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Two New Catalysts for the Dehydrogenative
Coupling Reaction of Carboxylic Acids with
Silanes—Convenient Methods for an Atom-

Economical Preparation of Silyl Esters

Guo-Bin Liu and Hong-Yun Zhao

Department of Chemistry, Fudan University, Shanghai, China

Thies Thiemann

Interdisciplinary Graduate School of Engineering Sciences, Kyushu

University, Kasuga-kohen, Kasuga, Fukuoka, Japan

Abstract: Tris(triphenylphosphine)cuprous chloride [Cu(PPh3)3Cl] has been found to

be an efficient catalyst for the dehydrosilylation of carboxylic acids with silanes. In the

presence of 4 mol% Cu(PPh3)3Cl, dehydrosilylation reactions in acetonitrile afforded

the corresponding silyl esters at 808C in good yields. It was noted that triphenylpho-

sphine itself also functions as an adequate catalyst for the reaction.

Keywords: catalysts, dehydrosilylation, silyl esters, triphenylphosphine, tris(triphenyl-

phosphine)cuprous chloride

INTRODUCTION

Silyl esters are key intermediates for the preparation of functional polymeric

substrates such as easily degradable poly(silyl ester)s, widely utilized as

recyclable materials, gene delivery carriers, matrices for drug delivery, and

biodegradable surgical devices.[1] In this respect, unsaturated silyl esters are

important substrates in polymerization reactions. Much attention has been
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devoted to the development of a simple, practical, and atom-economical prep-

aration of stable and easily isolable silyl esters.

A conventional way to prepare silyl esters is the coupling reaction of

carboxylic acids and chlorosilanes.[2] Hydrogen chloride is unavoidably

produced in these procedures, and a stoichiometric or even excess

amount of base such as amines or ammonia is needed to neutralize the

HCl gas formed. As chlorosilanes themselves are made by the chlorination

of silanes, either with chlorine gas[1g] or with hydrochloric acid under Pd/
C catalysis,[3] the synthesis of silyl esters from the corresponding silanes

necessitates two reaction steps. Although a number of newer synthetic

methods for silyl esters have appeared and a lot of literature concerns

itself with the transition-metal-catalyzed coupling of OH-containing

compounds such as water and alcohols with silanes,[4] there are still

few examples of the dehydrogenative coupling reaction of carboxylic

acids with silanes. The reported dehydrosilylation reactions are exclu-

sively catalyzed by metal salts such as zinc chloride or, more frequently,

by transition metals and metal complexes such as [(Ph3P)CuH], H2PtCl6,

Rh, and Pd.[5] Transition metals are expensive. Catalysts such as

[(Ph3P)CuH] require a multiple-step synthesis and are very difficult to

obtain in high purity. Moreover, transition-metal-catalyzed coupling of

unsaturated carboxylic acids and silanes always results in the formation

of by-products because of the known ability of Rh, Pd, and Pd/C to act

as hydrogenation catalyst in the reduction of carbon–carbon double

bonds in the desired olefinic silyl esters, leading to troublesome

purification. Because of this, the screening of catalysts for this reaction

remains of interest.

Here, we report that both tris(triphenylphosphine)cuprous chloride

[Cu(PPh3)3Cl] and triphenylphosphine (Ph3P) catalyze the dehydrogenative

coupling of carboxylic acids with silanes, yielding the corresponding silyl

esters selectively, without formation of any reduced by-products in the case

of unsaturated silyl esters (Scheme 1).

RESULTS AND DISCUSSION

In the presence of 4 mol% Cu(PPh3)3Cl, the reaction was carried out in aceto-

nitrile by heating a mixture of the corresponding acid (1) and silane (2) at 808C

Scheme 1.

