

Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

DOI: 10.1039/C5CY01381J

Journal Name

ARTICLE

MeO_x/Al_2O_3 and MeO_x/CeO_2 (Me = Fe, Co, Ni) catalysts for high temperature N_2O decomposition and NH_3 oxidation

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Published on 30 October 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 12:28:43.

L. G. Pinaeva,*^a I. P. Prosvirin,^{a,b} L. S. Dovlitova^a, I. G. Danilova^a, E. M. Sadovskaya^{a,b} and L. A. Isupova^a

A series of MeO_x/Al_2O_3 and MeO_x/CeO_2 (Me = Fe, Co, Ni) was prepared by incipient wetness impregnation and characterized by XRD, XPS, UV-Vis DRS, differential dissolution phase analysis (DDPA). Their activity towards N_2O decomposition and ammonia oxidation at 750 – 900 °C was shown to depend on oxygen mobility in the sample as characterized by steady state isotopic transient kinetic analysis (^{18}O SSITKA) and dispersion of MeO_x (Me = Fe) species. Obvious reverse "activity - FeOx dispersion" dependence was related to change of contribution from oxygen transfer from the support to active sites through Me-ceria or, it is not improbable, Me-alumina interface. It was shown that high efficiency of Fe/CeO₂ samples in deN₂O can be additionally increased after CeO₂ supporting onto high surface area alumina, ammonia oxidation to NO_x being the same.

1. Introduction

Secondary abatement processes of N₂O formed as undesirable byproduct at the catalytic oxidation of ammonia into nitric oxide implies catalyst set up in the ammonia burner operating at 800-900 C directly after Pt-Rh gauzes [1]. Bulk or supported mixed metal oxides were developed for catalytic N2O decomposition and put into practice in nitric acid plants before 2000 (Co₂AlO₄/CeO₂, CuO/Al_2O_3 , $La_{0.8}Ce_{0.2}CoO_3$ and Fe/ZrO_2) [1]. Later, alternative catalytic formulations were evaluated as well, such as yttriumdoped zirconia [2], ceria-zirconia [3], $A_{1-x} A_x B_{1-y} B'_y O_3$ perovskites with A = La or Ca, B = Mn, Co or Fe, A = Sr, B' = Cu or Ni [4-6], metal-substituted hexaaluminates [7], Fe₂O₃-MeO_x (Me= Al, Zr, Ce, La, Cu, Cr) obtained by co-precipitation [8, 9], Co₃O₄ [10] and CoO_x-CeO₂ [11] obtained by calcinations of mixtures of individual oxides. The pilot-plant reactor and real plant studies [8] confirmed high activity and very good mechanical stability of the Fe₂O₃/Al₂O₃ catalysts prepared by co-precipitation as well as no decomposition of nitric oxide. Several aspects with respect to the reaction mechanisms, the structure-activity correlations, the role of various gas inhibitors as well as the strategies followed to adjust the local surface structure of above mentioned noble metals free metal oxides were analyzed in the review of Konsolakis [12].

Ageing of Pt-Rh gauzes is accompanied by decrease of activity and yield of $NO+NO_2$ (NO_x), while N_2O production rises. With account of tendency of last decade to reduce platinum metal loading to the reactor (including number of gauzes and wire thickness), at gauzes deactivation noticeable slip of ammonia becomes possible followed

Earlier we have shown that catalytic activity of Sr substituted La manganites in high-temperature N2O decomposition correlated with the coefficient of lattice oxygen self-diffusion [5]. At using the materials with high bulk oxygen mobility the rates of oxygen transfer in the two-phase system " ${\rm O}_{\rm 2gas}$ —surface—catalyst bulk" characterized by $^{16}\text{O}/^{18}\text{O}$ exchange and $N_2\text{O}$ decomposition additionally increased either at their decoration by structures characterized by higher rate of heteroexchange (composites LaSrFeO₄ (surface)-La_{0.4}Sr_{0.6}FeO₃ (bulk) [6]), or at modification of near surface layers by hetero cations (LaFeO3-CeO2 composites with Fe³⁺ ions inserted into fluorite lattice [15]). In the former case [6] "activity - oxygen mobility" correlation was observed for reaction of NH₃ oxidation as well. Pérez-Ramírez et al [16] showed that the reaction of NH₃ oxidation to NO_x over oxide catalysts (Fe₂O₃, CeO₂, Cr₂O₃) follows a Mars–van Krevelen-type scheme with participation of lattice oxygen and reoxidation of the so-formed vacancies by both gas-phase O₂ and bulk lattice oxygen. Due to this, the efficiency of NH₃ oxidation to NO_x, especially in oxygen deficient conditions, depended on the rate of bulk oxygen diffusion to surface vacancies.

by its reaction with NO_x . Therefore, development of bi-functional catalyst that is capable of efficient N_2O abatement and NH_3 oxidation to NO_x becomes urgent for further optimization and reducing of harmful emissions of the process of HNO_3 production. An idea of development of oxide-based catalyst that is capable to convert slipping ammonia with high selectivity to NO_x was successfully realized by using dual bed system in which Fe_2O_3 - Al_2O_3 based extruded monolith followed fewer number of platinum gauzes [13]. Later studies showed their efficiency of both slipping NH_3 oxidation to NO_x and N_2O abatment [14]. At the same time, Al_2O_3 based honeycomb catalysts with the same geometry and FeO_x based active component supported by impregnation were substantially more active in both reactions and retained high activity after the run in dual-bed system for 3 months [14].

^{a.} Boreskov Institute of Catalysis, Novosibirsk, Russia.

^{b.} Novosibirsk State University, Novosibirsk, Russia.

[†] Footnotes relating to the title and/or authors should appear here. Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

DOI: 10.1039/C5CY01381J

Journal Name

ARTICLE

In accordance with these findings, the idea to combine high activity towards N2O decomposition and NH3 oxidation (at high selectivity to NO_x) in the same sample was checked. In addition to $Fe/Al_2O_3(CeO_2)$ samples, Co- and Ni- supported onto Al_2O_3 and CeO₂ were tried as well since a vast number of patent applications have claimed a relatively high NO selectivity (90-95%) using Co and Ni single metal oxides. Numerous attempts were done to commercialize Co₃O₄ based catalysts, but substantially lower activity and reversible deactivation of Co-systems, due to reduction of Co₃O₄ by NH₃ to the inactive CoO under reaction conditions in the upper parts of the bed excluded replacement of Pt gauzes by oxide catalysts. Nevertheless, these systems could be tried as the second catalyst in the dual bed system, especially provided stabilizing effect of CeO2 in Co3O4-CeO2 mixed oxides with low Co content is well-known [11]. Since copper catalyzes ammonium nitrate decomposition, an extremely important safety problem may arise if copper leaches from the catalyst and accumulates in the fertilizer product [1]. This undoubtedly completely excluded any Cu based system for using in the conditions of ammonia burner, although Cu/CeO2 revealed high efficiency deN2O at lower temperatures [17, 18] and more probably can be located after the absorption column. In addition, it is well known that under these conditions Cu-containing systems oxidize NH3 to N2 with high selectivity.

On the first stage we showed that intrinsic catalytic activity of different Me/Al₂O₃ (Me = Fe, Co, Ni) samples obtained by impregnation towards N₂O decomposition and NH₃ oxidation was substantially lower than for corresponding Me/CeO₂ samples with close surface Me concentration and correlated with the rate of oxygen exchange in the samples. Variation of Fe content in the Fe/Al₂O₃(CeO₂) samples revealed noticeable reverse dependence of deN₂O and NH₃ oxidation activity due to size effect. In accordance with this, we supported FeO_x onto specially developed Al₂O₃ [19] characterized by high specific surface area, and formation of highly dispersed FeOx at increased Fe content in the sample finally resulted in N2O and NH3 conversion rise. For such samples we focused on Fe oxide as active component because in the case Me = Co, Ni low active MeAl₂O₄ or NiOx were formed on the surface of alumina. Using of the effect of high oxygen mobility in CeO₂ for this purpose was restricted by its low surface area at temperature of reaction, independently on preparation method [3, 20, 11]. Therefore, an attempt was done to disperse CeO2 using precipitation onto high surface area Al₂O₃.

2. Experimental

Published on 30 October 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 12:28:43.

2.1. Samples preparation

CeO₂ and Al₂O₃ samples used as the support was obtained by calcination of corresponding nitrate of chemical purity (99.5%) at 900 C for 36 h. Al₂O₃ based supports were prepared by calcination of: 1) Al(NO₃)₃*9H₂O of chemical purity (99.5%) at 1000 C or 1200 C for 6 h (denoted below as Al₂O₃-1000 and Al₂O₃-1200, respectively), or 2) product of centrifugal thermal activation of commercial-grade alumina hydrate (hydrargillite) [19] at 1000 °C for 19 h (Al₂O₃-C). To obtain Ce/Al₂O₃ support, the product of thermochemical activation of hydrargillite was first calcined at 500 $C(S_{RET} = 210 \text{ m}^2/\text{g})$; then CeO_2 was precipitated onto this product from 0.75 M Ce(NO₃)₃*6H₂O water solution using 1 M (NH₄)₂CO₃ as a precipitation agent, so that Ce: Al ratio in the final product was 1 : 1 (mole). The resultant precipitate was washed until the pH of the filtrate was 7, dried at 60 C overnight, followed by calcination at 900 C for 5 h.

