

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 341 (2006) 275-280

Note

Fast oxidation of thioglycosides to glycosyl sulfones using $KMnO_4/CuSO_4 \cdot 5H_2O$ under neutral reaction conditions[‡]

Geetanjali Agnihotri and Anup Kumar Misra*

Division of Medicinal and Process Chemistry, Central Drug Research Institute (CDRI), Chattar Manzil Palace, Lucknow 226001, India

Received 2 October 2005; received in revised form 23 November 2005; accepted 25 November 2005 Available online 15 December 2005

Abstract—A rapid oxidation of thioglycosides to glycosyl sulfones has been achieved using a combination of KMnO₄ and CuSO₄:5H₂O in acetonitrile and water. This reaction protocol has many advantages compared to other methods available for this transformation, including compatibility with acid and base labile functional groups used for the protection of carbohydrates, high yields, fast reaction times, and moderate reaction temperatures. The yields obtained were excellent in all cases. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Carbohydrates; Sulfones; Oxidation; KMnO4; CuSO4·5H2O; Thioglycosides

Sulfones are an important class of synthetic intermediates, which are, for example, used for C-C bond formastereocontrolled functional tion and group transformations.^{1–4} In carbohydrate chemistry, glycosyl sulfones have been used for the preparation of functionalized glycals as well as *O*- and *C*-glycosides.^{5–11} A number of biologically important oligosaccharides having *C*-glycosyl linkages have been synthesized using glycosyl sulfones under samarium mediated reductive reaction conditions with excellent anomeric stereocontrol.¹²⁻¹⁵ Apart from being used as glycosyl donors, glycosyl sulfones have also been used as potential glycosyltransferase inhibitors.¹⁶

In view of the importance of sulfones, several oxidizing agents have been reported for the oxidation of sulfides into sulfones,¹⁷ including *m*-chloroperoxybenzoic acid (*m*-CPBA),¹⁸ aqueous KMnO₄,¹⁹ potassium hydrogen sulfate (KHSO₅),²⁰ hydrogen peroxide–acetic acid,²¹ peroxytrifluoroacetic acid,²² tetra-*n*-butylammonium oxone,²³ osmium tetroxide (OsO₄),²⁴ PhIO/RuCl₂-(PPh₃)₃,²⁵ and RuCl₃/NaIO₄, or HIO₄.²⁶ Although a number of methods are available for the oxidation of sulfides to sulfones, fewer methods for the preparation of glycosyl sulfones have been investigated. These include the use of *m*-chloroperoxybenzoic acid (*m*-CPBA), magnesium bis(monoperoxyphthalate) (MMPP),²⁷ dimethyldioxirane (DMDO),¹⁶ KMnO₄/acetic acid,²⁸ and RuCl₃/NaIO₄.⁶ In general, the oxidation of thioglycosides to sulfones has been achieved most successfully using m-CPBA. However, this method suffers from number of shortcomings including partial solubility of *m*-CPBA in dichloromethane and difficulty in removing the byproduct (*m*-chlorobenzoic acid) from the sulfone. Other methods for the oxidation of thioglycosides into glycosyl sulfones also have notable drawbacks such as strongly acidic reaction conditions or the requirement of high temperatures. Therefore, there is a need to develop mild oxidation protocols for the transformation of thioglycosides to glycosyl sulfones that circumvent the aforementioned drawbacks. Our efforts to prepare several glycosyl sulfones using of *m*-CPBA and aqueous KMnO₄/AcOH or H₂O₂/AcOH reaction conditions always resulted in the removal of acid labile functional groups and in some cases deacetylated products.

Prompted by a recent paper²⁹ in which solid KMnO₄ in combination with CuSO₄·5H₂O has been successfully

^{*} CDRI Communication No. 6888.

^{*} Corresponding author. Tel.: +91 522262411; fax: +91 5222623405; e-mail: akmisra69@rediffmail.com

^{0008-6215/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2005.11.025

employed for the preparation of disulfides and sulfones under solvent-free reaction conditions, we envisaged that this combination could oxidize thioglycosides to sulfones under neutral reaction conditions thus avoiding the chance for the removal of acid labile protecting groups. Earlier, the KMnO₄/CuSO₄·5H₂O combination has been successfully employed for oxidation of alcohols and preparation of lactones.³⁰ We describe here, a convenient reaction protocol for the preparation of glycosyl sulfones under neutral reaction conditions using a combination of KMnO₄/CuSO₄·5H₂O.

