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Polysubstituted pyrrolinones were synthesized by the dimerization of 3-amino-2-butenamides via treat-
ment with 0.5 equiv p-TsOH under mild reaction conditions, including oxidation and 1,2-migration of the
methyl group. This method is practically advantageous compared to the conventional methods for the
preparation of pyrrolinones, because it does not require difficult experimental manipulations and special
reagents such as metal catalysts and oxidants. Because the structures of b-amino-a,b-unsaturated amides
can be easily modified by changing the precursors, b-keto amide and amine, synthesis of diverse pyrroli-
nones is possible.

� 2016 Elsevier Ltd. All rights reserved.
Pyrroline-4-ones are one of the attractive frameworks because
these scaffolds are widely found in optical materials1 and biologi-
cally active compounds such as HIV-1 protease inhibitors,2 anti-
malarials,3 and antimicrobials.4 Despite the highly valuable and
versatile applications, only a few synthetic methods have been
reported for pyrrolinones. The most common approach to synthe-
size pyrrolinones is condensation of a-amino acid esters with alde-
hydes, facilitating stereo-controlled synthesis (Scheme 1, Method
A).5 The formal [3+2] cycloaddition reactions of diphenylcyclo-
propenones with imines (Method B) and a-diazoimines with
ketenes have also been used for this purpose.6 The transition-
metal-catalyzed intramolecular cyclization of a-aminoynones and
the condensation of imines with vicinal tricarbonyl compounds
are acceptablemethods (Methods C andD).7,8 However, thesemeth-
ods suffer from somedrawbacks such as lowavailability of the start-
ingmaterials and narrow substrate scope. Furthermore, it is difficult
to introduce multiple functional groups into the pyrrolinone
framework. Thus, the development of a facilemethod formultifunc-
tionalized pyrrolinones remains one of the challenging projects.

Recently, we reported a systematic study on the regioselective
amination of acetoacetamides (3-oxobutanamides).9 The reaction
with less hindered amines involved condensation at the b-keto
moiety, affording 3-amino-2-butenamides while the reaction with
bulky amines involved substitution at the amide moiety. Ami-
nobutenamides may serve as useful building blocks in the organic
synthesis because of both multifunctionality and the biased elec-
tron density of the carbon-carbon double bond also known as
push-pull alkene.10 During our studies on chemical conversion of
aminated enamides, polysubstituted pyrrolinone were obtained
when exposed to air at room temperature. A similar dimerization
of enamides has been reported by two groups: hypervalent
iodine(III)-mediated cyclization (Scheme 2, Method E) and Cu(II)-
catalyzed oxidative tandem cyclization (Scheme 2, Method
F).11,12 Although bis(functionalized) pyrrolinones can be prepared
in good yields by these protocols, highly toxic trifluoroacetic acid
is used in both the cases, and substituents can be present on the
amide function of aryl groups. Contrary to these methods, the pre-
sent dimerization proceeded at room temperature without using
any special reagent. This advantageous feature encouraged us to
study this reaction in detail for developing a practical method for
the synthesis of polyfunctionalized pyrrolinones.

The substrates, 3-amino-2-butenamides 1, were easily prepared
in 76–97% yields by heating acetoacetamide with amines such as
propylamine isobutylamine, sec-butylamine and benzylamine at
60 �C for 3 h in THF. When 3-propylamino-2-butenamide (1a) was
exposed to air at room temperature for 3 days, crystalline precipi-
tates were obtained in the chloroform solution. Based on spectral
data, this crystalline product was determined to be 1-propyl-2,5-
dimethyl-3-oxo-2,3-dihydro-1H-pyrrole-2,4-dicarboxiamide (2a), a
dimeric product of 1a, and the structure was finally confirmed by
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Fig. 1. ORTEP diagram of the molecular structure of 2a.

Table 1
Optimization of reaction conditions for synthesis of pyrrolin-4-ones 7Aa.
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Additive (equiv)

60 °C, 1 d

1a 2a
air

Entry Solvent Additive Yield (%)

1 Hexane – 12
2 Benzene – 24
3 Chloroform – 17
4 Ethyl Acetate – 9
5 Acetonitrile – 3
6 Methanol – 6
7 Benzene p-TsOH (0.2) 45
8 Benzene p-TsOH (0.4) 70
9 Benzene p-TsOH (0.5) 92
10 Benzene p-TsOH (0.7) 48
11 Benzene p-TsOH (1.0) 0
12a Benzene p-TsOH (0.5) Trace
13 Benzene p-TsOH (0.5)/TEMPO (5.0) 80
14 Toluene p-TsOH (0.5) 88
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Scheme 1. Commonly used synthetic methods for pyrrolin-4-ones.
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Scheme 2. Three kinds of dimerization of b-amino-a,b-unsaturated amides.
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X-ray crystallography (Fig. 1). This structure indicates that the
dimerization involved the oxidation of the pyrroline framework
and 1,2-migration of the methyl group.

