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A rare macrocyclic tetranuclear copper (I) complex ([Cu4(2)2](PF6)4) of phenanthroline-based NHC ligand
has been prepared and characterized by NMR, ESI-MS spectroscopy, and X-ray diffraction analysis. The com-
plex displays a novel twisted macrocyclic conformation and weak intramolecular Cu–Cu interactions. The
complex is found to exhibit high catalytic activity in the Cu-catalyzed azide–alkyne cycloaddition (CuAAC)
reaction in an air atmosphere at room temperature in a MeCN/H2O mixture solution.

© 2012 Elsevier B.V. All rights reserved.
N-heterocyclic carbenes and their transition metal complexes have
been the focus of intense research in organometallic chemistry [1] andho-
mogeneous catalysis [2–5]. Polydentate N-heterocyclic carbene (NHC) li-
gands bearing both C and N donating atoms offer opportunities for the
construction of bi- andmulti-nuclear organometallic complexes [6,7]. Re-
cently, a type ofmetallamacrocycle has been constructed using poly-NHC
ligands as building blocks [8–10]. For example, Hahn et al. [11] explored a
series of metallosupramolecule complexes using rigid polycarbene li-
gands as donor atoms via metal-controlled self-assembly. Jin et al. [12]
reported a series of self-assembled metallacycles with an NHC palladium
complex as the corner element and aflexible pyridine-based ligand as the
building block. Several coinage metal–NHC clusters involving Ag, and Au
centers have been reported [11,13,14]. However, reports of macrocyclic
copper (I) complex based on N-heterocyclic carbene ligand are rare.

Phenanthroline as a commonly ligand has beenwidely used in coor-
dination chemistry and homogeneous catalysis. Our previous research
showed that N-(1,10-phenanthrolin-2-yl)imidazolylidenes are versa-
tile ligands and their nickel and palladium complexes are quite efficient
cross-coupling catalysts [15], heterobimetallic Pd/Cu complex shows
good activity for tandem Click/Sonogashira reactions [16], and a series
of Ru complexes display unique photophysical and electrochemical
properties [17]. Excellent activities observed with these transition
metal complexes of phenanthroline-based NHC ligands encouraged us
to explore the chemistry of copper compounds. Herein, we report the
synthesis, structure, and catalytic activity of the novel macrocyclic
rights reserved.
tetranuclear copper (I) complex supported by phenanthroline-based
NHC ligand.

All the chemicals were obtained from commercial suppliers and
used without further purification. 2-iodo-1,10-phenanthroline [15]
and 2-(1H-imidazol-1-yl)-1,10-phenanthroline (1) [18] were prepared
according to the known procedure. Reaction of 2-(1H-imidazol-1-yl)-
1,10-phenanthroline (1) with dibromethane and subsequent addition
of NH4PF6 to the methanol solutions of the resulting imidazolium bro-
mide yielded the corresponding hexafluorophosphate [H2(2)](PF6)2 in
yield of 60% (Scheme 1). The imidazolium salt was characterized by
1H and 13C NMR spectroscopy [19]. 1H NMR spectra in DMSO-d6 show
downfield resonance signals at ca. 10.7 ppm assignable to the acidic
NCHN proton of the imidazolium salt.

Treatment of the in situ generated silver–NHC complex from
H2(2)(PF6)2 and Ag2Owith excess copper power or 2 equiv. of CuI in ace-
tonitrile afforded tetranuclear copper–NHC complex [Cu4(2)2](PF6)4 (3)
in yield of 75% (Scheme 1). The tetranuclear copper complex 3was char-
acterized by elemental analysis,1H and 13C NMR spectroscopy [20]. 1H
NMR spectrum of complex 3 in DMSO-d6 shows the complete disappear-
ance of acidic 2H-imidazolium proton, which is diagnostic for the loss of
the carbonium protons and the formation of metal carbene complex. In
the 13C NMR spectrum of complex 3, the resonance due to the carbonic
carbonwas observed at 182.5 ppm,which is consistentwith the reported
values in the range of 215.6–149.5 ppm for copper–NHC complexes [1].
The complex was isolated as a yellow solid that is stable to air in the
solid and in solution. ESI-MS spectrum of 3 in acetonitrile shows the
base peak at 1697.61 amu due to [Cu4(2)2](PF6)3]+, and the second larg-
est peak at 776.12 amu assigned to [Cu4(2)2](PF6)2]2+.