All Me/support samples (Me=Fe, Co, Ni) were prepared by incipient wetness impregnation of corresponding support by water solution of Me nitrate with added citric acid in 10 wt.% excess to the stoichiometric amount to form the corresponding citrates and ethyleneglycole, dried in air at 150 °C for 3 h and then calcined at 900 °C for 4 h. In the commonly used abbreviation nMe/support "n" corresponded to Me weight content in the sample in terms of corresponding metal, although oxide compounds obviously formed. For CeO₂ and Al₂O₃-1200 the samples with Me concentration 6.7*10¹⁹ at/m² have been prepared which corresponded to Me content around 2.5-2.7 wt% (Al₂O₃-1200) and 0.86-0.91 wt% (CeO₂). For all supports we varied as well Fe content in the samples from 0.86 to 19.8 wt%. Bulk MeOx were obtained by calcination of chemical purity corresponding nitrates at 900 C for 6 h.

2.2. Samples characterization

X-ray powder diffraction (XRD) patterns were recorded using Bruker D8 diffractometer with CuK_{α} monochromatic radiation. Each sample was scanned in the range of 20 from 10 to 70 with a step 0.05° of 2θ . Surface composition of the samples was investigated by X-ray photoelectron spectroscopy (XPS) using spectrometer SPECS with Al K_{α} irradiation (hV = 1486.6 eV). Binding energy (BE) scale was preliminarily calibrated by the position of the peaks of Au $4f_{7/2}$ (84.0 eV) and Cu $2p_{3/2}$ (932.67 eV) core levels. UV-Vis diffuse reflectance spectra (UV-Vis DRS) were recorded using a UV-2501 PC Shimadzu spectrometer with an IRS-250A diffusion reflection attachment in the 11000-54000 cm⁻¹ range using the BaSO₄ as a reference. The edge energy (or band gap, Eg) for allowed transitions was determined by finding the intercept of the straight line for the low-energy rise of a plot of $[F(R_{\infty}) h v]^2$ versus h v [21], where h v is the incident photon energy, $F(R_{\infty})$ is the Kubelka-Munk function.

The method of differential dissolution phase analysis (DDPA) was used to reveal the composition of the phases (including poorly crystallized, but without information about oxygen content therein) formed in the supported samples, including possible decoration of one phase by another [22]. For this about 10 mg of the sample was loaded in a microreactor and dissolved in the water based solvent with the composition changing from the lower towards higher acidity in the following order: 1) HCl (pH = 2), 2) (1÷3) M HCl, while the temperature increased continuously from 20°C to 90°C, 3) (3.6 M) HF and flowing the reactor with a flowrate at 3.6 ml/min. Change of the outlet mixture composition in time was analyzed by an atomic emission spectroscopy (BAIRD spectrometer) using following spectral lines of the elements (nm): Fe – 238.2, Al – 308.2, Ce - 413.8, Co - 238.8 with 5% accuracy of measurements at sensitivity level 10⁻³ μg/ml.

Kinetics of oxygen exchange was characterized by steady state isotopic transient kinetic analysis (SSITKA). For SSITKA experiments, sample (q = 0.025 g) loaded into a reactor (quartz tube, i.d. = 3 mm) was heated to 800 °C in 0.5% vol. 16O2+He flow and kept at this temperature for 30 minutes, whereupon the gas mixture was replaced stepwise by the same one containing ¹⁸O₂ and Ar (1 vol.%) as an inert tracer. Gas flow rate for all mixtures amounted to 16.7 cm³/s. All responses were analyzed as time variation of the ¹⁸O atomic fraction in the gas phase $\alpha_o(t) = (^{16}O^{18}O + 2^{18}O_2)/(2\Sigma O^iO^i)$, where $\Sigma O^i O^j = {}^{16}O_2 + {}^{16}O^{18}O + {}^{18}O_2$ [23].

The catalytic activity for samples with particles of 250 - 500 μm in size was measured in a fixed-bed U-shaped reactor (3 mm i.d. quartz tube) at ambient pressure in the temperature range

Journal Name **ARTICLE**

750÷900 °C and contact time ~10⁻³s. For NH₃ oxidation, mixture of 1%NH₃ in air or 1%NH₃ + 2%O₂ in N₂ was fed to the reactor charged by 0.015 or 0.043 g of the sample (see details in the text) with a flow rate 25 I/h. Outlet mixture composition was measured by IR spectroscopy. For N₂O decomposition, a gas mixture consisting of $0.15 \text{ vol}\% \text{ N}_2\text{O} \text{ (+3}\%\text{O}_2\text{+3}\%\text{H}_2\text{O})$ in He flowed the reactor with a flow rate 60 l/h. For samples characterized by high specific surface area (Al₂O₃-C, Ce/Al₂O₃ based) we failed to reach reasonably low values of N₂O conversion at 800°C. Therefore, the data obtained at the same sample loading (0.038 g) and flow rate (60 l/h) were considered to analyze the effect of Fe concentration. Outlet mixture composition was analyzed by on-line gas chromatograph with Porapack T (i.d. = 3mm, I = 3 m) and NaX (i.d. = 3mm, I = 2 m)

3. Results and discussion

3.1. Phase composition

3.1.1. XRD analysis

 Al_2O_3 -1200 (Fig. 1a), Al_2O_3 -1000 and CeO_2 used as the supports were single phase samples (Table 1), which values of coherent scattering area d_{XRD} calculated by the Scherrer equation were much less than the particle size estimated from the BET surface area (d_{BET}) . For example, for Al_2O_3 -1200 d_{XRD} = 360 Å, while d_{BET} = 3800 Å; for CeO₂-900 – 680 Å and 6400 Å, respectively. TEM images of CeO₂ sample revealed mixture of agglomerates composed of concreted crystallites of either 100 nm or 10 nm in a size [15]. The same can be reasonably supposed for Al₂O₃-1200 and Al₂O₃-1000 samples as well to explain the difference between d_{BET} and d_{XRD} values. Al_2O_3 -C represented mixture of $\alpha\text{-}$ Al $_2\text{O}_3$ (Fig.1B, Table 1) with more dispersed θ -Al₂O₃, γ -Al₂O₃ and traces of κ -Al₂O₃. In the Ce/Al₂O₃ sample CeO₂ phase with the same lattice parameters but expected more dispersed, than in CeO_2 sample, species, θ -Al₂O₃ and traces of γ -Al₂O₃ were detected (Fig.1C, Table 1). Dispersion of θ -Al₂O₃

species was about the same as in Al₂O₃-C, as follows from close widening of peaks at $2\theta \sim 67$ ($\gamma - Al_2O_3 + \theta - Al_2O_3$), but cannot be calculated more precisely because of overlapping of its more intense peak at 2θ ~32.9 with that of CeO₂.

Although Co₃O₄ and Co-Al-O spinels are characterized by the same symmetry group, increased lattice parameters of Co compounds in $2.7Co/Al_2O_3-1200$ sample (Fig.1A) (a=b=c=8.104 (1) Å) compared with those in 0.91Co/CeO₂ one or bulk Co₃O₄ (a=b=c=8.084 (0) Å) favor formation of CoAl₂O₄ in the former [24], probably in the mixture with Co_3O_4 . In the 2.7Ni/Al₂O₃-1200 and 2.5Fe/Al₂O₃-1200 samples, additional NiO with admixture of highly dispersed Ni-Al-O compounds of spinel structure and α -Fe₂O₃ were respectively detected. The lattice parameters of NiO and Fe₂O₃ in the supported samples were exactly the same as for bulk MeOx (not presented in the Table 1 for shortness). However, slight increase of α -Al₂O₃ lattice parameters in all Me/Al₂O₃ samples points to the probability of non-substantial Meⁿ⁺ penetration into alumina lattice. With account of slightly higher radii of Me³⁺ ions compared with that of Al³⁺ (69÷74 pm and 67.5 pm, respectively), such assumption looks quite reasonable.

FeOx supporting onto Al₂O₃-C resulted in continuous decrease of the peaks corresponding to θ -, κ -, γ - Al₂O₃ with rise of Fe content from 2.5 to 13.2 wt% (Fig.1b). Instead of them second α -Al₂O₃ phase with increased lattice parameter (a=b=4.795 Å, c=13.057 Å) becomes evident and increases in the intensity (Table 1) that more obviously points to efficient incorporation of Fe³⁺ ions into the lattices of low temperature aluminas thus promoting their transition to α -Al₂O₃ at lower temperature [25]. This fact agrees well with decrease of S_{BET} value from 70 m²/g for Al₂O₃-C to 22 m²/g after supporting 19.8% of Fe (pattern of the last sample not presented for shortness).

