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A facile stereoselective synthesis of a series of nineteen novel bis-(trans-2,3- dihydrofuranyl) sulfides from 
the reaction of (Z,Z)-2,20-thiobis(1,3-diarylprop-2-en-1-ones) with substitu ted phenacyl bromides and 
pyridine in the presence of K2CO3 in aceton itrile via domino reactions is described. This transformation 
presumably occurs via pyridinium salt formation/ylide generation/Michael addition/intra molecular 
annulation domino sequence, involving the formation of two C–C and two C–O bonds and four stereocen- 
tres in a single step with complete stereoselectivity affording only one diastereomer.

� 2013 Elsevier Ltd. All rights reserved.
Aryl sulfides are known to have broad significance in the phar- 
maceutical and material science arena, besides serving as impor- 
tant intermedi ates in organic synthesis. Their derivatives, viz.
sulfoxides and sulfones are common functiona lities in pharmaceu- 
tical agents like nonsteroida l anti-inflammatory agents,1 selective
M2 muscarinic receptor antagonists,2 HIV protease inhibitors,3 his-
tone deacetylase inhibitors ,4 fatty acid amide hydrolase inhibitors,5

etc. It is also pertinent to note that furans possess important bio- 
logical activities such as anti-cancer,6 anti-inflammatory,7 analge-
sic,8 anti-fungal9 and anti-rheumatic .10 They also find applicati on 
as agrochemicals , pharmaceutical s, and in the food industry,11 be-
sides serving as potential intermediates in organic synthesis.12
ll rights reserved.
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These applications stimulated widespre ad interest in the synthesis 
of furans.13–16

A perusal of the literature shows that no study has been re- 
ported yet on the synthesis of any compound belonging to 
bis(dihydrofuranyl) sulfides, while only one report exists on the 
synthesis of unsubstituted bis(3-tetrahydrofuranyl ) sulfide.17 This
is the first time, the synthesis of a series of bis(2,3-dihydrofuranyl)
sulfides has been realized (Scheme 1), that too with complete ste- 
reoselect ivity affording solely one diastereomer 4, despite the 
presence of four stereocentres. A plausible rationalization for the 
observed stereoselect ivity has been provided (vide infra). These 
compounds bearing six aryl rings, offer great potential for generat- 
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Table 1
Influence of base in acetonitrile on the yield of 4e
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Entry Base mol (%) Reaction time (h) Yield of 4e (%)

1 K2CO3
a 100 12 39 

2 K2CO3
a 200 12 79 

3 Et 3Na 200 12 73 
4 DBU a 200 12 42 
5 Pyridine 200 12 —b

a In these reactions, 200 mol % of pyridine was also employed.
b Product not obtained.

Table 2
Yield and melting point of bis -(trans-2,3-dihydrofuranyl) sulfides 4

Compd Ar Ar 0 Ar00 mp (�C) Yield (%)a

4a C6H5 C6H5 C6H5 160–162 73 
4b C6H5 p-ClC6H4 C6H5 204–206 72 
4c p-ClC6H4 C6H5 C6H5 194–196 70 
4d p-ClC6H4 p-CH3C6H4 C6H5 228–230 80 
4e C6H5 C6H5 p-ClC6H4 239–241 79 
4f C6H5 p-ClC6H4 p-ClC6H4 212–214 71 
4g p-ClC6H4 C6H5 p-ClC6H4 240–242 78 
4h p-ClC6H4 p-ClC6H4 p-ClC6H4 246–248 72 
4i p-ClC6H4 p-FC6H4 p-ClC6H4 180–182 76 
4j C6H5 C6H5 p-CH3C6H4 230–232 69 
4k C6H5 p-ClC6H4 p-CH3C6H4 206–208 75 
4l p-ClC6H4 C6H5 p-CH3C6H4 207–209 69 
4m p-ClC6H4 p-ClC6H4 p-CH3C6H4 174–176 71 
4n p-ClC6H4 p-FC6H4 p-CH3C6H4 214–216 78 
4o C6H5 C6H5 2-Naphthyl 186–188 79 
4p C6H5 p-ClC6H4 2-Naphthyl 196–198 68 
4q p-ClC6H4 C6H5 2-Naphthyl 222–224 72 
4r p-ClC6H4 p-ClC6H4 2-Naphthyl 104–108 77
4s p-ClC6H4 p-FC6H4 2-Naphthyl 230–232 74 

