ORIGINAL PAPER

Application of the highly sensitive labeling reagent to the structural confirmation of readily isomerizable peptides

Chengqian Pan¹ · Takefumi Kuranaga¹ · Hideaki Kakeya¹

Received: 7 November 2020 / Accepted: 20 November 2020 / Published online: 2 January 2021 © The Japanese Society of Pharmacognosy 2021

Abstract

Thioamycolamide A (1) is a biosynthetically unique cytotoxic cyclic microbial lipopeptide that bears a D-configured thiazoline, a thioether bridge, a fatty acid side chain, and a reduced C-terminus. It has gained attention for its unique structure, and very recently we reported the total synthesis of 1 via a biomimetic route. The NMR spectra of synthetic 1 agreed with those of natural 1. However, structural identity between peptidic natural and synthetic compounds is often difficult to confirm by comparison of NMR spectra because their NMR spectra vary depending on the conditions in the NMR tube, which often result in the structural misassignment of peptidic compounds. Especially, our total synthesis based on the putative biomimetic route potentially gives 1 as a diastereomixture at the final step. The problem is that the diastereomers of peptidic mid-sized molecules often exhibit similar properties (such as NMR spectra and bioactivities), and their separation procedures are often laborious. Herein we report the structural confirmation of synthetic 1 by the LC–MS-based chromatographic comparison with the use of our highly sensitive labeling reagent L-FDVDA; the highly sensitive-advanced Marfey's method (HS-advanced Marfey's method). This work demonstrated the utility of our highly sensitive labeling reagent for the structural determination of not only scarce natural products but also readily isomerizable synthetic compounds.

Keyword Natural products \cdot Structural determination \cdot Peptides \cdot D-amino acid \cdot Highly sensitive advanced marfey's method

Introduction

Peptide mid-size molecules, which have intermediate properties between those of antibodies and small molecule drugs, have gained much attention as ideal drug leads [1]. The specific bioactivities of peptide drug leads are exerted by their unique structure, that often featured by the unusual amino acids including D-amino acids [2]. Therefore, the analyses

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s1141 8-020-01472-z.

Takefumi Kuranaga tkuranaga@pharm.kyoto-u.ac.jp

Hideaki Kakeya scseigyo-hisyo@pharm.kyoto-u.ac.jp

¹ Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, YoshidaKyoto 606-8501, Japan of the absolute configurations are inevitable in the structural determination of newly identified peptide natural products.

Thioamycolamide A(1) is a biosynthetically unique cytotoxic cyclic microbial lipopeptide that bears a D-configured thiazoline, a thioether bridge, a fatty acid side chain, and a reduced C-terminus (Fig. 1) [3]. It has gained attention for its unique structure, and very recently we reported a concise total synthesis of 1 based on the putative biosynthetic pathway as summarized in Fig. 2 [4]. In general, peptides are chemically constructed from its C-terminus to N-terminus. Although the Fmoc-based solid-phase total synthesis of peptide that bears reduced C-terminus has been reported [5], peptide 1 possesses a thiazoline moiety, which was readily isomerized through the cleavage of Fmoc group under basic conditions [6-9]. Therefore, to avoid the isomerization of thiazoline, the linear peptide 7 was synthesized from Boc-L-cystine (6) under isomerization-suppressed manner in solution-phase, and then cyclized by one-pot reduction/thio-Michael addition under the neutral conditions to afford 1.

Although the NMR spectra of synthetic 1 agreed with those of natural 1, the spectroscopic data of peptides may

Fig.1 The structures and bioactivities of thioamycolamides A–E (1-5) [3]

Fig. 2 The outline of the total synthesis of 1 [4]

vary depending on the solution conditions, and often result in structural misassignment of peptidic natural products. Structural identity between natural and synthetic compounds is often difficult to confirm only by comparison of NMR spectra because the NMR spectra of peptidic products varies depending on the conditions in the NMR tube (e.g., concentration, pH, and temperature) [10-15]. The essential task at this stage was the structural confirmation of the chemically constructed 1 because the thio-Michael addition used in the synthesis may give 1 as a diastereomeric mixture due to the absence of the chiral catalyst for thio-Michael addition. Additionally, the thiazoline moiety may be isomerized not only during the chemical conversions, but also during the purification steps [6-9] Especially, diastereomers of peptidic mid-sized molecules often exhibit similar properties (such as NMR spectra [10–15] and bioactivities [16]), and their separation procedures are often laborious. While the developed biomimetic route seemed to give **1** as a stereochemically pure form as with its biosynthesis, standard samples of the diastereomers for chromatographic comparison to confirm its purity could not be prepared by this synthetic route.