First, we optimized the reaction conditions using butenamide
1a as the model substrate. Among several solvents such as hexane,
benzene, chloroform, ethyl acetate, and acetonitrile, nonpolar ben-
zene was effective for the dimerization (Table 1 entries 1–6).
Although this reaction proceeded even in the absence of any addi-
tives, the addition of p-toluenesulfonic acid (p-TsOH) significantly
accelerated the reaction. Notably, the amount of p-TsOH was cru-
cial for this dimerization, and 0.5 equiv p-TsOH afforded pyrroli-
none 2a in the best yield (entries 7–11, Fig. 1). When 60.5 equiv
of p-TsOHwas used, the starting material 1awas recovered. In con-
trast, acetoacetamide, the hydrolized product of 1a, was obtained
when more than 0.5 equiv of p-TsOH in the reactions (Fig. 2).
Please cite this article in press as: Hirai S., et al. Tetrahedron Lett. (2016), http
When 1awas treated with 0.5 equiv p-TsOH in benzene at 60 �C
for 1 day under nitrogen atmosphere, the dimerization did not pro-
ceed at all (entry 12), indicating that the oxygen present in air
serves as the oxidant to furnish pyrrolinone 2a. Moreover, the reac-
tion delivered pyrrolinone in a good yield even in the presence of
an excess amount of a radical scavenger [(2,2,6,6-tetram-
ethylpiperidin-1-yl)oxidanyl (TEMPO)], indicating that this reac-
tion possibly proceeds with the ionic mechanism (entry13).
Furthermore, it was confirmed the reaction also proceeded in
toluene without significant decrease of the yield of 2a (entry 14).

Based on the abovementioned experimental facts, a plausible
mechanism is illustrated in Scheme 3. First, the b-carbon of enam-
ide 1a attacks the a-carbon of another protonated enamide A to
afford intermediate B. At this time, equimolar amounts of unproto-
nated and protonated enamides, 1a and A, are necessary. The for-
mer maintains the nucleophilicity, and the latter improves the
electrophilicity. After the elimination of an amine, the intramolec-
ular cyclization affords a five-membered product D. Then, D is oxi-
dized by molecular oxygen in the air,13 and epoxide F is formed by
dehydration.14 The subsequent ring-opening reaction by water
affords 1,2-diol G. Finally, the 1,2-migration of the methyl group15

affords the final product 2-pyrrolin-4-one 2a.
Other enamides 1a–e were subjected to this dimerization using

the optimized reaction conditions (Table 2). N-Unsubstituted
enamides 1a–c (R2 = R3 = H) efficiently afforded the corresponding
pyrrolinones 2a–c in excellent yields, respectively (entries 1–3). On
the other hand, bulkiness on the amide function suppressed the
dimerization, leading to pyrrolinones 2d and 2e in lower yields
under the same conditions (entries 4 and 5). The obtained pyrroli-
nones 2a–e could not be prepared by alternative procedures.

In conclusion, we have successfully developed a facile and effi-
cient method for the synthesis of polysubstituted pyrrolinones by
the dimerization of 3-amino-2-butenamides 1 by treating with
0.5 equiv p-TsOH under mild reaction conditions with simple
manipulations. Moreover, the substituents at the 1-position of
pyrrolinone 2 and the amide function can be easily modified by
changing enamide 1. This is advantageous for the construction of
a new compound library. Only simple experimental manipulations
are required, and this reaction proceeded without special reagents
such as metal catalysts and oxidants. Hence, this reaction is
expected to be a useful tool for the synthesis of versatile
pyrrolinones.
://dx.doi.org/10.1016/j.tetlet.2016.11.068
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Fig. 2. The yield 2a (s) and acetoacetamide (�) depending on the amount of p-TsOH.
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Scheme 3. A plausible mechanism.

Table 2
Bicyclization of other substituted keto esters 1.

NH O

N
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N
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60 °C, 1 d
Benzene

0.5 equiv

1
2

Entry R1 R2 R3 Product Yield (%) Recovery (%)

1 Pr H H 2a 92 0
2 i-Bu H H 2b 96 0
3 PhCH2 H H 2c 93 0
4 Pr Me H 2d 35 31
5 Pr Me Me 2e 21 22
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A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.tetlet.2016.11.
068.
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