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Abstract: Alkylation of a-isocyano acetamide (2) with alkyl halide
in MeCN at 0 °C in the presence of cesium hydroxide afforded the
mono-alkylated product 1 in good to excellent yield.
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Functionalized isonitriles have found wide application in
the syntheses of heterocycles.1–3 Although less popular
than a-isocyano acetate4 and tosylmethyl isocyanide
(TosMIC),5 a-substituted a-isocyano acetamides (1)6

have recently been developed into a powerful bifunctional
substrate for the multicomponent syntheses of
heterocycles7,8 and macrocycles.9 Indeed, the reactivity
profile of a-isocyano acetamide (1) was found to be rather
different from that of a-isocyano acetate under mild basic
or acidic conditions. Compound 1 has previously been
synthesized from the corresponding amino acid in three
conventional steps via a sequence of N-formylation,
amidation of carboxylic acid and dehydration.10 Although
the sequence is high-yielding for the synthesis of each
individual compound, its limitation in the high-through-
put synthesis of a diverse collection of this class of iso-
nitriles is self-evident. Consequently, we were interested
in developing a more efficient synthesis of 1 in order to
fully exploit its synthetic potential.

Benzylation of a-isocyano acetamide (2) providing the
corresponding a,a-bisalkylated derivative has been devel-
oped by Matsumoto in 1977.11 To the best of our knowl-
edge, this is the only report found in the open literature
dealing with the alkylation of 2 and indeed conditions
allowing the monoalkylation of (2) remained unknown.
Similarly, alkylation of methyl a-isocyano acetate (3)
afforded the corresponding bisalkylated product even
with a substoichiometric amount of alkylating agent.12,13

We report herein that monoalkylation of (2) can be real-
ized under appropriate conditions to afford a-substituted
a-isocyano acetamides (1) in good to excellent yield
(Scheme 1).

a-Isocyano acetamides (2) were synthesized as shown in
Scheme 2. Stirring a methanol solution of a-isocyano
acetate (3) with morpholine and pyrrolidine afforded the
corresponding amides 2a and 2b in yields of 85% and
77%, respectively (Scheme 2, a). On the other hand,

EDCI mediated coupling of the potassium salt of a-iso-
cyano acetic acid14 with diethylamine provided the amide
2c in 49% yield. The Weinreb amide 2d was similarly
prepared in 69% yield (Scheme 2, b).15

The benzylation of morpholino a-isocyano acetamide 2a
with benzyl bromide (6a) was examined as a model reac-
tion by varying the bases, the reaction temperatures, and
the solvents (Table 1). As is seen, no reaction occurred
when NaOH, DBU and Cs2CO3 were used as bases re-
gardless of the nature of solvents used (THF, CH2Cl2, bi-
phasic solution, entries 1–4). In accord with Mastumoto’s
observation, performing the alkylation in THF in the
presence of sodium hydride afforded 1a in only 10% yield
(entry 5). The dibenzylated compound was produced in
30% yield under these conditions. Gratifyingly, cesium
hydroxide was found to be able to promote the desired
monoalkylation in a variety of solvents including dichlo-
romethane, THF, diethyl ether, toluene and acetonitrile.
The optimal conditions for the alkylation of 2a consisted
of performing the reaction in acetonitrile at 0 °C with 1.05
equivalents of BnBr and 1.5 equivalents of CsOH·H2O.
Under these conditions, compound 1a was isolated in
94% yield without the concurrent formation of dibenzyl-
ated compound. It has nevertheless to be emphasized that

Scheme 1 Monoalkylation of a-isocyano acetamide to its higher
homologue
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dibenzylated compound was produced as a major product
if an excess of base and benzyl bromide (2.5 equiv each)
were used under otherwise identical conditions.16

The generality of this protocol was next examined using
4 isocyano acetamides 2a–d and 12 electrophiles
(Figure 1). Compounds synthesized by the standard pro-
cedure (1.5 equiv of CsOH·H2O, 1.05 equiv of alkylating
agent, MeCN, 0 °C) were listed in Figure 2. As it is seen,
the reaction turned out to be quite general. The mono-
alkylation took place smoothly not only with the activated
halides such as benzyl bromide, allyl bromide, propargyl
bromide and methyl iodide, but also with less reactive
alkyl halides such as ethyl iodide (6k) and 1-bromobutane
(6l). Alkylation of 4-nitrobenzylbromide (6d) is known to
be low-yielding due to the competitive dimerization and
degradation process via a radical anion mechanism,17 it is
thus interesting to note that alkylation of 2a with 6d pro-
ceeded smoothly to provide 1h in 61% yield. The amide
structures exerted only minor effect on the alkylation pro-
cess and amide derived from cyclic amine (morpholine,
pyrrolidine), acyclic amine (diethylamine) as well as the
Weinreb amide can be effectively converted to the
monoalkylated product.

In summary, conditions for the efficient monoalkylation
of a-isocyano acetamide to its higher homologues have
been developed. This synthesis has clear advantages over

the previously reported three-step synthesis especially if
the starting amino acid is not commercially available. The
present protocol should thus facilitate the further exploita-
tion of this unique class of isonitrile and enhance its appli-
cation scope in heterocycle synthesis.

Table 1 Survey of Conditions for Alkylation of Morpholino a-Iso-
cyano Acetamide (2a) with Benzyl Bromide (6a)a

Entry Base Solvent Temp 
(°C)

Yield of 1a 
(%)b

1 NaOH CH2Cl2–H2O 0 0

2 DBU CH2Cl2 –30 0

3 DBU CH2Cl2 r.t. 0

4 Cs2CO3 THF r.t. 0

5 NaH THF r.t. 10c

6 CsOH·H2O CH2Cl2 –25 21

7 CsOH·H2O CH2Cl2 0 71

8 CsOH·H2O CH2Cl2 r.t. 76

9 CsOH·H2O THF r.t. 14

10 CsOH·H2O Et2O 0 76

11 CsOH·H2O Et2O r.t. 56

12 CsOH·H2O MeCN r.t. 58

13 CsOH·H2O MeCN 0 94

14 CsOH·H2O Toluene r.t. 73

a General conditions: 1.5 equiv of base, 1.05 equiv of benzyl bromide, 
concentration 0.2 M.
bYield referred to pure isolated product.
c Dialkylated product was isolated in 30% yield.

Figure 1 Structure of alkyl halides
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Figure 2 a-Substituted a-isocyano acetamide
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