G.-B. Liu, H.-Y. Zhao, and T. Thiemann2718
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under an N2 atmosphere (Table 1). To optimize the reaction conditions, the

coupling was performed with acetic acid (1a) and triethylsilane (2a) as sub-

strates under different reaction conditions. The desired coupling was found

to be complete after 4 h at 808C (4 mol% catalyst), affording the correspond-

ing triethylsilyl acetate (3a) in 90% yield (Table 1, run 1). Using Cu(PPh3)3Cl

as catalyst, the reaction time for the transformation is much shorter than when

using ZnCl2.
[5g] The use of additional Cu(PPh3)3Cl (e.g., 8 mol%) did not

accelerate the reaction further, however. On the other hand, a decrease of

the amount of catalyst (to 2 mol%) led to a decrease in reaction rate, where

39% of the triethylsilane (2a) (as determined by GC) remained unreacted

even after the reaction mixture was heated for 12 h at 808C. Also, the

reaction temperature plays an important role. Thus, the transformation was

slow when the reaction was carried out at 408C or 608C, and significant

amounts of triethylsilane (2a) could still be detected after 48 h (78% at

408C, 49% at 608C, according to GC analysis). At room temperature, no

coupling reaction was observed, and the triethylsilane (2a) remained

unchanged. When the reaction was carried out in other solvents, such as in

hexane (at 698C), cyclohexane (at 808C), 1,4-dioxane (at 1008C), or

benzene (at 808C), the reaction was found to be slower than in acetonitrile,

where again triethylsilane (2a) remained unreacted after 24 h at reflux

temperature of the corresponding solvent (45–78%, as estimated by GC

analyses).

A wide range of trialkylsilanes (2) could be reacted successfully when

using the optimized conditions discussed previousy [run 1: 4 mol%

Cu(PPh3)3Cl, acetonitrile, 808C]. The relative reactivity of the silanes is of

the order Et3SiH (2a) . n-Pr3SiH (2b) . n-Bu3SiH (2c) (Table 1, runs 1

and 2 vs. 3). Also benzoic acid (1d) and substituted benzoic acids (1e–1g)
could be submitted to the reaction successfully (runs 7–14). It must be

noted that under these conditions also unsaturated silyl esters such as

acrylic (1h), methacrylic (1i), cinnamic (1j), and furylacrylic (1k) acids

could be reacted, leading to the desired monomers of poly(silyl ester)s.

Here, no hydrogenated by-products were formed, as is usually the case in

many of the Pd-, Pt- and Ru-based catalysts.

Also, triphenylphosphine (PPh3) itself was found to catalyze the dehydro-

genative reactions of carboxylic acids with silanes. Thus, when a mixture of

carboxylic acid (1), silane (2), and PPh3 (4 mol%) in N,N-dimethylformamide

(DMF) was heated under a nitrogen atmosphere at 1208C for 12–18 h, the

desired silyl esters were obtained in good yield (Table 2, reaction monitored

by GC). Again, the transformation of propionic acid (1b) with triethylsilane

(2a) was used to optimize the reaction conditions. Here, the dehydrogenative

coupling was found to be finished after 15 h at 120 ºC, in the presence of

4 mol% PPh3, affording the corresponding triethylsilyl propionate (3d) in

87% yield (Table 1, run 3). As with using Cu(PPh3)3Cl, an increase of

catalyst did not accelerate the reaction further, whereas a decrease in PPh3
(to 1 or 2 mol%) slowed the reaction significantly, and 48% and 30% of

Convenient Methods for the Preparation of Silyl Esters 2719
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Table 1. CuCl(Ph3P)3-catalyzed dehydrocoupling of carboxylic acids and silanesa

Run Acid Silane Time (h) Product

Yield

(%)b

1 CH3CO2H (1a) Et3SiH (2a) 4 CH3CO2SiEt3 (3a) 90[5c]

2 1a n-Pr3SiH (2b) 4 CH3CO2SiPr3
n (3b) 88[6]

3 1a n-Bu3SiH (2c) 4 CH3CO2SiBu3
n (3c) 86[6]

4 CH3CH2CO2H (1b) 2a 4 CH3CH2CO2SiEt3 (3d) 84[7]

5 1b 2c 6 CH3CH2CO2SiBu3
n (3e) 76[8]

6 CH3(CH2)8CO2H (1c) i-Pr3SiH (2d) 7 CH3CH2CO2SiPr3
i (3f) 79[9]

7 C6H5CO2H (1d) 2b 4 C6H5CO2SiPr3
n (3g) 80[10]

8 1d 2c 6 C6H5CO2SiBu3
n (3h) 81[11]

9 1d 2d 6 C6H5CO2SiPr3
i (3i) 80[9]

10 1d t-BuMe2SiH (2e) 6 C6H5CO2SiMe2Bu
t (3j) 85[9]