For our initial studies, a solution of phenyl 2,3,4,6tetra-O-acetyl-1-thio-β-D-glucopyranoside in dichloromethane was treated with solid $KMnO_4$ (2.0 equiv) at room temperature. The formation of the corresponding glycosyl sulfone was very slow and the reaction did not furnish an acceptable yield of the product. While performing the reaction in acetone the reaction proceeded well but did not reach completion. Gratifyingly, the reaction was complete in a few minutes when the same reaction was carried out at room temperature using a 1:1 mixture of KMnO₄ and CuSO₄·5H₂O in CH₃CN- H_2O (5:1) and the yield was almost quantitative. After some experimentation, it was observed that the use of a finely powdered premixed combination of KMnO₄ and CuSO₄·5H₂O (1.5:1 molar ratio) in CH₃CN-H₂O (5:1) at room temperature successfully oxidized several thioglycosides to the corresponding glycosyl sulfones in excellent yield (Scheme 1). It is worth noting that the addition of CuSO₄·5H₂O separately after the addition of KMnO₄ led to incomplete oxidation. Acid labile functional groups (e.g., benzylidene acetal, isopropylidene acetal, and TBDMS) used for the temporary protection of hydroxyl groups of sugar derivatives were stable to the reaction conditions. It is important to mention that use of CuSO₄·5H₂O premixed with KMnO₄ is essential for the completion of the reaction. Although earlier KMnO₄ in acetic acid at higher temperatures has been used for the preparation of glycosyl sulfones, the reaction condition was very harsh and cannot be applied for the oxidation of thioglycosides containing acid labile functional groups. Among the solvents explored (e.g., dichloromethane, 1,2-dichloroethane, nitromethane, THF, CH₃CN, and acetone), the acetonitrile-water combination was found to be the most effective in producing high yields of the product.

In summary, a series of glycosyl sulfones having a variety of functional groups have been successfully pre-

pared by the oxidation of differentially functionalized thioglycosides using a combination of solid KMnO₄ and CuSO₄·5H₂O under neutral conditions. The method is compatible with acid and base labile functional groups used for the protection of carbohydrates, and is high yielding and fast. In addition, the ease of product isolation makes this reaction protocol as an attractive alternative to those existing in the literature. Samarium iodide mediated preparation of *C*-glycosides using glycosyl sulfones is underway in our laboratory.

1. Experimental

1.1. General methods

The general methods are the same as previously reported.³⁴

1.2. Typical experimental protocol for the preparation of glycosyl sulfones

To a solution of thioglycoside (1.0 mmol) in CH₃CN– H₂O (5:1 v/v; 10 mL) was added a finely ground mixture of solid KMnO₄ and CuSO₄·5H₂O (1.5:1 molar ratio; 500 mg) and the reaction mixture was stirred at room temperature for appropriate time period(Table 1). After completion of the reaction (TLC; hexane–EtOAc 1:1), the reaction mixture concentrated under reduced pressure and the crude mass was extracted with CH₂Cl₂. The organic layer was washed with water, dried (Na₂SO₄), and concentrated under reduced pressure to furnish an almost pure product (Table 1). Analytical samples were prepared by purification over SiO₂ using hexane–EtOAc as eluant. All known compounds gave acceptable ¹H NMR and ¹³C NMR spectra that matched data reported in the cited references.