a Obtained yield after filtration.
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Figure 2. Possible diastereomer of 4 (viz. 40) differing in relative configurations at 
starred carbons [not formed].
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ing a library of densely functionalized sulfides and their deriva- 
tives, sulfoxides and sulfones, which could, in turn, be attractive 
for investigatin g biological and material properties. This transfor- 
mation occurring via one pot domino reactions furnishing good 
yields of 4 (considering the number of steps involved) stems as a
part of our recently embarked research on the synthesis of novel 
heterocycles employing domino, multicompone nt, and green 
transformat ions.18
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In this work, the bis-(trans-2,3-dihydrofu ranyl) sulfides 4 were
obtained in good yields from the pseudo three-comp onent reaction 
of (Z,Z)-2,20-thiobis(1,3-diarylprop-2-en- 1-ones) 1 with phenacyl 
bromide 2 and pyridine 3 in the presence of K2CO3 in CH 3CN at 
room temperature (Scheme 1). The data presented in Table 1 show
that (i) the reaction fails to occur when pyridine alone, in the ab- 
sence of any added base and that (ii) the base added and its quan- 
tity, in addition to pyridine, influences the yield of 4 significantly. It 
is also found that a maximum yield of the product was obtained,
when 1 mol of (Z,Z)-2,20-thiobis(1,3-diaryl-prop-2-en -1-ones) was 
reacted with 2 mol each of phenacyl bromide, K2CO3, and pyridine 
in acetonitrile solvent (Table 1).

Conseque ntly, all subsequent reactions were performed typi- 
cally by reacting a mixture of (Z,Z)-2,20-thiobis(1,3-diaryl-prop-2 -
en-1-ones ) (1 mmol) 1, phenacyl bromide (2 mmol) 2, and pyridine 
(2 mmol) 3 in the presence of K2CO3 (2 mmol) in acetonitri le at 
room temperature 19 for 12 h. The solid product upon filtration,
washing with petroleum ether and recrystal lization from dichloro- 
methane –ethanol mixture afforded bis-(trans-2,3-dihydrofu ranyl)
sulfides 4 in good yields in a pure state (68–80%) (Scheme 1,
Table 2).

The structure of 4 is in accord with the results of elemental 
analyses and 1H, 13C, and 2D NMR spectroscop ic data as illustrate d
for 4d. In the 1H NMR spectrum of 4d (Fig. 1), the methyl group of 
the p-tolyl ring appears as a singlet at 2.32 ppm, which showed (i)
HMBC with ipso carbon of the p-tolyl ring at 137.5 ppm and (ii)
C,H-COSY correlation with the carbon signal at 21.1 ppm. The 
hydrogen s, H-2 and H-3, related by a H,H-COSY correlation, ap- 
peared as doublets , respectively at 5.75 and 4.10 ppm (J = 4.2 Hz)
revealing their trans-relations hip. These hydrogens showed HMBCs 
(Fig. 1) with C-4 at 105.8 ppm and C-5 at 154.2 ppm and also 
showed, respectively C,H-COSY correlations with the carbon sig- 
nals at 86.2 and 56.0 ppm enabling their assignment s to C-2 and 
C-3. The H-3 showed HMBCs with the carbonyl carbon at 
194.4 ppm and C-2 at 86.2 ppm. The H-2 showed HMBCs with C- 
3 at 56.0 ppm. Two diastereomeric structures, 4 and 40 (Fig. 2), dif- 
fering in their relative configurations at the benzylic carbons of the 
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Figure 3. ORTEP diagram of 4b.
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dihydrofura nyl rings are in accord with 1H, 13C NMR, and HRMS 
mass spectra. Further distinction among them (4 and 40) is enabled 
by an X-ray crystallogra phic study of a single crystal of 4b20

(Fig. 3), which discloses that the product has the relative stereo- 
chemistry at stereocentr es shown in structure 4 (Fig. 1).