In the patterns of (0.86-0.91)Me/CeO₂ samples traces of crystalline MeO_x were observed only for the case Me = Co, and some α -Fe₂O₃ was detected for substantially higher Fe content (sample 2.5Fe/CeO₂). Nevertheless, unlike to alumina based samples,

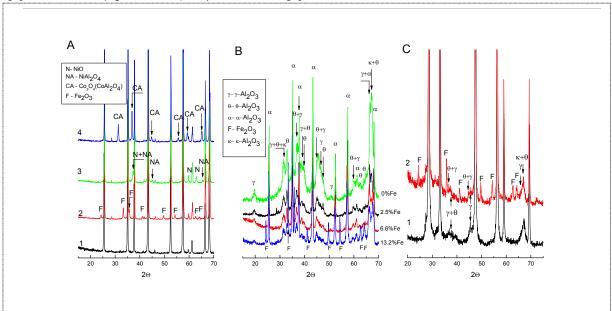


Fig. 1 XRD patterns of: (A) Al_2O_3 -1200 (1) and (2.5-2.7)Me/ Al_2O_3 -1200 (Me = Co(1), Fe (2), Ni(3)) samples, (B) Fe/Al_2O_3 -C samples with different Fe content, and (C) Ce/Al_2O_3 (1) and $9.9Fe/Ce/Al_2O_3$ (2) samples.

ARTICLE Journal Name

Table 1 Phase composition, structural parameters, BET surface area and crystallite size estimated from XRD (d_{XRD}) of Al₂O₃, CeO₂ and MeO₃ (CeO₂(Al₂O₃) samples

Sample S _{BET} , m ² /g		Phase composition	d _{XRD} , Å	
Al ₂ O ₃ -1200	4	α-Al ₂ O ₃ (a=b=4.756 Å, c=12.986 Å)	370	
Al ₂ O ₃ -1000	7	α -Al ₂ O ₃ (a=b=4.760 Å, c=12.997 Å)	300	
Al ₂ O ₃ -C	71	α -Al ₂ O ₃ (a=b=4.771Å, c=13.020 Å)	480	
		θ -Al ₂ O ₃ , κ -Al ₂ O ₃ , γ -Al ₂ O ₃	100 (γ-Al ₂ O ₃), 140 (θ-Al ₂ O ₃)	
2.5Fe/Al ₂ O ₃ -1200	4.0	α -Fe ₂ O ₃ (a=b=5.035(0) Å, c=13.741 Å)	260	
		α -Al ₂ O ₃ (a=b=4.761 Å, c=12.997 Å)	500	
2.7Co/Al ₂ O ₃ -1200	4.0	$CoAl_2O_4$ or Co_3O_4 (a=b=c=8.104 Å)	260	
		α -Al ₂ O ₃ (a=b=4.761 Å, c=12.997 Å)	520	
2.7Ni/Al ₂ O ₃ -1200	4.0	NiO (a=b=c= 4.178 Å)	240	
		NiAl ₂ O ₄	≤120	
		α -Al ₂ O ₃ (a=b=4.760 Å, c=12.996 Å)	580	
2.5Fe/Al ₂ O ₃ -C	60	α -Al ₂ O ₃ (a=b=4.778 Å, c=13.039 Å)	510	
		θ -Al ₂ O ₃ , κ -Al ₂ O ₃ , γ -Al ₂ O ₃	highly dispersed	
6.6Fe- Al ₂ O ₃ -C	46	α -Al ₂ O ₃ : 31% - a=b=4.770 Å, c = 13.030 Å	510	
		69% - a=b=4.795 Å, c=13.057 Å	470	
		θ -Al ₂ O ₃ , κ -Al ₂ O ₃ , γ -Al ₂ O ₃	highly dispersed	
13.2Fe- Al ₂ O ₃ -C	33	α -Al ₂ O ₃ : 18% - a=b=4.760 Å, c = 13.000 Å,	510	
		82% - a=b=4.795 Å, c=13.057 Å,	520	
		traces of θ -Al ₂ O ₃ , κ -Al ₂ O ₃ , γ -Al ₂ O ₃	highly dispersed	
		Fe ₂ O ₃ (a=b=5.032 Å, c=13.702 Å)	250	
CeO ₂	1.4	CeO ₂ (a=b=c=5.412 Å)	680	
0.91Co/CeO ₂	1.4	CeO_2 (a=b=c=5.412 Å)	630	
		Co_3O_4 (a=b=c=8.084 Å)	460	
0.86Fe/CeO ₂	1.4	CeO_2 (a=b=c=5.411 Å)	550	
0.91Ni/CeO ₂	1.4	CeO ₂ (a=b=c=5.411Å)	600	
2.5Fe/CeO ₂	1.4	CeO_2 (a=b=c=5.412 Å)	650	
		traces α -Fe ₂ O ₃	-	
CeO ₂ /Al ₂ O ₃	63	CeO_2 (a=b=c=5.411 Å)	400	
		θ -Al ₂ O ₃ and traces of γ -Al ₂ O ₃	highly dispersed	
9.9Fe/Ce/Al ₂ O ₃	35	CeO ₂ (a=b=c=5.411Å)	460	
		θ -Al ₂ O ₃ and traces of γ -Al ₂ O ₃	highly dispersed	
		α -Fe ₂ O ₃ (a=b=5.035Å, c=13.741 Å)	320	

neither following sintering of CeO_2 , nor change of CeO_2 lattice parameters was noted after Me supporting (Table 1). By considering the radius of Fe^{3+} ions (0.049-0.078 pm, depending on coordination and spin state) is smaller than that of Ce^{4+} ions in the typical cubic fluorite lattice (0.097-0.101 nm), expected lattice shrinkage took place at substantial Fe content in the mixed Fe_x - Ce_{1-} oxides [26]. However, at x<0.05 even slight unit cell expansion was observed and related by authors to partial Ce^{4+} reduction to larger (1.23 Å) ion Ce^{3+} [27] during calcination in Fe^{3+} presence. Therefore, penetration of supporting Me to the CeO_2 lattice cannot be excluded, especially with account of concreted nanocrystallites present in the initial support.

In the 9.9Fe/Ce/Al $_2$ O $_3$ sample α -Fe $_2$ O $_3$ was detected with lattice parameter and d $_{XRD}$ value close to that in 13.2Fe/Al $_2$ O $_3$ -C and 2.5Fe/Al $_2$ O $_3$ -1200 samples. Although Fe supporting onto Ce/Al $_2$ O $_3$ resulted in noticeable drop of the surface area, like in Al $_2$ O $_3$ -C based samples, it didn't facilitate formation of α -Al $_2$ O $_3$ (Tables 1-2, Fig.1C). For similar CeO $_2$ /Al $_2$ O $_3$ samples it was shown that this is Ce in the lower oxidation state that stabilizes alumina toward the formation of low-surface-area phases up to 1100 °C or 1200 °C K under oxidizing and reducing conditions, respectively [28]. Since CeAlO $_3$ crystallites at high temperature and under reducing conditions were

observed by XRD, stabilization of Ce^{3+} is more probably due to interaction with OH groups of alumina. Absence of such alumina-bonded hydroxyl groups can prevent penetration of Fe^{3+} into the bulk of alumina and phase transition observed in the case of Al_2O_3 -C sample.

3.1.2. DDPA.

DDPA of (2.5-2.7)Me/Al₂O₃-1200 and (0.86-0.91)Me/CeO₂ samples has been performed to reveal: 1) possible modification of support lattice due to Me insertion, and 2) formation of Co-Al spinels. Al₂O₃-1200 supported samples were quite stable towards dissolution. So, about 5 wt% and 2 wt% of the 2.5Fe/Al₂O₃-1200 and 2.7Co/Al₂O₃-1200 samples respectively dissolved during all steps (Table 2). Nevertheless, all Fe supported onto Al₂O₃-1200 passed into the solution (Fig.2A): as individual oxide/hydroxide (about 18.4 mole% of the probe dissolved in HCl), while the rest Fe (~43.5 mole% of the probe) - in HF together with some Al. Since some dissolution of the last proceeded even after all Fe was removed from the sample, formation of Fe-Al solid solution is excluded, and the structure with FeOx species located on the surface or on the intergrain boundaries of concreted alumina micro-crystallites and linked to the last, more probably, due to penetration of some Fe³⁺ ions to the disordered

Published on 30 October 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 12:28:43.