1.2.1. Phenyl 2,3,4,6-tetra-*O*-acetyl-1-sulfonyl-β-D-galactopyranoside (2b). Oil; $[\alpha]_D^{25}$ -15 (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 7.98–7.56 (m, 5H, aromatic), 5.45 (t, J = 9.8 Hz, 1H), 5.31 (d, J = 3.5 Hz, 1H), 5.04 (dd, J = 9.8, 3.1 Hz, 1H), 4.50 (d, J = 9.7 Hz, 1H), 4.14–4.03 (m, 1H), 3.98–3.88 (m, 2H), 2.14, 1.98, 1.97, 1.89 (4s, 12H, 4COCH₃); IR (Neat): 2363, 1751, 1222, 1080, 758 cm⁻¹; ESI-MS: m/z = 495 [M+Na]. Anal. Calcd for C₂₀H₂₄O₁₁S: C, 50.84; H, 5.12. Found: C, 51.02; H, 5.35.

$$\begin{array}{c} R^{1}O \\ R^{1}O \\ R^{1}O \\ OR^{1} \\ \end{array} \\ SR^{2} \\ \hline CH_{3}CN-H_{2}O (5:1) \\ \end{array} \\ \begin{array}{c} R^{1}O \\ R^{1}O \\ R^{1}O \\ OR^{1} \\ R^{1}O \\ OR^{1} \\ SO_{2}R^{2} \\ \end{array} \\ \begin{array}{c} SO_{2}R^{2} \\ OR^{1} \\ SO_{2}R^{2} \\ \end{array} \\ \end{array}$$

 $\label{eq:constraint} \begin{tabular}{c} \hline \textbf{Table 1.} Oxidation of thioglycosides to glycosyl sulfones using $KMnO_4$ and $CuSO_4$ · 5H_2O$ in CH_3CN - H_2O$ at room temperature MnO_4 and $CuSO_4$ · 5H_2O$ in CH_3CN - H_2O$ at room temperature MnO_4 and $CuSO_4$ · 5H_2O$ in CH_3CN - H_2O$ at room temperature MnO_4 and $CuSO_4$ · 5H_2O$ in CH_3CN - H_2O$ at room temperature MnO_4 and $CuSO_4$ · 5H_2O$ in CH_3CN - H_2O$ at room temperature MnO_4 and $CuSO_4$ · 5H_2O$ in CH_3CN - H_2O$ at room temperature MnO_4 and $CuSO_4$ · 5H_2O$ in CH_3CN - H_2O$ at room temperature MnO_4 and $CuSO_4$ · 5H_2O$ in CH_3CN - H_2O$ at room temperature MnO_4 and MnO_4 and $CuSO_4$ · 5H_2O$ in CH_3CN - H_2O$ at room temperature MnO_4 and MnO_4 and MnO_4 and $CuSO_4$ · 5H_2O$ in CH_3CN - H_2O$ at room temperature MnO_4 and MnO_4 a$

Entry	Thioglycoside (1)	Sulfone (2)	Time (min)	Yield (%)	Ref.
a	AcO CAC AcO SPh OAc	AcO CAC CO_2Ph CAC CO_2Ph CAC	30	95	28
b	Aco OAc OAc SPh	AcO OAc OAc SO ₂ Ph	30	95	_
с	BzO BzO OBz OBz	BzO BzO OBz	45	92	_
d	BzO OBz BzO OBz SPh OBz	BzO OBz BzO OBz SO ₂ Ph OBz	45	96	_
e	BnO OBn BnO OBn OBn	BnO OBn SO ₂ Ph OBn	25	92	31
f	AcO AcO OAc SPh	AcO AcO OAc SO ₂ Ph	30	90	28
g	Me O OBn OBn BnO	Me OBn OBn BnO	25	88	_
h	AcO OAc AcO OAc AcO SEt	AcO AcO AcO SO ₂ Et	30	90	_
i	AcO OAc AcO SEt	AcO OAc OAc SO_2Et	30	92	_
j	Aco OAc SPh	AcO OAc SO ₂ Ph	30	85	5
k	Ph TO O AcO OAc SPh	Ph TO AcO OAc SO ₂ Ph	30	90	_
1	BZO BZO OBZ	BzO BzO OBz	25	90	_
m	AcO OAc AcO OAc S OEt		60	85 (continued on r	— next page)

Table 1	(continued)
---------	-------------

Entry	Thioglycoside (1)	Sulfone (2)	Time (min)	Yield (%)	Ref.
n	AcO OAc AcO SPh NPhth	AcO OAc AcO SO ₂ Ph NPhth	45	92	_
0	AcO OAc COOMe AcOII - TO SPh AcHN AcO	AcO AcOIII AcHN AcO	45	85	32
р	OAc OAc SPh	OAc OAc OAc SO ₂ Ph	30	95	6
q	OAC OAC OAC OAC OAC	OAC OAC OAC OAC OAC OAC	45	92	5
r	Aco Aco OAc OAc OAc OAc OAc	AcO AcO ACO OAC ACO ACO ACO OAC	45	95	33
S	AcO AcO OAc OAc AcO OAc SPh	AcO OAc OAc AcO OAc AcO OAc OAc OAc	45	95	_

