the pH only increased the intensities of the above mentioned bands, increasing the

77

<<Figure 2>>

To determine the color transition range of the indicator, the absorption was measured at 450 nm with addition of dilute alkali solution (NH₄OH). The result is shown in Figure 3. As is apparent, a sharp color transition was observed in the pH range of 8.0 to 10.0, which is comparable to thymol blue and phenolphthalein.¹⁴

0	2
0	4

<<Figure 3>>

Encouraged by these results, we decided to study the ability of our products sense transition metal cations. It was found that these conjugated chromophores interact with transition metal cations and exhibit spectral changes. For example, compound **4d** exhibited hypsochromic effects in the presence of M^{2+} transition metal cations (where M=Ni, Co, Mn and Hg). The most intense color change was observed for Co²⁺ in acetonitrile solution. The UV-Vis spectrum of **4d** (5×10⁻⁶ M) and Co²⁺ (1.25×10⁻⁴ M) solutions in CH₃CN, before and after mixing, are shown in Figure 4. An excess amount of Co²⁺ (25 equivalents) was selected to ensure maximum interaction.

90

<<Figure 4>>

As is shown in Figure 4, Co^{2+} shows classic transitions of a d⁷ cation in an octahedral field corresponding to transitions from the ${}^{4}T_{1g}(F)$ ground state to the ${}^{4}T_{1g}(P)$, ${}^{4}A_{2g}$ and ${}^{4}T_{2g}$ excited states of the metal cation. After mixing **4d** and Co^{2+} solutions, a blue shift of about 30 nm for the 414 nm band of **4d** was observed that might be due to N-bonding of **4d** to the metal center.

95 The spectral responses of **4d** to other M^{2+} transition metal cations (where M=Ni, Co, Mn and Hg) 96 are depicted in Figure 5.

97

<<Figure 5>>

In order to gain insight into the interaction mechanism between the cation and the receptors, a similar experiment with Co^{2+} was conducted in acetonitrile at acidic pH (pH=2.0). In this case, the blue-shifted band was not observed upon addition of the metal, revealing that no interaction took place, due to the fact that the indol-3-ylidene moiety of **4d** was N-protonated. A 4:1 stoichiometry

102	of the complex as indicated by the changes in the colorimetric response of 4d, in the presence of the
103	varying concentrations of Co^{2+} (Figure 6), is also in agreement with N-coordination of the metal.
104	< <figure 6="">></figure>
105	
106	In conclusion, the efficient one-pot formation and dehydrogenation of bis- and tris(indolyl)methanes
107	catalyzed by zirconium(IV) oxynitrate hydrate as a homogeneous catalyst and DDQ as the oxidant
108	has been described. The products showed applications as pH indicators with excellent sensitivity.
109	The UV-Vis spectroscopy analyses of mixtures of these conjugated structures with various
110	transition metal cations revealed that these conjugated compounds can be utilized as effective
111	chromophores for sensing these cations. We are currently undertaking further studies on the
112	conjugated structures shown in this work as well as similar systems.
113	General procedure for the preparation of 4a-j
114	Indole 1 (2.00 mmol), $ZrO(NO_3)_2$.H ₂ O (12.46 mg, 0.05 mmol), aldehyde 2 (1.05 mmol) and MeCN
115	(5 mL) were added to a flask and the resulting mixture stirred at room temperature until the
116	disappearance of the starting indole was complete (monitored by TLC). This step typically took
117	between 3 to 10 min. After completion of the first step, a solution of DDQ (1.5 equiv.) in MeCN
118	was added dropwise over 10 min. Upon addition of the oxidant, the color of the solution turned deep
119	red. After completion of the oxidation step (see Table 2, indicated by TLC), the mixture was
120	purified by short column chromatography (n-hexane/EtOAc, 10:4) to provide the desired products.
121	2-Methoxy-4-[(2-methyl-1H-indol-3-yl)(2-methyl-3H-indol-3-ylidene)methyl]phenol (4a):

122	Dark red solid, m.p. 259-261 °C, IR (KBr): v (cm ⁻¹); 3408, 1483, 1371, 1346, 1226, 1120, 746. ¹ H
123	NMR (400 MHz, DMSO- d_6 , 25 °C): δ = 2.07 (s, 6H, CH ₃), 3.46 (s, 3H, -OCH ₃), 6.30 (d, 1H, J = 9.6
124	Hz), 6.63 (s, 1H), 6.71-6.87 (m, 4H), 7.05 (t, 2H, <i>J</i> = 7.2 Hz), 7.21 (d, 1H, <i>J</i> = 8.8 Hz), 7.38 (d, 2H,
125	J = 7.8 Hz), 11.9 (bs, 1H, NH) ppm. ¹³ C NMR (100 MHz, DMSO- d_6 , 25 °C): δ = 13.0, 54.4, 111.4,
126	112.5, 118.8, 120.3, 121.6, 124.2, 124.8, 128.5, 131.0, 135.9, 137.2, 141.0, 148.8, 151.8. Anal.
127	Calcd. for C ₂₆ H ₂₂ N ₂ O ₂ ; C, 79.16; H, 5.62; N, 7.10; found: C, 79.15; H, 5.65; N, 7.14.
128	
129	Acknowledgements
130	Partial support of this study by the Research Council of the University of Guilan is gratefully
131	acknowledged.
132	References
133	1. Sundberg, R. J.; Indoles; Academic Press: London, 1996.
134	2. Garbe, T. R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. J. Nat.
135	<i>Prod.</i> 2000 , <i>63</i> , 596 .
136	3. Porter, J. K.; Bacon, C. W.; Robins, J. D.; Himmelsblach, D. S.; Higman, H. C. J. Agric.
137	Food Chem. 1977 , 25, 88.
138	4. Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Chem. Rev. 2010, 110, 2250.
139	5. He, X.; Hu, S.; Liu, K.; Guo, Y.; Xu, J.; Shao, S. Org. Lett. 2006, 8, 333.
140	6. Wang, L.; He, X.; Guo, Y.; Xu, J.; Shao, S. Org. Biomol. Chem. 2011, 9, 752.
141	7. Martinez, R.; Epinosa, A.; Tarraga, A.; Molina, P. Tetrahedron 2008, 64, 2184.

