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Organocatalysis has become a rapidly growing area of research
in organic chemistry, as it provides mild reaction conditions that
are operationally simple and environmentally-benign.'? In partic-
ular, phosphoric acid derivatives have been used extensively to
activate electrophiles containing imine and carbonyl moieties
through hydrogen-bonding interactions or protonation resulting
in an ion-pair.>~> Because phosphoric acid derivatives have both
a Brensted acid and a Brensted basic site, many proposed transi-
tion states include a catalyst, nucleophile, and electrophile,
although the primary role of the catalyst has largely remained elec-
trophilic activation.® In an effort to extend the synthetic utility of
phosphoric acid catalysis, we set out to investigate the role of a
phosphoric acid derivative by activation of a nucleophile through
tautomerism. Previous work in our lab has shown that hydrazones
tautomerize under phosphoric acid conditions.” Rueping and
Antonchick have reported a chiral phosphoric acid catalyzed
aza-Henry reaction that requires the catalyst to accelerate isomer-
ization of a nitroalkane to a nitronate.® In addition, phosphoric
acids have been employed in the tautomerism between enecarba-
mates and imines or ketimines to generate Friedel-Crafts® or self-
coupling products,'® respectively. Based on these reports, we
propose that secondary enamines can be generated in situ from
imines under phosphoric acid conditions, with subsequent
addition to electrophiles (Scheme 1).

Screening a cyclohexanone-derived imine (1) with benzalde-
hyde (2a) under phosphoric acid conditions (0.5 equiv of diethyl
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phosphate,'! 0.5 M in CH,Cl,, 25 °C, 18 h, 4 A molecular sieves) re-
sulted in the formation of an o,B-unsaturated ketone 4a (70% yield)
as the major product (Scheme 2).

Notably, no reaction was observed between benzaldehyde and
cyclohexanone under the same reaction conditions, highlighting
the need of the imine component.'’"'? The enone product, likely
resulting from an addition/elimination sequence, is similar to that
of an aldol-condensation product. The aldol condensation is a
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Scheme 1. Proposed formation of a secondary enamine followed by addition to an
electrophile.
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Scheme 2. Aldol-like reaction between an imine and aldehyde to form an enone.
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Table 1
Screening of organic acids
0
Bn. P~
N o  Eto”) OH
| OEt
=
+ H —»0 3
4AM.S., rt
1 2a 4a
Entry Ratioof1:2a Additive (equiv) t(h) Solvent® Yield
4a (%)
Organic acids
1 1:1 0 18 CHyCl, 38
2b 1:1 H;P0, (0.5) 18 CHyCl, Trace
3 1:1 CF3;COOH (0.5) 18 CH,Cl, 34
Q
4 1:1 PhO’P\N/Tf (0.5) 18 CHyCl, 29
PhO H
5¢ 1:1 Diethyl phosphate 18 CH,Cl, 70
(0.5)
Reactant ratios
6 1:1 Diethyl phosphate 18 CH,Cl, 52
(0.1
7 1:1 Diethyl phosphate (1) 18 CH,Cl, 63
Solvent
8 1:1 Diethyl phosphate 18 Toluene 63
(0.5)
9 1:1 Diethyl phosphate 18 Acetonitrile 52
(0.5)

2 All reactions were run on 1 mmol scale (0.5 M) with respect to 1 at room
temperature with 4 A molecular sieves.

b Crystalline HsPO4 was used.

¢ Diethyl phosphate was synthesized according to the literature procedure 21.

powerful carbon—carbon bond-forming reaction in organic chem-
istry.'>~'> Despite the synthetic utility of the aldol reaction, simple
aliphatic aldehydes have been particularly challenging substrates
because these aldehydes can act as both the nucleophilic and
electrophilic component of the aldol reaction, resulting in
homodimerization.'®!” Several methods'®'® have been developed
to circumvent the problem of chemoselectivity including a report
of a cobalt-catalyzed addition between an imine and an
aldehyde.?® This approach is intriguing because it allows for the
designation of the nucleophilic component prior to the aldol
condensation avoiding the possibility of homodimerization.
However, it requires a two-step process and the scope of this
reaction is limited to only a few aldehydes. Given our initial results
and the need for a more general chemoselective aldol reaction with
aliphatic aldehydes, we chose to explore this reaction in terms of
reaction optimization and substrate scope.