Complex 3was additionally characterized by X-ray crystallography.
Yellow single crystals of complex 3 suitable for an X-ray diffraction
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Scheme 1. Synthesis of complex 3.
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study were grown from acetonitrile solution and diethyl ether. De-
tails of the X-ray structure crystallographic data and refinement de-
tails are in [21]. The molecular structure of complex 3 is depicted in
Fig. 1. The complex consists of the cation unit [Cu4(2)2]4+ and four
hexafluorophosphate anions with two acetonitriles of crystalliza-
tion. Complex 3 crystallizes in the monoclinic space group C2/c.
The remaining atoms of the cation are related by a crystallographic
2-fold symmetry. Each copper ion is three-coordinate in a trigonal
planar ligand environment of two nitrogen atoms of phenanthroline
and one NHC carbon center. Four carbon ligators stem from two li-
gands forming an unusual fourteen-membered ring with the cu-
prous ion. The four copper ions between two bi-carbene ligands in
[Cu4(2)2](PF6)4 form a distorted square arrangement featuring two
short (Cu1–Cu2 2.617 Å) and two long (Cu1…Cu1A 5.798 Å, Cu2…
Cu2A 5.743 Å) separations. The shortest Cu1–Cu2 separation (2.617(2)
Å) is slightly shorter than the sum of van der Waals radii of two copper
atoms, which shows a weak metal–metal interaction in complex 3. The
Fig. 1. ORTEP drawing of [Cu4(2)2](PF6)4 (3). Thermal ellipsoids are drawn at the 30
shortest Cu–Cu distance is slightly higher than reported Cu–Cu separa-
tions (2.4907 to 2.5150 Å) of the triangular Cu(I)-NHC clusters [22,23]
and shorter than the reported tripodal Cu(I)–NHC complexes(2.7557
to 2.9078 Å) [24]. The Cu\Ccarbene bond distances are found in the
range of 1.851(14)–1.871(13) Å which are shorter than reported cop-
per–carbene complexes (1.884–2.05 Å) [22,23,25–30]. Also interesting-
ly, this complex contain a fourteen-membered metallamacrocycle,
which is linked together by four copper, four nitrogen and six carbon
atoms (Fig. 1, right).

Since the Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reac-
tion discovered by Meldal and Sharpless in 2002 [31], it has become
a popular atom-economic process. This reaction has been proved to
be accelerated by Cu(I) species supported by polydentate sulfur li-
gands [32] and NHC ligand[33] under mild conditions. With the tetra-
nuclear copper complex in hand, we investigated its catalytic activity
in the CuAAC reaction of benzyl azide and phenylacetylene. The reac-
tions were monitored by 1H NMR analysis after appropriate intervals
% probability level. Hydrogen atoms and anions have been removed for clarity.
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Table 1
Solvent and catalyst optimization studiesa.

N3
+

0.5 mol % Cat., RT

Solvent, 3 h
N

N N

.