Journal Name ARTICLE

Sample	Sample dissolved,	Me, weight% of the sample in	Element	Distribution of elements dissolved during different steps but O, mole %			
	weight%	dissolved portion		total	HCI (pH=2)	(1÷3)M HCl	(3.6)M HF
2.5Fe/Al ₂ O ₃ -1200	5	2.53	Al	38.1	-	-	38.1
			Fe	61.9	-	18.4	43.5
2.7Co/Al ₂ O ₃ -1200	2	0.43	Αl	82.1	-	-	82.1
			Co	17.9	0.4	-	17.5
CeO ₂	4	-	Ce	100	-	-	100
0.91Co/CeO ₂	95	0.93	Ce	98.2	-	98.2	-
			Co	1.8	traces	0.39	1.41
0.86Fe/CeO ₂ 54	54	1.0	Ce	96.8		96.8	-
			Fe	3.2	0.60	1.86	0.74
0.91Ni/CeO ₂	11	0.81	Ce	91.3	-	-	91.3
			Ni	8.7	traces	7.8	0.9

near subsurface layers can be considered. In the case of $2.7\text{Co}/\text{Al}_2\text{O}_3$ -1200 only 0.43 wt% of Co dissolved in all steps, and overwhelming majority — as the solid solution with $\text{Co}_{0.3}\text{Al}_1$ stoichiometry reasonably related to the mixed Co-Al-O spinel like compounds located in the near surface layer of the sample. The nature of insoluble Co compounds still remained open.

CeO2 didn't dissolve in HCl, and very slow dissolution (about 4% of the total sample weight for 7 minutes) took place after HF feeding (Fig.2B, Table 2). Me/CeO₂ samples dissolved in substantially milder conditions, but the character and the rate of their dissolution depended on Me nature. So, already 95 weight% of 0.91Co/CeO₂ sample dissolved in these conditions. Increase of solubility can be related first of all to formation of Co-Ce-O solid solution with Co/Ce = 0.004 and including all soluble Ce (dissolved in (1÷3) M HCl). This obviously means that Co³⁺ ions are capable to insert into more dispersed (~10 nm) concreted microcrystallites, and modify the lattice of larger (~100 nm) particles increasing their solubility. The rest of Co dissolved slowly as an oxide in the most rigid conditions (3÷6M HF), and, more probably, can be related to wellcrystallized Co₃O₄ detected by XRD (Table 1). Absence of any Co in the same flow during dissolution of 2.7Co/Al₂O₃-1200 sample points to the formation of well-crystallized Co-Al spinel therein. Quantity of dissolved 0.86Fe/CeO₂ sample was some lower (54 wt% of the total) and, like in 2.5Fe/Al₂O₃-1200 case, all Fe passed into the solution (Fig.S1). It was included into Fe oxide/hydroxide which solubility in HCl (pH=2) and at the substantially higher acidity (3.6 M HF) can be due to different degree of crystallinity or defect structures formed. The parallel dissolution of remaining Fe and Ce in the flow of $(1\div3)M$ HCl with the stoichiometry Fe/Ce = 0.02 points to formation of Fe-Ce-O solid solution, more probably, with participation of CeO₂ composites characterized by smaller sizes of crystallites. Unmodified ceria is stable even in 3.6 M HF and can be related to composites with largest crystallites. We cannot exclude that both unmodified CeO₂ and Ce-Fe-O solid solution are decorated by highly defective Fe oxide/hydroxide species dissolved in the weak HCl. In the case of 0.91Ni/CeO₂ sample (Fig. S1) most of supported Ni dissolved individually in (1÷3) M HCl, while the parallel Ni and Ce dissolution took place in the more rigid conditions (3÷6 M HF) and included only 10 weight% of the sample. Therefore, in the 2.7Co/Al₂O₃-1200 sample Al³⁺ ions partially replace Co³⁺ in the spinel structure, forming both highly disordered and well-crystallized Co-Al-O species, while incorporation of Fe³⁺ ions into the boundaries of the micro-composites results in the anchoring of Fe₂O₃ crystallites to alumina surface. Me-ceria interaction results in formation of Me-Ce-O solid solutions in

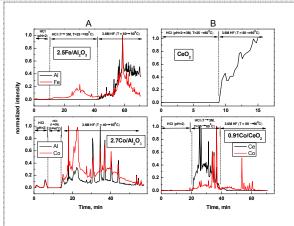
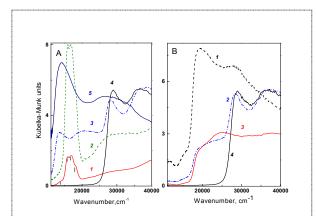



Fig. 2 DDPA spectra of: (A) 2.5Fe(2.7Co)/Al $_2$ O $_3$ -1200, (B) CeO $_2$ and 0.91Co/CeO $_2$ samples.

Fig. 3 UV-vis DR spectra of: A - 2.9Co/Al $_2$ O $_3$ -1200 (1), CoAl $_2$ O $_4$ supplied by Aldrich (2), 0.93Co/CeO $_2$ (3), CeO $_2$ (4), Co $_3$ O $_4$ (5); and B - FeO $_x$ (1), 0.86Fe/CeO $_2$ (2), 2.7Fe/Al $_2$ O $_3$ -1200 (3), CeO $_2$ (4).

Me/CeO₂ samples, their content and degree of disorder in the sample change in the following order: $0.91\text{Co/CeO}_2 > 0.86\text{Fe/CeO}_2 > 0.91\text{Ni/CeO}_2 \ge \text{CeO}_2$.

DOI: 10.1039/C5CY01381J **Journal Name**

ARTICLE

3.2. Microstructure

UV-Vis DR spectra of different Co- and Fe- based catalysts have been presented in the Fig.3a and Fig.3b, respectively. CeO2 was characterized by strong a.b. at 36500 and 29000 cm⁻¹ attributed to Ce⁴⁺←O²⁻ charge transfer and the interband transitions, correspondingly [29], and band gap energy (Eg) value at 3.35 eV which is consistent with the reported value 3.3 eV [29-31]. The spectra of 0.91Co/CeO₂ (Fig.3a) and 0.86Fe/CeO₂ (Fig.3b) samples are in fact a superposition of those for corresponding bulk oxides and CeO2, excluding the red shift of absorption edge of CeO2 (Eg value at 3.18 and 3.22 eV for 0.91Co/CeO₂ and 0.86Fe/CeO₂, respectively) and additional absorption band at ~20000 cm⁻¹ (Co case) and 23500 cm⁻¹ (Fe case). Minimal value of red shift of absorption edge compared to that in the support was evaluated for 0.91Ni/CeO₂ sample (E_g value at 3.27 eV, spectrum not shown for brevity). Earlier we already observed these spectral characteristics for Fe/CeO₂ sample prepared by the same way [15] and explained their appearance by O₂ adsorption on the structural defect, more obviously, clusters of oxygen vacancies arose after entrance of dopant ions into the bulk of CeO2. Like proposed in [30], change of the value of absorption edge indicate that either (1) Me ions in Me/CeO2 samples substitute into the CeO2 lattice; or (2) the isolated Me ions form mixed Me-Ce oxide and strongly interact with CeO2 leading to the electronic structure changes. In our case the value of the red shift correlated well with content of Me-Ce mixed solution in the sample, as determined by DDPA.

In the spectrum of 2.9Co/Al₂O₃-1200 sample an intense triplet of bands at about 15900, 17000 and 18200 $\rm cm^{\text{--}1}$ with the shoulder at 13800 cm⁻¹ were detected and related to the transitions of $^4A_2 \rightarrow ^4T_1(^4P)$ of the tetrahedral Co²⁺ ions in Co-Al-O spinel and cobalt oxide, respectively [32]. Presence of the same triplet in the reference CoAl₂O₄ sample (Aldrich) evidences formation of Co-Al-O spinel with admixture of Co₃O₄.

3.3. Surface composition.

Published on 30 October 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 12:28:43.

As follows from X-Ray photoelectron spectra of Ni 2p, Fe 2p, and Co 2p levels in Me/Al₂O₃-1200 and Me/CeO₂ samples presented in the Fig. 4, the nature of Me surface compounds depended on the support nature. Usually, no difference between various Co compounds can be reliably withdrawn from binding energies of either Co $2p_{1/2}$ or Co $2p_{3/2}$ signals [10] without accounting for the position of their satellites arising due to the shake-up process of Co²⁺ compound in the high spin state. Indeed, BE values characterizing Co 2p_{3/2} peak position in CoO, CoOOH and Co₃O₄ are indistinguishable (~780.0 eV). Higher but also very close BE values have been reported for CoAl₂O₄ and Co(OH)₂ (781.9 and 781.2 eV, respectively) [33-38]. However, for CoO, Co(OH)2 or CoAl2O4 the satellite - main signal distances fall in the range 5-6.5 eV [34, 35, 39, 40], while the satellites in the spectrum of pure Co₃O₄ and CoOOH should be located approximately 9-10 eV away from the main signals [34,36,39]. In this regard, BE value of Co 2p_{3/2} signal at 781.6 eV with satellite at 786.6 eV in 2.7Co/Al₂O₃-1200 sample (Fig.4a) excluded CoO, Co₃O₄ and CoOOH from our consideration, and either $Co(OH)_2$ [33] or $CoAl_2O_4$ [34,37,38] could form on the surface. According to DDPA data, Co(OH)2 could be responsible for about 0.4% of Co compounds (Table 2, corresponds to Co dissolved