11 3-BrC6H4CO2H (1e) 2d 6 3-BrC6H4CO2SiPr3
i (3k) 84[12]

12 1e 2e 7 3-BrC6H4CO2SiMe2Bu
t (3L) 82[12]

13 3-ClC6H4CO2H (1f) 2e 7 3-ClC6H4CO2SiMe2Bu
t (3m) 81[12]
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14 4-O2NC6H4CO2H (1g) 2e 8 4-O2NC6H4CO2SiMe2Bu
t (3n) 79[13]

15 2a 5 83[14]

16 1h 2b 5 78[15]

17 1h 2c 6 74[16]

18 2a 5 83[17]

19 1i 2d 6 76[15]

20 1i 2c 6 79[5b]

21 2a 5 87[18]

22 1j 2d 6 81[18]

23 1j 2e 8 72[12]

24 2a 6 86[19]

aCarboxylic acid (20 mmol), silane (20 mmol), CuCl(PPh3)3 (0.8 mmol, 4 mol%).
bIsolated yield.
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Table 2. Ph3P-catalyzed dehydrocoupling of carboxylic acids with silanesa

Run Acid Silane Time (h) Product Yield (%)b

1 CH3CO2H (1a) Et3SiH (2a) 12 CH3CO2SiEt3 (3a) 91[5c]

2 1a n-Pr3SiH (2b) 12 CH3CO2SiPr3
n (3b) 88[6]

3 1a n-Bu3SiH (2c) 14 CH3CO2SiBu3
n (3c) 86[6]

4 CH3CH2CO2H (1b) 2a 15 CH3CH2CO2SiEt3 (3d) 84[7]

5 1b 2c 14 CH3CH2CO2SiBu3
n (3e) 76[8]

6 1b 2b 14 CH3CH2CO2SiPr3
n (3-I) 85[6]

7 CH3(CH2)8CO2H (1c) i-Pr3SiH (2d) 15 CH3(CH2)8CO2SiPr3
i (3f) 79[9]

8 C6H5CO2H (1d) 2d 14 C6H5CO2SiPr3
i (3i) 83[9]

9 1d t-BuMe2SiH (2e) 16 C6H5CO2SiMe2Bu
t (3j) 77[9]

10 3-BrC6H4CO2H (1e) 2d 15 3-BrC6H4CO2SiPr3
i (3k) 80[12]

11 3-ClC6H4CO2H (1f) 2d 14 3-ClC6H4CO2SiPr3
i (3y) 81[12]

12 3-ClC6H4CO2H (1f) 2e 18 3-ClC6H4CO2SiMe2Bu
t (3j) 77[12]

13 4-ClC6H4CO2H (IL) 2a 13 4-ClC6H4CO2SiEt3 (3z) 85[20]

14 4-O2NC6H4CO2H (1g) 2e 18 4-O2NC6H4CO2SiMe2Bu
t (3n) 75[13]

15 C6H5CH2CO2H (1m) 2a 14 C6H5CO2SiEt3 (3o) 80[7]
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16 2a 12 79[19]

17 2d 14 78[9]

18 2d 14 74[12]

19 2a 13 82[18]

20 1j 2d 15 75[18]

21 2a 13 80[19]

22 2b 14 86[21]

23 1i 2c 15 78[5c]

aCarbolic acid (20 mmol), silane (20 mmol), PPh3 (0.8 mmol, 4 mol%).
bIsolated yield.
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Et3SiH (2a) (GC ratio) was found to remain unreacted after 48 h at 1208C.
Also, the reaction progressed more slowly when carried out at 808C or

1008C, with 72% of the triethylsilane (2a) remaining unreacted at 808C and

51% at 1008C after 48 h. Solvents other than DMF, such as xylene and

anisole, were studied but found to be inadequate, as even after 72 h at

1208C significant amounts of triethylsilane (2a) remained unreacted (62%

and 86%, respectively). Phosphines other than triphenylphosphine were also

tested as catalysts, such as tri-n-butylphosphine, tri-tert-butylphosphine, tricy-

clohexylphosphine, tris(2-methylphenyl)phosphine, and 1,2-bis(diphenylpho-

sphino)-ethane (all at 4 mol%, DMF, 1208C), but triphenylphosphine was

found to give the best results.