1.2.2. Phenyl **2,3,4,6-tetra-***O***-benzoyl-1-sulfonyl-β-Dglucopyranoside (2c).** White solid; mp 175–177 °C; $[\alpha]_D^{25}$ +2.4 (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 7.99–7.26 (m, 25H, aromatic), 5.91 (t, *J* = 9.3 Hz, 1H), 5.87 (t, *J* = 9.6 Hz, 1H), 5.50 (t, *J* = 9.6 Hz, 1H), 4.87 (d, *J* = 9.6 Hz, 1H), 4.60 (d, *J* = 11.7 Hz, 1H), 4.38 (dd, *J* = 12.3, 4.8 Hz, 1H), 4.20–4.17 (m, 1H); IR (KBr): 2366, 1732, 1590, 1263, 1106, 718 cm⁻¹; ESI-MS: *m/z* = 743 [M+Na]. Anal. Calcd for C₄₀H₃₂O₁₁S: C, 66.66; H, 4.48. Found: C, 66.48; H, 4.70.

1.2.3. Phenyl **2,3,4,6-tetra-***O***-benzoyl-1-sulfonyl-β-Dgalactopyranoside (2d).** White solid; mp 168 °C; $[\alpha]_D^{25}$ +36 (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 8.08–7.26 (m, 25H, aromatic), 6.01 (t, J = 9.8 Hz, 1H), 5.94 (d, J = 3.9 Hz, 1H), 5.58 (dd, J = 9.8, 3.1 Hz, 1H), 4.93 (d, J = 9.9 Hz, 1H), 4.60 (dd, J = 10.8, 6.2 Hz, 1H), 4.50 (t, J = 6.0 Hz, 1H), 4/28 (dd, J = 10.8, 5.6 Hz, 1H); IR (KBr): 2363, 1727, 1593, 1256, 1099, 711 cm⁻¹; ESI-MS: m/z = 743 [M+Na]. Anal. Calcd for C₄₀H₃₂O₁₁S: C, 66.66; H, 4.48. Found: C, 66.40; H, 4.70.

1.2.4. Phenyl **2,3,4-tri-***O*-benzyl-6-deoxy-1-sulfonyl-β-Lgalactopyranoside (2g). Oil; $[\alpha]_D^{25}$ -63 (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 7.97–7.04 (m, 20H, aromatic), 5.46 (d, J = 2.1 Hz, 1H), 5.37 (dd, J = 9.6, 3.0 Hz, 1H), 4.94 (d, J = 9.9 Hz, 1H), 4.59–4.53 (m, 5H), 4.52–4.39 (m, 2H), 3.75–3.73 (m, 1H), 1.02 (d, J = 6.0 Hz, 3H); IR (Neat): 2922, 2364, 1726, 1275, 1100, 757 cm⁻¹; ESI-MS: m/z = 581 [M+Na]. Anal. Calcd for C₃₃H₃₄O₆S: C, 70.94; H, 6.13. Found: C, 70.70; H, 6.40.

1.2.5. Ethyl 2,3,4,6-tetra-*O***-acetyl-1-sulfonyl-** α **-D-mannopyranoside (2h).** White solid; mp 101–103 °C; $[\alpha]_D^{25}$ +39.6 (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 5.90 (br s, 1H), 5.54 (dd, *J* = 9.0, 3.5 Hz, 1H), 5.24 (t, *J* = 9.4 Hz, 1H), 4.81 (br s, 1H), 4.66–4.59 (m, 1H), 4.27 (dd, *J* = 12.4, 5.4 Hz, 1H), 4.12 (dd, *J* = 12.4, 1.7 Hz, 1H), 3.14 (q, *J* = 7.4 Hz, 2H), 2.17, 2.09, 2.06, 2.02 (4s, 12H, 4COCH₃), 1.44 (t, *J* = 7.4 Hz, 3H); IR (KBr): 2922, 2363, 1748, 1219, 768 cm⁻¹; ESI-MS: *m*/*z* = 447 [M+Na]. Anal. Calcd for C₁₆H₂₄O₁₁S: C, 45.28; H, 5.70. Found: C, 45.04; H, 6.0.