Optimization of the reaction conditions for the addition of 1 and
2a included the screening of organic acids, reactant ratios, and
solvents (Table 1).

Table 2
Scope of the reaction®
Entry Aldehyde Product” t Yield 4
(h) (%)
(0] (0]
H =z
1 18 66
OMe OMe
2b 4b
(0] O
H =
2 J\Q S 18 63
S S
2 4c
O O
H =
3 24 49
NO, NO,
2d 4d
(0] O
H =
4 18 48
2e 4e
(6] O
=
5 H)H/ é/\‘/ 19 40
2f af
Ik
6 H W 18 46
2g
49
J S
7 H éM 19 42
2h
4h
)OJ\/\/\ i
8 H é/\/\/\ 19 33
2i _
4i
JOJ\/\ i
9 H é/\/\ 19 10
2 4j

2 All reactions were run at room temperature on 1 mmol scale (0.5 M) with a
1:1 mol ratio of aldehyde to imine. Half of an equivalent of 3 was used.

b All products were characterized by 'H NMR and '*C NMR spectroscopy and
determined to be the E-isomer only when compared to literature data. See Sup-
plementary data for full details.
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Scheme 3. One-pot reaction to form enone 4a from benzylamine (5) and cyclohexanone (6). A competing side reaction formed minor product 7.
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Acids such as phosphoric acid and trifluoroacetic acid were
unable to promote the reaction more than the thermal reaction
(compare Table 1, entries 2-3 to entry 1). In addition, the phospho-
ramidic acid diphenyl ester was found to be an unsuitable catalyst
for this reaction compared to diethyl phosphate (Table 1, entries 4
and 5).%2 These results not only highlight the importance of diethyl
phosphate, but also demonstrate the unique function of the phos-
phoric acid catalyst.

Interestingly, using 0.1 equiv of diethyl phosphate gave a mod-
erate yield (Table 1, entry 6),”> and a full equivalent did not
increase the yield of the enone (Table 1, entry 7). Lastly, several
solvents were screened. Toluene and acetonitrile gave inferior
reaction yields compared to those in dichloromethane (Table 1,
entries 8 and 9). Notably, during the course of the optimization
studies, suspected reaction intermediates were not detected.

We attempted the synthesis of enone 4a in a one-pot reaction
from benzylamine (5) and cyclohexanone (6), presumably through
the formation of imine 1 in situ. Compounds 5 and 6 were allowed
to stir in solution between 0 and 4 h before the acid catalyst 3 and
the aldehyde 2a were added to the reaction flask (see Supplemen-
tary data). We were pleased to find that the reaction product was
isolated in moderate yield (up to 45%), but the optimized reaction
conditions for the one-pot reaction resulted in a significantly lower
yield of 4a compared to the optimized conditions reported above
(see Table 1, entry 5). Upon further investigation, we discovered
the imine was reacting in the presence of diethyl phosphate and
aldehyde 2a to give hydrolysis products and a newly formed
aldimine 7 (Scheme 3).>* Despite our attempt to limit the presence
of water through the use of activated molecular sieves or perform-
ing the reaction under nitrogen, some hydrolysis inevitably
occurred.