142	8.	Silveira,	C.	C.; Mendes,	S. F	R .;	Villetti, M.	A.	; Back,	D.	F.;	Kaufman,	T. S.	Green	Chem.
-----	----	-----------	----	-------------	------	-------------	--------------	----	---------	----	-----	----------	-------	-------	-------

143 **2012,** *14*, 2912.

- 144 9. Tabatabaeian, K.; Mamaghani, M.; Mahmoodi, N. O.; Khorshidi, A. Can. J. Chem. 2006, 84,
- 145 1541.
- 146 10. Khorshidi, A. Chin. Chem. Lett. 2012, 23, 903.
- 147 11. Khorshidi, A.; Tabatabaeian, K. J. Mol. Cat. A: Chem. 2011, 344,128.
- 148 12. Khorshidi, A. *Ultrason. Sonochem.* **2012**, *19*,570.

- 149 13. Tabatabaeian, K.; Mahmoodi, N. O.; Ghoraninia, M.; Khorshidi, A. Orient. J. Chem. 2008,
- 150 24,101.
- 151 14. Hunger, K. In *Industrial Dyes: Chemistry, Properties and Applications*. Wiley-VCH: 2002;
- 152 526-537.
- 153

Table 1. The effect of experimental parameters on the one-pot condensation and oxidation reaction 154

Entry	Catalyst	Loading	Temp (°C)	Solvent	Oxidant	Yield
		(mol%)				(%)
1	None	-	RT	CH ₃ CN	DDQ	0
2	Cu ²⁺	5	RT	CH ₃ CN	DDQ	45
3	ZrO ²⁺	5	RT	CH ₃ CN	DDQ	77
4	I_2	20	RT	CH ₃ CN	DDQ	32
5	ZrO ²⁺	5	RT	1,4-Dioxane	DDQ	38
6	ZrO ²⁺	5	RT	CH ₂ Cl ₂	DDQ	<5
7	ZrO ²⁺	5	RT	CH ₃ CN	H_2O_2	37
8	ZrO ²⁺	5	RT	CH ₃ CN	O ₂	18
9	ZrO ²⁺	5	50	CH ₃ CN	DDQ	73

between 2-methylindole and 3-phenoxybenzaldehyde ^a 155

- .cord. 156 ^a The reaction was carried out according to the general experimental procedure.
- 157
- 158

159 **Table 2.** ZrO(NO₃)₂.H₂O-catalyzed formation of bis- and tris(indolyl)methanes, and their oxidation

Entre	I. J. 1.	A 1 J . J . J .	Dehydrogenated	Time (min),
Entry	Indole	Aldenyde	product	Yield ^b (%)
1	2-methylindole	vanillin	4 a	160, 73
2	2-methylindole	3-nitrobenzaldehyde	4b	130, 65
3	2-methylindole	3,4-dimethoxybenzaldehyde	4c	120, 56
4	2-methylindole	3-phenoxybenzaldehyde	4d	175, 77
5	2-methylindole	2-nitrobenzaldehyde	4 e	210, 65
6	2-methylindole	4-chlorobenzaldehyde	4f	250, 47
7	2-methylindole	indole-3-carbaldehyde	4g	150, 55
8	5-nitroindole	indole-3-carbaldehyde	4h	150, 42
9	5-methoxyindole	indole-3-carbaldehyde	4i	150, 57
10	5-bromoindole	indole-3-carbaldehyde	4j	90, 43

160 to conjugated chromophores ^a

R

- ^a All products were characterized by ¹H NMR, ¹³C NMR and IR data. ^b Isolated yields.
- 162

Figure 2. Spectral changes of **4d** (5×10^{-6} M, EtOH 70%) at different pH values.

Figure 4. UV-Vis spectra of **4d** (5×10⁻⁶ M), Co^{2+} (1.25×10⁻⁴ M), and a 1:1 mixture of **4d** and Co^{2+}

174 solutions in acetonitrile.

178 and Hg)

- Scheme 1. One-pot synthesis and oxidation of bis- and tris(indolyl)methanes into π -conjugated