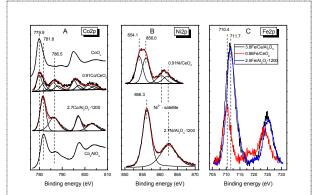


Fig. 4 Co2p (A), Ni2p (B), Fe2p (C) spectra of Me/Al₂O₃-1200(CeO₂) samples (Me = Fe, Co, Ni) with close ($^{\sim}7*10^{19}$ at/m²) concentration of Me, and Fe 2p spectrum of 3.8Fe/Ce/ Al_2O_3 sample (C).

in HCl at pH=2), therefore, most of surface Co included in the Co-Al spinel structures. To ensure the correctness of such assignment, spectrum of CoAl₂O₄ supplied by Aldrich and additionally calcined at 900 °C for 5 h has been presented as well. In 0.91Co/CeO₂ sample the position of the main Co $2p_{3/2}$ peak shifted to lower BE values (779.9 eV), while the shoulder at 781.9 eV still was present resulting in the ratio of their intensities as ~3:2. Definite assignment of the peak at 779.9 eV to individual CoO, Co₃O₄ or CoOOH was impossible since presence of satellites at 786.7 and 790.8 eV agrees with formation of any of these compounds. In addition, in the XPS spectrum of bulk Co₃O₄ sample characterized by the same lattice parameters as for 0.91Co/CeO₂ sample (Table 1) intensity of satellite peak was substantially lower. Hence, different oxide/hydroxide-like Co compounds, including those in Co-Ce-O solid solution, have been formed on the surface of 0.91Co/CeO₂ sample. In particular, Co(OH)2 in this case could result from hydration of highly dispersed species.

Ni 2p_{3/2} peak at 856.3 eV in 2.7Ni/Al₂O₃-1200 sample (Fig. 4b) can be due to both NiAl₂O₄ (BE ranging from 855.2 to 857.2 eV) and Ni(OH)₂ (855.6 - 856.6 eV) [41-45], the former being detected as well by XRD (Fig. 1, Table 1). NiO state characterized by lower BE value (854.2 eV) [45] was detected in the 0.91Ni/CeO2 sample together with Ni(OH)₂ (NiO : Ni(OH)₂) \approx 50 : 50) resulting in the widening of both main Ni 2p peak and energy shake up satellite peak about 6 eV above the main line. Like for 0.91Co/CeO₂ sample, Ni(OH)₂ detection could evidence presence of highly dispersed NiO species both in Al₂O₃ and for CeO₂ based samples. In this case, their relative content in the samples is higher compared with Co case.

While the BE value of the Fe 2p_{3/2} spectra in 0.86Fe/CeO₂ sample at 710.4 eV (Fig. 4c) evidences preferential Fe³⁺ state in the oxide, its high energy shift (BE = 711.8 eV) detected in both $2.5Fe/Al_2O_3-1200$ specimen and all Al₂O₃-1000, Al₂O₃-1200 and Al₂O₃-C supported samples can be related to formation of mainly Fe³⁺ oxyhydroxide therein [46]. In the 3.8Fe/Ce/Al₂O₃ sample both states of Fe³⁺ have been detected as well, but fraction of Fe³⁺ state in the oxide is some higher than in Fe/Al₂O₃ based samples. Therefore, FeOx species anchor both to Al₂O₃ and CeO₂ surface.

Journal Name

Table 3 Physicochemical properties of different Me/Al₂O₃, Me/CeO2 and 3.8Fe/Ce/Al2O3 samples D_{Me}, Sample $S_{\underline{g}ET,}$ Me_s, at.% Fe_{exp}, m²/g (by XPS) rel. units rel. units CeO₂ based 0.86Fe/CeO₂ 1.3 1.0 1.3 1.5 0.91Co/CeO₂ 1.3 1.2 1.8 0.91Ni/CeO₂ 1.3 2.0 2.7 2.5Fe/CeO₂ 1.3 2.1 0.72 1.5 Al₂O₃-1200 and Al₂O₃-1000 based 2.5Fe/Al₂O₃-1200 4 4.4 1.6 1.1 2.7Co/Al₂O₃-1200 1.0 1.5 2.7Ni/Al₂O₃-1200 1.4 2.1 0.86Fe/Al₂O₃-1200 4 4.4 1.1 4.8 2.5Fe/Al₂O₃-1000 1.4 9.8 3.7 Al₂O₃-C based 2.5Fe/Al₂O₃-C 61 0.46 28.1 10.5 6.6Fe/Al₂O₃-C 1.3 59.8 8.5 46 33 13.2Fe/Al₂O₃-C 2.2 72.6 5.1 19.8Fe/Al₂O₃-C 22 35.2 1.7 1.6 CeO₂/Al₂O₃ based 3.8Fe/CeO₂/Al₂O₃ 65.0 16.0 1.3

In the Ce 3d spectra of 3.8Fe/Ce/Al₂O₃ sample the normal complex form due to shake-down satellites from an O1s to Ce 4f electron transfer observed for CeO₂ and 0.86Fe/CeO₂ was supplemented by the features marked as v' and u' due to anion defects and Ce³⁺ (Fig. S2) [47]. This means that, besides smaller crystallized CeO₂ species, X-ray amorphous CeAlO₃ and probably isolated Ce³⁺ species can reasonably form after CeO₂ precipitation onto high surface area alumina [48,49], thus stabilizing alumina toward the formation of low-surface-area phases, like proposed in [27].

Therefore, spinel-like surface structures including Al have been formed on the surface of 2.7Co/Al₂O₃-1200 sample, and probably their mixture with Ni(OH)₂ - in 2.7Ni/Al₂O₃-1200 sample. It is quite reasonable to suppose that above 700°C surface Fe oxyhydroxide formed after Fe supporting onto Al₂O₃ and all Ni- and Co-containing hydroxylated species convert to corresponding oxides, and thus close types of surface compounds participate in the reaction in both Al₂O₃-1200, CeO₂ and CeO₂/Al₂O₃ based samples.

Table 3 lists the data on the surface concentration of Me in the different Al₂O₃-1200 and CeO₂ based samples. Close values were measured in (2.5-2.7)Me/Al₂O₃-1200 and 0.91Co(0.86Fe)/CeO₂ samples with the same as related per surface unit (6.7*10¹⁹ at/m²) content of Me therein that means close MeOx (Co-Al-O) species dispersion (D_{Me}) therein. Its relative value can be estimated as follows: $D_{Me} = Me_s/C_{Fe}$, where Me_s is the surface atomic concentration of Me in the sample as measured by XPS (Table 3) [%], C_{Me} is total content of Fe in the samples [atoms/m²]. Noticeably higher content of Ni in the near surface layers of the CeO₂ based sample can be explained either by lower degree of Ni penetration into CeO2 resulting in formation of Ni-Ce-O solid solutions (Table 2), or by higher dispersion of NiOx species that agrees well with high content of hydroxylated species.

3.4. ¹⁸O SSITKA.

Fig. 5 shows the time dependencies of exchanged oxygen for different samples as related to unit of the surface (N_0) calculated using the formulae

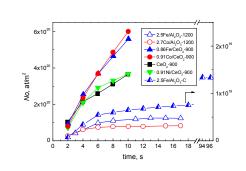


Fig. 5 Time dependence of the quantity of exchanged oxygen (No) in ¹⁸O SSITKA experiments for different Me/Al₂O₃ and Me/CeO₂ samples.

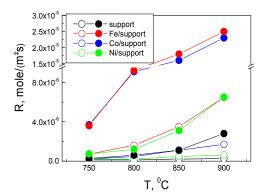


Fig. 6 Temperature dependence of the activity of different (2.5-2.7)Me/Al₂O₃-1200 (open symbols) and (0.86-0.91)Me/CeO₂-900 (solid symbols) samples (Me = Co, Fe, Ni) in the reaction of N₂O decomposition.

$$N_{O} = N_{A} \frac{2C_{O_{2}}U}{S_{BET}g} \int_{0}^{t} (\alpha_{g}^{input} - \alpha_{g}) dt$$

where α_a^{input} - isotope fraction in the inlet mixture (0.95), C_{O2} - O_2 concentration (mol/mol), U - flow rate of the reaction mixture (mole/s), N_A - Avogadro number. It is seen that for (2.5-2.7)Fe(Co)/Al₂O₃-1200 samples $N_O(t)$ dependencies (at higher rate of exchange on 2.5Fe/Al₂O₃-1200, as determined from the slope of No curves) reached the plateau after about 15 s after isotope admission corresponding to exchanged 4.9·10²⁰ and 3.2·10²⁰ O atoms/g for 2.5Fe/Al $_2$ O $_3$ -1200 and 2.7Co/Al $_2$ O $_3$ -1200 samples, respectively. With account of the quantity of supported Me $(2.7 \cdot 10^{20} \text{ atoms/g})$, one can suppose that, within the accuracy of measurement, solely the oxygen of Fe₂O₃ and Co oxidic compounds (Co₃O₄+Co_{3,v}Al_vO₄) participated in the exchange. The integral quantity of exchanged oxygen in 2.5Fe/Al₂O₃-C sample (7.9·10²⁰ atoms/g) substantially exceeds that in supported Fe oxide. Provided substantially more dispersed FeO_x species have been formed in this sample compared with those in 2.5Fe/Al₂O₃-1200 one (Table 3), it is more probably support oxygen that can transfer to O₂ molecule through developed Fe-alumina interface.