Results and discussions

To establish the efficiency of our bioinspired total synthesis, we had to determine the purity of synthetic 1, which may be readily isomerized similar to natural 1. Consequently, having developed a rapid synthetic entry to 1, we then turned our attention to the structural validation of the chemically constructed 1. Herein we report the structural confirmation of synthetic 1 by the combination of the chemical synthesis and LC–MS-based chromatographic comparison.

Among the strategies for the structural elucidation of peptides, Marfey's method [17] has been a powerful tool not only for the structural study on the new natural product but also the confirmation of the total synthesis [18]. Recently, we developed new modified Marfey's reagents such as 1-fluoro-2,4-dinitrophenyl-5-L-valine-*N*,*N*-dimeth-ylethylenediamine-amide (L-FDVDA) for "scarce natural products" inspired by a scarce natural product yaku'amide B [19]. The highly sensitive-advanced Marfey's method (HS-advanced Marfey's method) by using new improved reagents enabled the detection of component amino acids resulting from mild chemical degradation of smaller amounts of peptide, which would be useful for the structural analysis of peptide **1** (Fig. 3).

In our preceding study (Fig. 4a) [4], first, natural **1** was carefully hydrolyzed (2 M HCl, 90 °C, 4 h) to determine the stereochemistry of C5 and C8 by Marfey's method [17].

Fig. 3 a The problem in the amino acid analyses of 1. b The outline of this study

Fig. 4 a Structural studies on 1 from a previous work; b Structural studies on 1 in this work

Then the absolute configuration of C2 and C18 were evaluated by a combination of the spectroscopic analyses (CD [20] and NMR) and chemical synthesis. Although a single plausible structure of 1 could be determined by these experiments, a multi-milligram scale of 1, which was totally consumed by the chemical degradation, was required for CD and NMR analyses. Conversely, in this study (Fig. 4b), acid hydrolysates of natural/synthetic 1 were derivatized with the new labeling reagent L-FDVDA and the corresponding derivatives were chromatographically compared with the chemically synthesized standard samples. A minute amount (<0.1 mg) of 1 was enough for the LC–MS-based chromatographic comparison of the 2,4-dinitrophenyl-5-L-valine-N,Ndimethylethylenediamine-amide (DVDA) derivatives (See Fig. S1 in electronic supplementary materials for details including structural confirmation of C5/C8 and C6/C9).

The synthesis of all four possible isomers of **14** is summarized in Fig. 5. Treatment of the previously synthesized thioethers **18a/18b** [4] with HCl liberated the corresponding amines, which were labeled with L-FDVDA by a

14c: X = n-Bu, Y = H

14d: X = H, Y = *n*-Bu

Fig. 5 Synthesis of four possible isomers of thioether 14

14a: X = n-Bu, Y = H

14b: X = H, Y = *n*-Bu

nucleophilic aromatic substitution (S_NAr) reaction leading to **14a/14b**. In the first step of the synthesis of **14c/14d**, the hydroxy function of **15** was protected with a TBS group, which can be cleaved simultaneously with a Boc group by HCl. Second, reduction of the methyl ester of **19**, followed by the tosylation of the generated primary alcohol furnished **20**. Then, **20** was converted to **14c/14d** in the same fashion as **14a/14b**.

Finally, the key labeled thioether **14** derived from natural/synthetic **1** was chromatographically compared with the standard thioethers **14a**–**d** by LC–MS experiments. The retention time of authentic **14** was matched with that of **14a**, confirming unambiguously the structure of natural/ synthetic thioamycolamide A was that shown for **1** (Fig. 6). Moreover, no detectable peaks for **14b–14d** were observed

Fig. 6 The LC–MS charts of thioether 14. See Supplementary Materials in the detail

in the LC–MS experiments of authentic samples even with the use of the highly sensitive labeling reagent, confirming the stereochemical purity of **1**. The thioether bridge was stereoselectively constructed in previous study, which strongly supports our proposed thio-Michael addition pathway for the thioether biosynthesis.

In summary, the structural identity of natural and synthetic 1 was confirmed by LC–MS experiments using our improved new labeling reagent L-FDVDA. In the LC–MS experiments, the stereochemical purity of chemically constructed 1 was verified, which corroborates the efficiency of our bioinspired synthesis and provides insight into the proposal that the thioether bridge can be stereoselectively formed by thio-Michael addition. The utility of the newly developed highly sensitive labeling reagent in the structural determination of unstable natural and synthetic products was also demonstrated. Further studies including the identification of the thiomycolomide A (1) biosynthetic gene cluster and detailed structure–activity relationship (SAR) studies are currently underway and will be reported in due course.