Entry Solvent Yield %b

1 Neat 25
2 H2O 11
3 CH3CN 45
4 DMSO 12
5 t-BuOH/H2O(V/V=1/1) Trace
6 CH3CN/H2O(V/V=1/1) 67
c7 CH3CN/H2O(V/V=1/1) >99

Reaction condition: a(azidomethyl)benzene 1.0 mmol, ethynylbenzene 1.2 mmol, catalyst 0.0050 mmol, solvent 2 mL, RT, 3 h. bH NMR conversion of (azidomethyl)benzene,
ccatalyst 0.0075 mmol.
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within 3 h. At a complex loading of 0.5 mol%, the effect of solvents
was studied. It is noted that CuAAC reaction often uses t-BuOH/H2O
as solvent. A first screening of different solvents revealed exceptional
activity of 3 in MeCN/H2O (v/v 1:1) in the air atmosphere using
0.5 mol% catalyst loading, giving rise to the cycloadduct in 67% yield
(Table 1). Having identified MeCN/H2O as the best solvent for the re-
action, we next investigated catalyst loading for this reaction. Gratify-
ingly, upon increasing the catalyst concentration to 0.75 mol%, the
reaction proceeded in nearly quantitative yield (Table 1).

Having optimized the reaction conditions, complex 3was applied to
the cycloaddition reaction of electron-rich, electron-poor, and dialkyne
at room temperature in MeCN/H2O to give the corresponding triazoles
in high yields (Table 2, entries 1–5). However, the cycloaddition reac-
tion of 1,4-diethynylbenzene with benzyl azide only obtains the
mono-triazole product (Table 2, entry 3), which may be ascribed to
the low solubility of triazole derivates in MeCN/H2O solution. Thus the
Table 2
Azide–alkyne cycloaddition catalyzed with complex 3.

N3
R +

0.75 mol%

CH3CN/H
R'

.

Entry Substrate Substrate

1

N3

2

N3

3

N3

4

N3
O

O

5

N

N3
resultant product bears additional alkynyl offering opportunity for the
construction of more complex triazole compound. Moreover, 2-
(azidomethyl)pyridine was also successfully employed in this reaction
in 96% yield (Table 2, entry 5).

The promising catalytic behavior of complex 3 for Cu-catalyzed
azide–alkyne cycloaddition (CuAAC) reaction encouraged us to ex-
plore its application in three-component (alkyl halide, sodium azide,
and alkyne) cycloaddition reaction [34] (Table 3). Catalyst 3 again
performed well in above optimize condition to give the desired prod-
ucts (entries 1–5) in good to excellent isolated yields (85–94%).

In conclusion, we have designed and synthesized a novel Cu4 cluster
complex representing thefirst tetranuclear copper (I) complex supported
by N-heterocyclic carbene ligand. The complex displays a novel twisted
macrocyclic conformation andweak intramolecular copper–copper inter-
actions. Each copper ion is three-coordinate in a trigonal planar ligand en-
vironment of two nitrogen atoms of phenanthroline and one NHC carbon
Cat, RT

2O 1:1

N
R

N N

R'

Product Yield %

N

N N

95

N

N N

94

N

N N

93

N

N N O

O 91

N
N
N N

96
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Table 3
Three-component CuAAC reaction promoted by tetranuclear copper complex 3.

Br
R +

0.75 mol% Cat, RT

CH3CN/H2O 1:1

N
R

N N
NaN3 +

.

Entry Substrate Product Yield %

1

Br N

N N

94

2

Br

Br

N

N NBr

85

3

Br

I

N

N NI

88

4

Br

Br

N

N N

Br 89

5

Br
O

O
N
N N

O

O

86
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center. Complex 3 is found to exhibit high catalytic activity in the Cu-
catalyzed azide–alkyne cycloaddition (CuAAC) reaction in an air atmo-
sphere at room temperature in a MeCN/H2O mixture solution.
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Appendix A. Supplementary material

Crystallographic data (excluding structure factors) for the structure
reported in this paper have been depositedwith the Cambridge Crystal-
lographic Data Centre as supplementary publication no. CCDC-number:
871837. Copies of available material can be obtained, free of charge, on
application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK, (fax:+44-(0)1223-336033 or email: deposit@ccdc.cam.ac.uk. Sup-
plementary data related to this article can be found online at http://dx.
doi.org/10.1016/j.inoche.2012.05.007.
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