1.2.6. Ethyl 2,3,4,6-tetra-*O*-acetyl-1-sulfonyl- β -D-glucopyranoside (2i). White solid; mp 153–154 °C; $[\alpha]_D^{25}$ –16.2 (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 5.48 (t, *J* = 9.6 Hz, 1H), 5.31 (t, *J* = 9.3 Hz, 1H), 5.12 (t, *J* = 9.6 Hz, 1H), 4.45 (d, *J* = 9.9 Hz, 1H), 4.30–4.18 (m, 2H), 3.85–3.81 (m, 1H), 3.19–3.09 (m, 2H, SCH₂CH₃), 2.09, 2.07, 2.05, 2.03 (4s, 12H, 4COCH₃), 1.40 (t, J = 7.5 Hz, 3H, SCH₂CH₃); IR (KBr): 2947, 1748, 1228, 1111, 1037, 722, 595 cm⁻¹; ESI-MS: m/z =447 [M+Na]. Anal. Calcd for C₁₆H₂₄O₁₁S: C, 45.28; H, 5.70. Found: C, 45.05; H, 5.97.

1.2.7. Phenyl 2,3-di-*O*-acetyl-4,6-*O*-benzylidene-1-sulfonyl-β-D-glucopyranoside (2k). White solid; mp 189– 190 °C, $[\alpha]_D^{25}$ –73.2 (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 7.94–7.26 (m, 10H, aromatic), 5.42 (s, 1H), 5.36–5.28 (m, 2H), 4.60 (d, J = 9.5 Hz, 1H), 4.30 (dd, J = 7.9, 3.3 Hz, 1H), 3.70–3.51 (m, 3H), 2.10, 2.03 (2s, 6H, 2COC*H*₃); IR (KBr): 2926, 1757, 1372, 1234, 1083, 760 cm⁻¹; ESI-MS: m/z = 499 [M+Na]. Anal. Calcd for C₂₃H₂₄O₉S: C, 57.97; H, 5.08. Found: C, 57.75; H, 5.30.

1.2.8. Ethyl 2,3,4-tri-*O*-benzoyl-6-*O*-tert-butyldiphenylsilyl-1-sulfonyl-β-D-glucopyranoside (2l). White solid; mp 156–158 °C, $[\alpha]_D^{25}$ +9 (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 7.96–7.21 (m, 25H, aromatic), 6.02 (t, *J* = 9.1 Hz, 1H), 5.91 (t, *J* = 9.0 Hz, 1H), 5.72 (t, *J* = 9.5 Hz, 1H), 4.78 (d, *J* = 9.0 Hz, 1H), 4.01–3.94 (m, 1H), 3.91–3.86 (m, 2H), 3.20 (q, *J* = 15.0, 6.0 Hz, 2H), 1.40 (t, *J* = 7.5 Hz, 3H), 1.04 (s, 9H); IR (KBr): 2929, 1736, 1262, 1105, 707 cm⁻¹; ESI-MS: *m/z* = 829 [M+Na]. Anal. Calcd for C₄₅H₄₆O₁₀SSi: C, 66.97; H, 5.75. Found: C, 66.70; H, 6.0.

1.2.9. Ethoxycarbonylmethyl 2,3,4,6-tetra-*O***-acetyl-1-sulfonyl-β-D-glucopyranoside** (2m). White powder; $[\alpha]_{D}^{25}$ -22.2 (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 5.53 (t, *J* = 9.8 Hz, 1H), 5.30 (t, *J* = 9.2 Hz, 1H), 5.10 (t, *J* = 9.8 Hz, 1H), 4.88 (d, *J* = 9.9 Hz, 1H), 4.33 (d, *J* = 15 Hz, 1H), 4.30–4.22 (m, 4H), 3.87–3.80 (m, 2H), 2.08, 2.05, 2.04, 2.03 (4s, 12H, 4COCH₃), 1.39–1.32 (t, *J* = 7.1 Hz, 3H); IR (KBr): 2960, 2363, 1750, 1594, 1350, 1224 cm⁻¹; ESI-MS: *m/z* = 505 [M+Na]. Anal. Calcd for C₁₈H₂₆O₁₃S: C, 44.81; H, 5.43. Found: C, 44.57; H, 5.55.