Materials and methods

General remarks ¹H and ¹³C NMR spectra were recorded on a JEOL ECA500 (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR) spectrometer. Chemical shifts are denoted in δ (ppm) relative to residual solvent peaks as internal standard (CDCl₃, ¹H & 7.25, ¹³C & 77.2). ESI-MS and LC-MS experiments were recorded on a Shimadzu LCMS-IT-TOF. Optical rotations were recorded on a JASCO P-2200 polarimeter. High performance liquid chromatography (HPLC) experiments were performed with a SHIMADZU HPLC system equipped with an LC-20AD intelligent pump. All reactions sensitive to air and/or moisture were conducted under nitrogen atmosphere using dry, freshly distilled solvents, unless otherwise noted. All reagents were used as supplied unless otherwise stated. Analytical thin-layer chromatography (TLC) was performed using E. Merck Silica gel 60 F₂₅₄ pre-coated plates. Silica gel column chromatography was performed using 40-50 µm Silica Gel 60 N (Kanto Chemical Co., Inc.).

Structural confirmation of 1

Natural **1** (0.1 mg) and synthetic **1** (0.1 mg) were hydrolyzed with 2 M HCl (100 μ L) for 4 h at 90 °C under N₂ and then dried *in vacuo*, respectively. Each hydrolysate was dissolved in H₂O (100 μ L), and then 1 M NaHCO₃ (20 μ L) was added to the solution. To the resulting solution was added L-FDVDA (0.5% w/v in acetone, 20 μ L), and then stirred at 50 °C for 2 h. The solution was cooled to room temperature, neutralized with 2 M HCl (20 μ L), evaporated, dissolved in

MeCN (100 μ L), filtered through a membrane filter (SHI-MADZU, TORASTTM DISC, PTFE 0.22 μ m), and then analyzed by LC–MS [column: Cadenza CD-C18, 3.0×150 mm; eluent: MeCN/H₂O/formic acid = 50/50/0.1 to 100/0/0.1 (0–30 min), 0.2 mL/min; detection: ESI-positive].

Ester 19

To a solution of Boc-L-Ser-OMe (15) (500 mg, 2.28 mmol) in DMF (10 mL) were added imidazole (466 mg, 6.84 mmol) and TBSCl (516 mg, 3.42 mmol) at 0 °C. After being stirred at room temperature for 0.5 h, saturated aqueous NH₄Cl (20 mL) was added to the reaction mixture. The resulting solution was extracted with EtOAc (30 mL \times 2). The combined organic layer was washed with brine (50 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane = 1:20) to afford **19** (719 mg, 95%) as a colorless oil: $[\alpha]_{D}^{20} = 7.0$ (c 2.22, MeOH); ¹H NMR (500 MHz, CDCl₃) δ 5.33 (d, J = 8.5 Hz, 1H), 4.34 (dt, J=8.8, 2.7 Hz, 1H), 4.03 (dd, J=10.0, 2.6, 1H), 3.81 (dd, J = 10.0, 3.0, 1H), 3.73 (s, 3H), 1.45 (s, 9H), 0.85(s, 9H), 0.02 (s, 3H), 0.01 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 155.6, 80.2, 63.9, 55.7, 52.4, 28.5, 25.8, 18.3, -5.4, -5.5; HRMS (ESI) calcd for C₁₅H₃₁NO₅SiNa⁺ $[M + Na]^+$ 356.1864, found 356.1845.

Tosylate 20

To a solution of **19** (700 mg, 2.10 mmol) in THF (2 mL) were added NaBH₄ (238 mg, 6.30 mmol), LiCl (267 mg, 6.30 mmol), and MeOH (6 mL) at 0 °C. After being stirred at 0 °C for 0.5 h and at room temperature for 1 h, aqueous citric acid solution (10%, w/w, 20 mL) was added to the reaction mixture. The resulting solution was extracted with CH_2Cl_2 (20 mL×2). The combined organic layer was washed with saturated aqueous NaHCO₃ (40 mL) and brine (40 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to afford practically pure alcohol **S1** in supplementary material (664 mg, Figs. S5, S6, and S10) as a colorless oil, which was used in the next reaction without further purification.