The scope of the addition reaction was investigated with re-
spect to the aldehyde-component using the optimized reaction
conditions (see Table 1, entry 5). Aldehydes bearing aromatic
groups proceeded with good yield (Table 2, entries 1-3). Aldehyde
2d, bearing an electron-withdrawing group (NO,), is more
activated than the other aromatic aldehydes employed and would
therefore be expected to result in a higher yield of enone when
coupled with 1. As observed during the optimization of the
reaction conditions with aldehyde 2a, the hydrolysis of imine 1
allows for multiple reaction pathways. Considering this possibility
and the increased reactivity of aldehyde 2d, the lower yield of

3 Pg-«

QNH

/" tautomerization R1
Pg<
9N

R1U\/R2 8

1 AN 3 Pg\’/_\

R?
tautomerization R1J\/ R3

8

enone 4d likely results from competing side reactions between
hydrolysis products and aldehyde 2d (Table 2, entry 3).

Less activated, branched aliphatic aldehydes proceeded with
moderate yield in the addition reaction (Table 2, entries 4 and 5).
a-Unsubstituted aldehydes (2g-2j) are a particularly challenging
class of substrates because they contain enolizable hydrogens
which can lead to the homodimerization of aldehydes. We were
pleased to find that a-unsubstituted branched aldehydes (2g and
2h) proceeded with moderate yield (Table 2, entries 6 and 7).
Although one might anticipate homodimerization, these products
were not detected. The coupling of hexanal (2i), a straight-chained
aliphatic aldehyde, with 1 resulted in a comparable yield to the
branched substrates (Table 2, entry 8), however a significant
decrease in yield was noted with the substrate butanal (2j) (Table 2,
entry 9). Degradation of 2j was observed,?® likely leading to the
low-yielding reaction.

The formation of enones 4a-j can be explained by two different
mechanisms: (1) a multi-step aldol-like reaction (Scheme 4a), and
(2) a concerted, aza-ene-type mechanism (Scheme 4b). The
literature supports the possibility for both mechanisms. Babler
and co-workers suggested a step-wise mechanism in their report
of a cobalt(Il) chloride catalyzed addition reaction between an
N-tert-alkyl imine derivative and several aldehydes, while Terada’s
report of a phosphoric acid catalyzed addition reaction of
enecarbamates to imines and aldehydes suggests a concerted man-
ner.>®?” Attempts to elucidate the correct reaction mechanism
using 'H NMR titrations were not productive. The elimination step
of the reaction has also been further investigated. Our presumption
is that under truly anhydrous conditions, the elimination step
occurs before hydrolysis. A solution of p-hydroxy alcohol 11?% in
dichloromethane was stirred under a variety of reaction conditions
(Table 3). Interestingly, the aldol-condensation product 4a was not
observed under either acidic or basic conditions (Table 3, entries 1
and 2), and instead starting material was recovered in both cases.
Only when both compounds 3 and 5 were present was enone 4a
isolated (Table 3, entry 3), suggesting that dehydration occurs
through the imine; that is, elimination precedes hydrolysis. We
are currently investigating additional methods to rigorously
exclude water from the reaction mixture in an attempt to prevent
hydrolysis and isolate the imine.

In conclusion, we have reported an addition reaction between
imines and aldehydes through a phosphoric acid catalyzed
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Scheme 4. Proposed potential mechanisms for the formation of enone 4 through either (a) a step-wise addition, or (b) a concerted addition.
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Table 3
Elimination of B-hydroxy alcohol 11
(0] OH (0]
conditions
» 7
CH,Cl,, 4A sieves
1 4a
Entry® Additive (equiv) t (h) Recovery 11 (%) Yield 4a (%)
1 3 18 66 0
2 5 18 75 0
3 3(0.5) and 5 (0.5) 18 33 30

2 All reactions were run on a 1 mmol scale (0.5 M) with respect to 1 at room
temperature with 4 A molecular sieves.

tautomerism of the imine component. Not only does this report
expand the utility of phosphoric acid derivatives, it provides a
chemoselective strategy for the cross-aldol condensation using
aliphatic aldehydes as substrates. Efforts are in progress to fully
understand the mechanism of the reaction and to expand the scope
of the reaction to include other imine substrates.
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