1.2.10. Phenyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido-1-sulfonyl- β -D-glucopyranoside (2n). Oil; $[\alpha]_D^{25} + 13$ (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 7.91–7.56 (m, 9H, aromatic), 5.76 (t, J = 9.6 Hz, 1H), 5.45 (d, J = 10.5 Hz, 1H), 4.99 (t, J = 9.6 Hz, 1H), 4.55 (t, J = 10.2 Hz, 1H), 4.26–4.09 (m, 2H), 2.01, 1.87 (2s, 9H, 3COC*H*₃); IR (Neat): 2924, 2363, 1750, 1722, 1383, 1224, 768 cm⁻¹; ESI-MS: m/z = 582 [M+Na]. Anal. Calcd for C₂₆H₂₅NO₁₁S: C, 55.81; H, 4.50. Found: C, 55.60; H, 4.79.

1.2.11. Phenyl 2,6-di-*O*-acetyl-3,4-*O*-isopropylidene-β-D-galactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-acetyl-1-sulfonyl-β-D-glucopyranoside (2q). White solid; mp 95–97 °C; $[\alpha]_D^{25}$ +5.4 (c 1.2, CHCl₃); ¹H NMR (CDCl₃,

200 MHz): δ 7.91–7.53 (m, 5H, aromatic), 5.32–5.30 (m, 1H), 5.28–5.23 (m, 1H), 4.85–4.78 (m, 1H), 4.46 (d, J = 9.6 Hz, 1H), 4.41 (br s, 1H), 4.32–4.25 (m, 3H), 4.13–4.04 (m, 3H), 3.92–3.86 (m, 1H), 3.65–3.60 (m, 2H), 2.11, 2.09, 2.04, 2.03, 1.97 (5s, 15H, 5COCH₃), 1.50, 1.30 (2s, 6H); IR (KBr): 2992, 2363, 1753, 1592, 1378, 1230, 1051, 590 cm⁻¹; ESI-MS: m/z = 739 [M+Na]. Anal. Calcd for C₃₁H₄₀O₁₇S: C, 51.95; H, 5.63. Found: C, 51.75; H, 5.90.

1.2.12. Phenyl 2,3,4,6-tetra-*O*-acetyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-acetyl-1-sulfonyl- β -D-glucopyranoside (2s). Oil; $[\alpha]_D^{25}$ +51 (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 7.90–7.55 (m, 5H, aromatic), 5.35–5.28 (m, 2H), 5.12 (t, J = 9.3 Hz, 1H), 5.02 (t, J = 9.9 Hz, 1H), 4.82 (dd, J = 10.5, 3.9 Hz, 1H), 4.54 (d, J = 10.2 Hz, 2H), 4.20 (dd, J = 12.0, 3.6 Hz, 1H), 4.14–4.08 (m, 1H), 4.02 (d, J = 12.6 Hz, 1H), 3.82 (t, J = 9.3 Hz, 2H), 3.70–3.67 (m, 2H), 2.10, 2.08, 2.03, 2.01, 2.00 (5s, 21H, 7COCH₃); IR (Neat): 2928, 1753, 1235, 1038, 760 cm⁻¹; ESI-MS: m/z = 783 [M+Na]. Anal. Calcd for C₃₂H₄₀O₁₉S: C, 50.52; H, 5.30. Found: C, 50.30; H, 5.50.

Acknowledgements

Instrumentation facilities from SAIF and CDRI are gratefully acknowledged. G.A. thanks CSIR, New Delhi, for providing a senior research fellowship. This project is funded by the Department of Science and Technology (DST), New Delhi (SR/FTP/CSA-10/2002), India.