As with Cu(PPh3)3Cl, the use of PPh3 as catalyst allowed the transform-

ation of a large number of substrates, both of silanes such as n-Pr3SiH (2b),

n-Bu3SiH (2c), and t-BuMe2SiH (2e) and of acids such as benzoic acid (1d)

or substituted benzoic acids (1e–1g, 1l) (all reactions run with 4 mol%

PPh3, DMF, 1208C). Again, the desired unsaturated silyl esters could be

obtained by dehydrogenative coupling reaction of the silanes with cinnamic

acid (1j), furylacrylic acid (1k), 2,4-hexadienoic acid (1o), and methacrylic

acid (1i). In none of the cases was the formation of overreduced by-products

observed (Table 2, runs 16–23).

From these results, it can be seen that although both Cu(PPh3)3Cl and

PPh3 can be used as catalyst in the dehydrogenative preparation of silyl

esters, PPh3 necessitates higher reaction temperatures and longer reaction

times, where the product yields are comparable to those with Cu(PPh3)3Cl

as catalyst. Also, CuCl (at 4 mol% or 20 mol%) was examined as a

catalyst for the reaction but was found to be less reactive, leaving 78% (at

4 mol%) and 56% (at 20 mol%) triethylsilane (2a) unreacted after 12 h in

refluxing acetonitrile.

CONCLUSION

Cu(PPh3)3Cl as well as PPh3 are efficient catalysts for the dehydrogenative

coupling of carboxylic acids (1) with silanes (2), where the corresponding

silyl esters (3) are formed in good yields. No overreduction occurs when

reacting bromo- (1e), chloro- (1f and 1L), or nitrobenzoic (1g) acids with

silanes (2) under the conditions. Especially interesting is the transformation

of unsaturated carboxylic acids under this protocol, leading to unsaturated

silyl esters, where no hydrogenation products are observed. This type of dehy-

drogenative coupling reaction of carboxylic acids with silanes provides

another important example of a one-step, highly selective, atom-economical,

and efficient synthetic method, which in the case of using PPh3 can also be run

under metal-free conditions. Further work on silylation of carboxylic acids is

in progress in our laboratory.

G.-B. Liu, H.-Y. Zhao, and T. Thiemann2724
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EXPERIMENTAL

Typical Procedure with Cu(PPh3)3Cl as Catalyst

To a mixture of propionic acid (1b) (40 mmol, 2.96 g) and triethylsilane (2a)

(40 mmol, 4.64 g), Cu(PPh3)3Cl (0.8 mmol, 710 mg, 0.04 eq.) was added at

room temperature under a nitrogen atmosphere. The reaction mixture was

stirred at 808C for 4 h. The desired triethylsilyl propionate (3d) was

obtained as a colorless oil (yield: 84%) after distillation under reduced

pressure (Table 1, run 4).

Typical Procedure with PPh3 as Catalyst

To a mixture of propionic acid (1b) (40 mmol, 2.96 g) and triethylsilane (2a)

(40 mmol, 4.64 g) in DMF (20 ml), triphenylphosphine (1.6 mmol, 0.42 g,

0.04 eq) was added at room temperature under a nitrogen atmosphere. The

reaction mixture was stirred at 1208C for 15 h (monitored by GC). The

desired triethylsilyl propionate (3d) was obtained (yield: 87%) after distilla-

tion under reduced pressure (Table 2, run 3).

Triethylsilyl Propionate (3d)7

IR (neat): 684, 740, 824, 998, 1062, 1241, 1410, 1464, 1714, 2870,

2954 cm21. 1H NMR (400 MHz, CDCl3): d 0.72 (6H, q, 3J 7.8 Hz), 0.95

(9H, t, 3J 7.8 Hz), 1.14 (3H, t, 3J 7.6 Hz), 2.36 (2H, q, 3J 7.6 Hz). 13C NMR

(100 MHz, CDCl3): d 4.42, 6.46, 9.34, 28.46, 175.20.

All of the silyl esters are known compounds and were compared with

authentic samples [prepared by coupling of carboxylic acids and chlorosilanes

in the presence of a base such as triethylamine or imidazole (t-butylsilyl

esters) in dichloromethane] and were identified on the basis of their IR, 1H

NMR, 13C NMR, and GC-MS spectral data.
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