A plausible mechanism depicted in Scheme 2 involves the for- 
mation of phenacylpyr idinium salt 5 in the first step, which is sub- 
sequently deprotonated to yield the pyridinium ylide, 6. The 
Michael addition of this pyridinium ylide 6 to (Z,Z)-2,20-thi-
obis(1,3-diaryl-prop-2-en-1 -ones) 1 affords pyridinium enolates 
7, which undergo annulation to form 8. Similar domino reactions 
involving the other a,b-unsatur ated C@C bond of 8 with pyridinium 
ylide 6 ultimately affords trans(4,40-thiobis(3,5-diaryl-2,3- dihydro- 
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Scheme 2. Plausible mechanism for the stereoselective fo
furan-4,2- diyl))bis(arylmetha-nones) 4. Presumably, the sulfur 
atom of 1 with its low-lying vacant D-orbitals and the consequent 
–R-effect stabilizes the transition state of Michael addition and 
facilitate s the formation of the Michael adduct (Scheme 2). On the 
contrary, in the nitrogen analog of 1, the nitrogen by its +R-effect
could diminish the electrophili city and render the Michael addition 
difficult. This conclusion is supported by the fact that the reaction of 
a model compound comprising one a,b-unsatur ated carbonyl 
moiety with nitrogen at a-position, viz. (Z)-1,3-diaryl-2-(N-methy-
lanilino)-2-propen-1-one s with phenacyl bromide and pyridine 
under the reaction conditions employed for the synthesis of 4 failed
to furnish the analogous furan derivatives.

It is pertinent to note that only one stereoisomer, 4 is formed,
despite the presence of four stereocentr es showing that the reac- 
tion is highly stereoselect ive. The trans-relationship between the 
Ar0 and COAr 00 groups in the dihydrof uran ring of 8 is ascribable 
to the facile annulation via displacemen t of pyridine from the Mi- 
chael adduct 7, while the cis stereochemical relationship requires 
annulation via the other possible Michael adduct 70, a diastereomer 
of 7, that could be present in the equilibriu m mixture, which would 
have gauche interactio ns between aryl ring with aroyl as well as 
pyridiniu m ring rendering 70 difficult to react. This trans-relation-
ship between the Ar 0 and COAr 00 is also in accord with higher stabil- 
ity of 4 relative to its diastereoiso mer with Ar 0 and COAr 00 in
cis-relationship. The reaction of 8 with 6 furnishing 4 with the 
trans-relationship between Ar 0 and COAr 00 in the second dihydro- 
furanlyl ring is also explicabl e similarly.

The relative configuration of the two benzylic carbon (Ar0CH)
stereocentres , one in each dihyrofurany l ring, as shown on struc- 
ture 4 is not readily apparent . This is tentatively ascribable to the 
preferred attack of the phenacylpyr idinium ylide 6 on 8 from the 
less hindered side as shown in Scheme 2 affording intermediate 
9, which upon annulation via substitution furnishes 4.
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In conclusion, we have described a facile synthesis of trans-
(4,4 0-th io bi s(3,5- dia ryl -2 ,3 -di hy dro fu ra n- 4,2- diy l))bis(ary lm et ha -
no ne s) from pseudo three-com ponent domino reactions of 
(Z,Z)-2,20-thiobis(1,3-diaryl-prop-2-en -1-ones), substitut ed phena- 
cyl bromides, and pyridine. This transformat ion occurs via two C–C
and two C–O bond formations and the generation of four stereo- 
centres in a completely stereoselect ive manner with the exclusive 
formation of one diastereomer.
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