Substantially more profound and faster oxygen exchange took place on CeO₂ based samples, obviously involving the bulk of the support starting from the very low time after ¹⁸O₂ admission. The rate of exchange changed in the following order: 0.91Co/CeO₂ ≥ 0.86Fe/CeO₂ > 0.91Ni/CeO₂ \approx CeO₂ and correlated with values of

Satalysis

ARTICLE

Journal Name

red shift of CeO₂ band gap energy (E_p) in turn depending on the content of Me-Ce mixed solution in the sample characterized by increased degree of disorder. Therefore, oxygen transfer from fluorite lattice to surface by extended vacancies arisen after insertion of Meⁿ⁺ ions to fluorite lattice can be responsible for enforced rate of isotope exchange on Me/CeO2 (Me = Co, Fe) samples compared with pure CeO₂.

3.5. Catalytic activity

3.5.1. N₂O decomposition

Effect of the support nature

Among Al₂O₃-1200 based samples with close as related to surface concentration of supported Me (6.7*10¹⁹ at/m²), catalytic activity in N_2O decomposition at T = 750-900 °C can be ordered as follows: $2.5 \text{Fe/Al}_2 \text{O}_3 - 1200 > 2.7 \text{Co/Al}_2 \text{O}_3 - 1200 > 2.7 \text{Ni/Al}_2 \text{O}_3 - 1200 > \text{Al}_2 \text{O}_3 - 1200 > \text{Al}_2$ 1200 (Fig. 6). (0.86-0.91)Me/CeO₂ samples with quite close, both calculated $(6.7*10^{19} \text{ at/m}^2)$ and real (Table 3), surface concentration of Me as in (2.5-2.7)Me/Al $_2$ O $_3$ -1200 samples revealed substantially higher intrinsic activity. In the case of Co and Ni containing samples such rise of the activity could be partly related to formation of principally different state of active component (oxides/hydroxides in CeO₂ case instead of corresponding Co(Ni)-Al-O spinels located on the surface of Al₂O₃). Nevertheless, similar effect observed for Fe based samples characterized by close type of active species on both supports obviously points to the importance of increased oxygen mobility of CeO₂ that in turn was substantially more active than Al₂O₃. Provided the general scheme of N2O decomposition obeys Langmuir-Hinshelwood mechanism:

 $N_2O + S \rightarrow N_2O-S$ 1)

Published on 30 October 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 12:28:43.

- 2) $N_2O-S \rightarrow N_2 + O-S$
- 3) $20-S \leftrightarrow O_2 + 2S$

where S is surface active site, N2O-S is adsorbed or chemisorbed N₂O, and O-S is adsorbed or chemisorbed O, the rate of O₂ desorption by step 3) in the case of (0.86-0.91)Me/CeO₂ samples increases due to alternative fast supply of oxygen to reduced site S from the subsurface layers (O_{ss}) of CeO₂ characterized by increased bulk oxygen mobility through Me-CeO₂ interface containing a lot of oxygen vacancies to obtain additional O-S site:

4) $0-S \leftrightarrow 0_{ss} + S$

Similar scheme considering two alternative pathways of regeneration of active sites was also proposed for Cu/CeO₂ samples tested in substantially lower temperature range (between 300 and 550 °C) and included recombination step (if two oxidized copper sites are close enough to each other) and the step of Cu²⁺-Ospecies reduction by Ce³⁺ [50].

Effect of Fe content and FeOx dispersion

At variation of Fe content in Al₂O₃-1200 based samples from 0.89 to 6.6 wt% (Fe was chosen as the most active among Me) we observed the inverse "activity (as related both to sample surface unit and to one Fe atom) - Fe content" dependence (Fig. 7A). The same Fe_s values for $0.86Fe/Al_2O_3$ -1200 and $2.5Fe/Al_2O_3$ -1200 samples (Table 3) evidence decrease of FeOx species dispersion (D_{Fe}, Table 3) at higher Fe content. Finally, close rates of N₂O decomposition were measured for bulk Fe₂O₃ and all Fe/Al₂O₃-1200 samples (Fig. S3), although in the former of them Fe_s value should be obviously higher. Therefore, activity of surface Fe sites decreases substantially with enlargement of FeOx species.

At variation of Fe content in CeO₂ based samples from 0.5 to 2.5 wt% (i.e. at close interval of supported Fe to that in the case of Al₂O₃-1200 based samples as related per surface unit and thus close dispersion of FeO_x species) their higher activity due to

increased mobility of oxygen is more prominent at lower quantity of supported Fe. However, activity drop was substantially more prominent, although even higher Fe_s values were measured for the 2.5Fe/CeO₂ sample than for the 0.86Fe/CeO₂ one (Table 3). Supposing the rate of oxygen transfer from the bulk to active sites should depend on the length of MeO_x-CeO₂ interface, its decrease at enlargement of FeOx species (Table 3), revealed as start of oxygen exchange at higher temperature (Fig. S4) should make an additional negative contribution to the activity.

Effect of the support surface area

In accordance with observed effect of FeO_x dispersion onto activity, using of the support characterized by higher specific surface area allows obtaining more dispersed FeOx species at substantially higher total Fe content (Table 3). This opens up additional possibilities for increase of conversion as measured at the same sample loading. Indeed, at close quantity of supported Fe, N2O conversion increased with S_{BET} value of Al_2O_3 (Fig. 7B).

Unfortunately, for Fe/Al₂O₃-C samples we failed to perform catalytic tests at reasonably low conversion values for correct calculation of the reaction rate values. This fact and substantial negative effect of the quantity of supported Fe on S_{BFT} value (Tables 2, 3) complicated analysis of parameters determining the activity. To pass over this problem, we calculated the concentration of exposable FeOx species (Fe_{exp}) per weight unit by following formula: $Fe_{exp} = Fe_s *S_{BET}$, where Fe_s is the surface concentration of Fe as measured by XPS (Table 3), and compared conversion values measured for the same catalyst loading as dependent on both Fe content in the sample and Fe_{exp} . It turned out that N_2O conversion decreased with increase of Fe content from 2.5% to 19.8% (Fig.7B), or FeOx dispersion drop (Table 3), but this order cardinally differed from that for Fe_{exp} (13.2Fe/Al₂O₃-C > 6.6Fe/Al₂O₃-C > 19.8Fe/Al₂O₃- $C > 2.5 \text{Fe/Al}_2\text{O}_3\text{-C}$). Therefore, similar to Fe/Al₂O₃-1200 samples, it is the size effect of FeO_x species that seems to be the dominant factor determining descending character of "conversion - Fe content" dependence. Similar reverse dependence was already observed earlier for lower (500-650 °C) temperatures [51]. With account of SSITKA data obtained for 2.5Fe/Al₂O₃-1200 and 2.5Fe/Al₂O₃-C samples, higher activity of smaller FeO_x species can be due to growing ability of oxygen supply to reduced active sites S from the alumina regions adjacent to developed MeOx - alumina interface (step 4). Oxygen (3 vol%) and H_2O (3 vol.%) addition into reaction mixture, in accordance with considered above scheme of the mechanism, decreased observed N2O conversion, but didn't change the order of activity (Fig. S5).

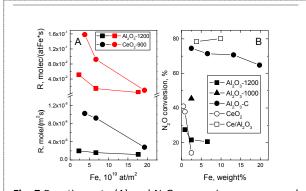


Fig. 7 Reaction rate (A) and N2O conversion as measured at the same sample loading and flow rate (B) at 800 °C depending on Fe content in Al₂O₃-1200, Al₂O₃-1000, Al₂O₃-C, CeO₂ and Ce/Al₂O₃ based samples.

Journal Name **ARTICLE**

Effect of CeO₂ dispersion

Using of the effect of high oxygen mobility of CeO₂ for following increase of the efficiency of N2O decomposition (Fig.7B) is restricted by its low surface area under the reaction conditions [3,20]. Therefore, in addition to traditionally used increase of concentration of active sites by supporting more active component, we tried to disperse CeO2 by supporting onto high surface area Al₂O₂. Only Fe oxide was used in this case as well to avoid formation low active Ni (Co)-Al spinels. These were 3.8Fe/Ce/Al₂O₃ and 9.9Fe/Ce/Al₂O₃ samples that revealed the highest N₂O conversion (Fig. 7B) due to that part of FeOx therein was anchored to the surface of higher dispersed ceria particles (Table 1, Fig.4c). At the same time, the size effect, at least for the sample 3.8Fe/Ce/Al₂O₃, cannot be completely excluded (compare D_{Fe} values in the Table 3 for the samples 3.8Fe/Ce/Al₂O₃ and 6.6Fe/Al₂O₃-C with close S_{BET}).