References

- Jeong, Y. C.; Ji, M.; Lee, J. S.; Yang, J.-D.; Jin, J.; Baik, W.; Koo, S. *Tetrahedron* 2004, 60, 10181–10185.
- 2. Harris, J. M.; O'Doherty, G. A. Tetrahedron 1998, 54, 1601-1614.
- 3. Dherde, J. N. P.; De Clercq, P. J. *Tetrahedron Lett.* **2003**, *44*, 6657–6659.
- 4. Adrio, J.; Carretero, J. C. Tetrahedron 1998, 54, 1601– 1614.
- de Pouilly, P.; Chénedé, A.; Mallet, J.-M.; Sinaÿ, P. Tetrahedron Lett. 1992, 33, 8065–8068.
- Fernandez-Mayoralas, A.; Marra, A.; Trumtel, M.; Veyrières, A.; Sinaÿ, P. *Carbohydr. Res.* 1989, 188, 81– 95.
- 7. Somsák, L. Chem. Rev. 2001, 101, 81-136.
- Belica, P. S.; Franck, R. W. Tetrahedron Lett. 1998, 39, 8225–8228.
- Ohnishi, Y.; Ichikawa, Y. Bioorg. Med. Chem. Lett. 2002, 12, 997–999.
- Beau, J.-M.; Sinaÿ, P. Tetrahedron Lett. 1985, 26, 6193– 6196.
- 11. Dondoni, A.; Marra, A. Chem. Rev. 2000, 100, 4392-4422.

- Wang, Q.; Linhardt, R. J. J. Org. Chem. 2003, 68, 2668– 2672.
- Mikkelsen, L. M.; Krintel, S. L.; Jiménez-Barbero, J.; Skrydstrup, T. J. Org. Chem. 2002, 67, 6297–6308.
- Vlahov, I. R.; Vlahova, P. I.; Linhardt, R. J. J. Am. Chem. Soc. 1997, 119, 1480–1481.
- 15. Mazéas, D.; Skrydstrup, T.; Doumeix, O.; Beau, J.-M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1383–1386.
- Gervay, J.; Flaherty, T. M.; Holmes, D. *Tetrahedron* 1997, 53, 16355–16364.
- Uemura, S. In Oxidation of Sulfur, Selenium and Tellurium. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press, 1991; Vol. 7, pp 766–769.
- Brown, D. J.; Ford, P. W. J. Chem. Soc. C 1969, 2720– 2723.
- 19. Fatiadi, A. J. Synthesis 1987, 85-127.
- 20. Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22, 1287–1290.
- 21. Gilman, H.; Beaber, N. J. J. Am. Chem. Soc. 1925, 47, 1449–1451.
- Venier, C. G.; Squires, T. G.; Chen, Y.-Y.; Hussmann, G. P.; Shei, J. C.; Smith, B. F. J. Org. Chem. 1982, 47, 3773– 3774.

- Trost, B. M.; Braslau, R. J. Org. Chem. 1988, 53, 532– 537.
- 24. Kaldor, S. W.; Hammond, M. Tetrahedron Lett. 1991, 32, 5043–5046.
- 25. Muller, P.; Godoy, J. Helv. Chim. Acta 1983, 66, 1790-1795.
- Rodriguez, C. M.; Ode, J. M.; Palazoe, M. I.; Martin, V. S. *Tetrahedron* 1992, 48, 3571–3576.
- Arjona, O.; Menchaca, R.; Plumet, J. *Tetrahedron* 2001, 57, 6751–6755.
- Bonner, W. A.; Drisko, R. W. J. Am. Chem. Soc. 1948, 70, 2435–2438.
- 29. Shaabani, A.; Lee, D. G. Tetrahedron Lett. 2001, 42, 5833–5836.
- Jefford, C. W.; Wang, Y. J. Chem. Soc., Chem. Commun. 1988, 634–635.
- 31. Ferrier, R. J.; Furneaux, R. H.; Tyler, P. C. Carbohydr. Res. 1977, 58, 397–404.
- 32. Marra, A.; Sinaÿ, P. Carbohydr. Res. 1989, 187, 35-42.
- Funabashi, M.; Nagashima, H. Chem. Lett. 1987, 2065– 2068.
- Agnihotri, G.; Tiwari, P.; Misra, A. K. Carbohydr. Res. 2005, 340, 1393–1396.