3.5.2. NH₃ oxidation

Effect of the support nature

Among (2.5-2.7)Me/Al₂O₃-1200 samples, 2.5Fe/Al₂O₃-1200 one was the most active (Fig. 8A) and characterized by the highest selectivity to NO+NO2 (86-88%). As the result, the orders for the activity and the efficiency of NO_x formation evaluated as NO_x yield=Conversion*NO_x selectivity were close to that for the activity of N_2O decomposition: 2.5Fe/Al₂O₃-1200 >> 2.7Co/Al₂O₃-1200 > $2.7Ni/Al_2O_3-1200 \sim Al_2O_3-1200$. In addition, N_2O yield value calculated by similar manner as for NO_x yield on 2.5Fe/Al₂O₃-1200 sample in this temperature interval was lower than 2% which is comparable to that for Pt-Rh gauzes [1], while continuous increase of N₂O yield with temperature was noted for all other samples. At lower O₂ concentration in the inlet mixture (2.5%) yield of NO₄ decreased to 77-78%, mainly because of lower selectivity. For Co-, Ni- based samples and for pure Al₂O₃-1200 negative changes of conversion and NO_x selectivity were substantially more prominent. We failed to calculate the rate of ammonia oxidation in all temperature interval due to non-differential reactor operating conditions. Hence, to compare intrinsic activity of samples characterized by different S_{BET} values, we tested catalytic properties of (0.86-0.91)Me/CeO₂ samples at catalyst loading 0.043 g corresponding to the same surface area as for Al₂O₃-1200 based samples. In these conditions already at 750 °C complete NH₃ conversion was measured on all (0.86-0.91)Me/CeO₂ samples, and 96%- for CeO2 that is obviously due to capability of CeO2 itself to donate lattice oxygen for ammonia oxidation [16]. Even at the

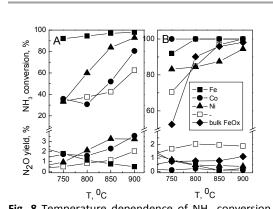


Fig. 8 Temperature dependence of NH₃ conversion and N_2O yield for (2.5-2.7)Me/Al₂O₃-1200 (A) and (0.86-0.91)Me/CeO₂-900 (B) samples. Catalyst loading 0.015 g.

same catalyst loading as for Al₂O₃-1200 based samples (0.015 g), i.e. at about 3 times lower number of Me sites therein (Table 3), higher values of NH₃ conversion were observed for corresponding CeO₂ based samples (Fig.8B). This increase, at least in the case of Fe based samples, is exclusively due to ability of the support to donate oxygen to FeOx, since substantially lower conversion values were measured on CeO₂ and bulk FeO_x characterized by close S_{BET}. N₂O vield values were reasonably lower than on corresponding Al₂O₂-1200 based samples. In addition, at 800°C the order of NH₃ conversion and NOx yield (not shown for brevity) - 0.91Co/CeO₂ ≥ $0.86\text{Fe/CeO}_2 > 0.91\text{Ni/CeO}_2 \approx \text{CeO}_2$ was exactly the same as for the efficiency towards oxygen exchange therein (Fig.4).

Strong decrease of both NH₃ oxidation [52] and N₂O decomposition [32] over Co oxide at high temperatures was shown to be due to Co₃O₄ reduction to CoO. We didn't observe such deactivation of 0.91Co/CeO₂ sample with temperature both at N₂O decomposition (Fig.6), like in Co_3O_4 -CeO₂ mixed oxides with low Co content [11], and at ammonia oxidation (Fig.S7B), although Co₃O₄ reduction under TPD conditions was observed as well (Fig.S6). It obviously can be explained by higher resistance of Co-Ce interface towards reduction due to some oxygen supply from CeO₂ by reaction (4). Nevertheless, at lower temperature 0.91Co/CeO₂ sample with Co state closer to Co₃O₄ was already substantially more active than 0.87Fe/CeO₂ both in N₂O decomposition (Fig.S7A) and NH₃ oxidation (Fig.S7B).

Effect of Fe content and FeOx dispersion

Descending dependence of NH₃ conversion versus Fe content in Al₂O₃-1200 and CeO₂ based samples (0.015 g sample loading for all these experiments) was observed (Fig. 9), similarly to the reaction of N₂O decomposition, and thus can be related to size effect. Again, for Fe/CeO₂ case it was more prominent due to attenuation of oxygen transfer processes through Fe-CeOx interface (Fig.S4). Nevertheless, unlike to reaction of N_2O decomposition, FeOx dispersion is not a predominant factor for NH₃ conversion anymore. So, at Fe content lower than $3*10^{19}$ atoms/m² (case of Fe/Al₂O₃-C and Fe/Ce/ Al₂O₃ samples) NH₃ conversion value depended mainly on the quantity of exposable Fe (Fe_{exp}).

At the same time, these were larger FeO_x species that converted NH₃ to NO_x more selectively in all Al₂O₃ based samples (Fig. S8), finally resulting in quite close (77-81%, case of Fe/Al₂O₃-1200 samples) or growing with Fe content (up to 79% for Fe/Al₂O₃-C) NOx yield values (Fig.9). In accordance with findings of Pérez-Ramírez and Kondratenko [16], on bulk Fe₂O₃ the desired reaction follows a Mars-van Krevelen-type scheme involving the

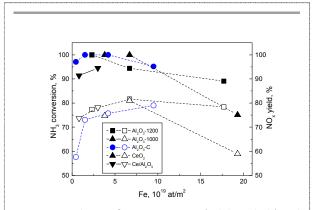


Fig. 9 Dependence of NH₃ conversion (solid symbols) and NO_x yield (open symbols) on Fe content in different Fe/(Al₂O₃,CeO₂) samples. Catalyst loading 0.015 g.

DOI: 10.1039/C5CY01381J

ARTICLE Journal Name

participation of lattice oxygen in the NH₃ conversion to NO. The degree of reduction of the oxide surface was shown to determine the product distribution. One can reasonably suppose that for small species FeO_x surface should be in more reduced state because of smaller rate of dissociative activation of O2 molecule on the Fe-Al interface. In addition, growing contribution from low selective NH₃ oxidation on Al₂O₃ should be accounted as well.

We believe as well that more oxidized state of FeOx anchored to CeO₂ resulting from more efficient O transfer through Fe-Ce interface determines higher selectivity to NO_x in the 3.8Fe/Ce/Al₂O₃ and 9.9Fe/Ce/Al₂O₃ samples compared to Fe/Al₂O₃-C ones with close dispersion. In addition, substantially smaller values of N2O yield were measured on Fe/Ce/Al₂O₃ samples, which agrees with their higher activity towards N₂O decomposition.

Conclusions

Published on 30 October 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 12:28:43.

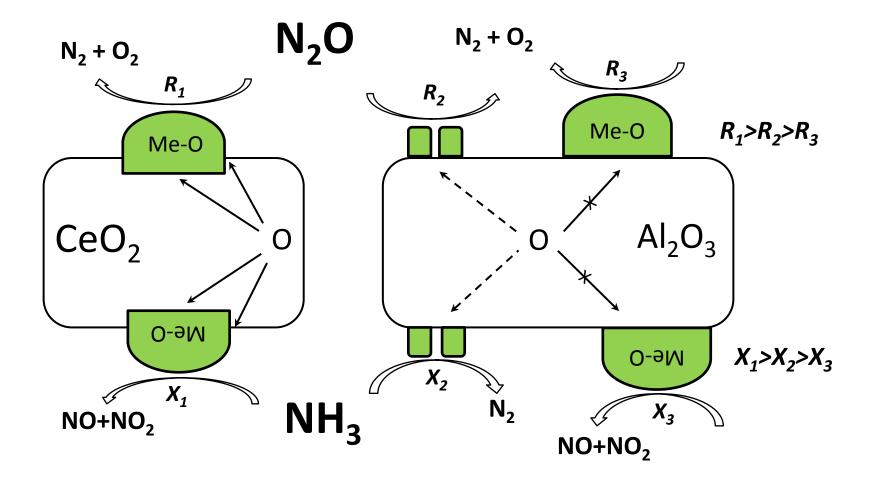
We have shown that replacement of Al_2O_3 as the support for MeO_x (Me = Fe, Co, Ni) by CeO₂ characterized by increased lattice oxygen mobility resulted in substantial increase of the rates of ¹⁶O/¹⁸O exchange at 800 °C in corresponding samples. Oxygen transfer from fluorite lattice to surface by extended oxygen vacancies arose after insertion of Meⁿ⁺ ions to fluorite lattice was shown to be responsible for enforced rate of isotope exchange.

Formation of low active spinel-like Me-Al-O structures restricted application of Co and Ni oxides in any Al₂O₃ containing catalysts. For CeO₂- and Al₂O₃-based samples with supported FeO_x an obvious size effect was observed in both reactions. So, highly dispersed FeO_x were substantially more active due to change of contribution of oxygen supply from the support (both ceria and, probably, alumina) to reduced surface sites through Fe-CeOx interface thus increasing the rate of O₂ desorption. However, smaller species less selectively oxidized NH3 to NOx.

Using of high surface area Al₂O₃-C the samples with high content of dispersed FeOx in the weight unit were synthesized to increase observable N2O conversion. To increase surface area of CeO2 and thus efficiently use the promoting effect of oxygen mobility, the last was dispersed onto alumina by precipitation. Fe/Ce/Al₂O₃ samples with optimal content of Fe revealed superior activity in N₂O decomposition and NH₃ oxidation to NOx compared with Fe/Al₂O₃ with close S_{BET} and dispersion of FeO_x species value.

Acknowledgements

We should like to thank Mrs. I. Kharina for preparation of Al₂O₃-C sample.


Notes and references

- 1 J. Pérez-Ramírez, F. Kapteijn, K. Schöffel, J.A. Moulijn, Appl. Catal. B, 2003, 44,) 117.
- 2 P. Granger, P. Esteves, S. Kieger, L. Navascues, G. Leclercq, Appl. Catal. B, 2006, 62, 236.
- 3 P. Esteves, Y. Wu, C. Dujardin, M.K. Dongare, P. Granger, Catal. Today, 2011, 176, 453.
- 4 D.V. Ivanov, E.M. Sadovskaya, L.G. Pinaeva, L.A. Isupova, J. Catal., 2009. 267. 5.
- 5 Y. Wu, X. Ni, A. Beaurain, C. Dujardin, P. Granger, Appl. Catal. B, 2012 125, 149.

- 6 D.V. Ivanov, L.G. Pinaeva, L.A. Isupova, E.M. Sadovskaya, I.P. Prosvirin, E.Yu. Gerasimov, I.S. Yakovleva, Appl. Catal. A, 2013 **457**, 42.
- 7 J. Pérez-Ramírez, M. Santiago, Chem. Commun., 2007, 619.
- 8 G. Giecko, T. Borowiecki, W. Gac, J. Kruk, Catal. Today, 2008, 137,
- 9 J. Kruk, K. Stołecki, K. Michalska, M. Konkol, P. Kowalik, Catal. Today, 2012, 191, 125.
- 10 E. Wilczkowska, K. Krawczyk, J. Petryk, J. W. Sobczak, Z. Kaszkur, Appl. Catal. A, 2010, 389, 165.
- 11 E. Iwanek, K. Krawczyk, J. Petryk, J.W. Sobczak, Z. Kaszkur, Appl. Catal. B, 2011, 106, 416.
- 12 M. Konsolakis, ACS Catal., 2015, 5, 6397.
- 13 V.A. Sadykov, L.A. Isupova, I.A. Zolotarskii, L.N.Bobrova, A.S. Noskov, V.N. Parmon, E.A. Brushtein, T.V. Telyatnikova, V.I. Chernyshev, V.V. Lunin, Appl. Catal. A, 2000, 204, 59.
- 14 L. Pinaeva, E. Sutormina, L. Isupova, N. Kulikovskaya, A. Marchuk, RU patent 2 430 782 C1, 2010.
- 15 L. Pinaeva, L. Isupova, I. Prosvirin, E. Sadovskaya, I. Danilova, D. Ivanov, E. Gerasimov, Catal. Lett., 2013, 143, 1294.
- 16 J. Pérez-Ramírez, E. Kondratenko, J. Catal., 2007, 250, 240.
- 17 M. Zabilskiy, B.Eravec, P.Djinović, A. Pintar, Chem. Eng. J., 2014,
- 18 M. Konsolakis, S. A. C. Carabineiro, E. Papista, G. E. Marnellos, P. B. Tavares, J. Agostinho Moreira, Y. Romaguera-Barcelay, J. L. Figueiredo, Catal. Sci. Technol., 2015, 5, 3714
- 19 L. Isupova, Yu. Tanashev, I. Kharina, E. Moroz, G. Litvak, N. Boldyreva, E. Paukshtis, E. Burgina, A. Budneva, A. Shmakov, N. Rudina, V. Kruglyakov, V. Parmon, Chem. Eng. J., 2005, 107, 163.
- 20 I. Danilova, E. Slavinskaya, V. Zaikovskii, A. Ivanova, A. Boronin, R. Gulyaev, Yu. Amosov, Kinet. Catal., 2010, 51, 143.
- 21 J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol., 1966, B15, 627.
- 22 V. Malakhov, N. Boldyreva, A. Vlasov, L. Dovlitova, J. Analyt. Chem., 2011, 66, 458.
- 23 L.G. Pinaeva, E.M. Sadovskaya, A.P. Suknev, V.B. Goncharov, B.S. Bal'zhinimaev, in Mass Spectrometry Handbook, (Ed.: M. S. Lee), Wiley, Hoboken, 2012, pp. 1229-1256.
- 24 S. Kurajica, J. Popović, E. Tkalčec, B. Gržeta, V. Mandić, Mater. Chem. Phys., 2012, 135, 587.
- 25 O. Kirichenko, V. Ushakov, E. Moroz, M. Vorob'eva, Kinet, Catal., 1993, 34, 739.
- 26 Z. Zhang, D. Han, S. Wei, Y. Zhang, J. Catal., 2010, 276, 16.
- 27 A. Gupta, A. Kumar, U.V. Waghmare, M.S. Hegde, Chem. Mater.,
- 28 A. Piras, S. Colussi, A. Trovarelli, V. Sergo, J. Llorca, R. Psaro, L. Sordelli, J. Phys. Chem. B, 2005, 109, 11110.
- 29 A. Bensalem, J.C. Muller, F. Bozon-Verduraz, J. Chem. Soc. Faraday Trans., 1992, 88, 153.
- 30 R. Zhang, J.T. Miller, C.D. Baertsch, J. Catal., 2012, 294, 69.
- 31 R.C. Olegário, E.C.F. Souza, J.F.M. Borges, J.B.M. Cunha, A.V.C. Andrade, S.R.M. Antunes, A.C. Antunes, Dyes Pigments, 2013, **97**. 113.
- 32 C. He, M. Paulus, W. Chu, J. Find, J.A. Nickl, K. Kohler, Catal. Today, 2008, 131, 305.
- 33 I.G. Casella, M.R. Guascito, J. Electroanal. Chem., 1999, 476, 54.
- 34 H. Xiong, Y. Zhang, K. Liew, J. Li, J. Molec. Catal. A, 2005, 231,
- 35 M.H. Kim, K.-H. Choo, Catal. Comm., 2007, 8, 462.
- 36 J. Yang, H. Liu, W.N. Martens, R.L. Frost, J. Phys. Chem., 2010, C114. 111.
- 37 X. Duan, M. Pan, F. Yu, D. Yuan, J. Alloys Comp., 2011, 509, 1079.

ARTICLE Journal Name

- 38 N. Srisawad, W. Chaitree, O. Mekasuwandumrong, P. Praserthdam, J. Panpranot, J. Nanomaterials, 2012, 2012, 1.
- 39 D. Barreca, C. Massignam, Chem. Mater., 2001, 13, 588.
- 40 S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell, J. Mol. Catal. A, 2008, **281**, 49.
- 41 D. Nikolova, R. Edreva-Kardjieva, G. Gouliev, T. Grozeva, P. Tzvetkov, Appl. Catal. A, 2006, 297, 135.
- 42 P. Dufresne, E. Grimblot, J.P. Bonnelle, J. Phys. Chem., 1981, 85,
- 43 E. Laurent, B. Delmon, J. Catal., 1994, 146, 281.
- 44 C. Jiménez-González, Z. Boukha, B. de Rivas, J.J. Delgado, M.A. Cauqui, J.R.González-Velasco, J.I. Gutiérrez-Ortiz, R. López-Fonseca, Appl. Catal. A, 2013, 466, 9.
- 45 P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Leftil, R. Diaz, Appl. Surf. Sci., 2012, 258, 8807.
- 46 S.Suzuki, K.Yanagihara, K.Hirokawa, Surf. Interface Anal., 2000,
- 47 L. Chen, P. Fleming, V. Morris, J.D. Holmes, M.A. Morris, J. Phys. Chem. C, 2010, 114, 12909.
- 48 J. Z. Shyu, W. H. Weber, H. S. Gandhi, J. Phys. Chem., 1988, 92,
- 49 C. Ge, L. Liu, Z. Liu, X. Yao, Y. Cao, C. Tang, F. Gao, L. Dong, Catal. Commun., 2014, 51, 95.
- 50 M. Zabilskiy, P. Djinović, E. Tchernychova, O. Tkachenko, L. Kustov, A. Pintar, ACS Catal., 2015, 5, 5357.
- 51 P. Pomonis, D. Vattis, A. Lycourghiotis, C. Kordulis, J. Chem. Soc. Faraday Trans. I, 1985, 81, 2043. 52 M. C. Goromonzi, S, K. Raman, B. D. Padalia, A. Manohar, P. N. Koul, React. Kinet. Catal. Lett., 1980, 15, 131.