To a stirred solution of the above alcohol **S1** (500 mg, ca 1.64 mmol) in pyridine (10 mL) was added TsCl (650 mg, 3.41 mmol) at 0 °C. After being stirred at room temperature overnight, saturated aqueous NH₄Cl (40 mL) was added to the reaction mixture. The resulting solution was extracted with EtOAc (40 mL × 2). The combined organic layer was washed with brine (80 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane = 1:10) to afford **20** (581 mg) as a colorless oil: $[\alpha]^{20}_{D} = -2.2$ (*c* 0.05, MeOH); ¹H NMR (400 MHz,

CDCl₃) δ 7.73 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 4.75 (d, J = 8.3, 1H), 4.03 (m, 2H), 3.80 (s, 1H), 3.62 (dd, J = 10.0, 3.7 Hz, 1H), 3.48 (dd, J = 10.0, 6.2 Hz, 1H), 2.39 (s, 3H), 1.36 (s, 9H), 0.77 (s, 9H), -0.04 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 145.0, 132.6, 130.0, 128.0, 79.8, 67.9, 60.9, 50.4, 28.3, 25.8, 21.7, 18.1, 14.2, 5.6; HRMS (ESI) calcd for C₂₁H₃₇NO₆SiSNa⁺ [M + Na]⁺ 482.2003, found 482.1961.

Thioethers 14a-d

To a solution of **16** (1.5 mg, 4.4 µmol) and **17** (0.6 mg, 3.4 µmol) in MeCN (100 µL) was added K_2CO_3 (1.0 mg) at room temperature. After being stirred for 24 h, the mixture was filtered and concentrated under reduced pressure. To the residue was added 4 M HCl in dioxane (0.2 mL). After being stirred at room temperature for 1 h, the solvent was removed under reduced pressure. The obtained hydrolysate in H₂O (100 µL) were added L-FDVDA (5 mg/mL in acetone, 40 µL) and 1 M NaHCO₃ aqueous solution (20 µL). After being stirred at 50 °C for 2 h, the reaction was quenched with 2 M HCl (20 µL), evaporated, dissolved in MeCN (100 µL), filtered through a membrane filter (SHIMADZU, TORASTTM DISC, PTFE 0.22 µm) to give **14a** for the LC–MS analysis. Diastereomers **14b–14d** were prepared by the same procedure.

Natural 1 (ca 0.1 mg) and synthetic 1 (ca 0.1 mg) were hydrolyzed with 6 M HCl (200 µL) for 12 h at 105 °C, and then dried in vacuo. The obtained hydrolysate was dissolved in MeOH (100 μ L), to which SOCl₂ (10 μ L) was added at 0 °C. After 30 min the solution was dried in vacuo. The obtained mixture was dissolved in H₂O (50 μ L), to which 1 M NaHCO₃ (20 μ L) was added. The hydrolysate added L-FDVDA (0.5% w/v in acetone, 20μ L), and the mixtures were stirred for 2 h at 50 °C. The solution was cooled to room temperature, neutralized with 2 M HCl $(20 \,\mu\text{L})$, evaporated, dissolved in MeCN (100 μL), filtered through a membrane filter (SHIMADZU, TORAST[™] DISC, PTFE 0.22 µm), and then analyzed by LC–MS with 14a-14d [column: Cadenza CD-C18, 3.0×150 mm; eluent: MeCN/H₂O/formic acid = 60/40/0.1 (isocratic min), 0.2 mL/min; detection: ESI-positive].

Acknowledgments This work was financially supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan [17H06401 (H.K.), 18K14396 (T.K.), and 19H02840 (H.K.)], and the Platform Project for Supporting Drug Discovery and Life Science Research from the Japan Agency for Medical Research and Development (AMED), Japan. Contributions from the SUNBOR GRANT, the Daiichi-Sankyo Award in The Society of Synthetic Organic Chemistry Japan, the Takeda Science Foundation, and The Tokyo Biochemical Research Foundation to T.K. are also greatly appreciated.

References

- Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128
- Dang T, Sussmuth RD (2017) Bioactive peptide natural products as lead structures for medicinal use. Acc Chem Res 50:1566–1576
- Pan C, Kuranaga T, Liu C, Lu S, Shinzato N, Kakeya H (2020) Thioamycolamides A–E, sulfur-containing cycliclipopeptides produced by the rare actinomycete *Amycolatopsis* sp. Org Lett 22:3014–3017
- Pan C, Kuranaga T, Kakeya H (2020) Total synthesis of thioamycolamide A via a biomimetic route. Org Biomol Chem 18:8366–8370
- Yamashita T, Kuranaga T, Inoue M (2015) Solid-phase total synthesis of bogorol A: stereocontrolled construction of thermodynamically unfavored (*E*)-2-amino-2-butenamide. Org Lett 17:2170–2173
- Boden CDJ, Pattenden G, Ye T (1995) The synthesis of optically active thiazoline and thiazole derived peptides from N-protected α-amino acids. Synlett 1995:417–419
- Konigsberg W, Hill RH, Craig LC (1961) The oxidation and acid isomerization of bacitracin A. J Org Chem 26:3867–3871
- Hirotsu Y, Shiba T, Kaneko T (1970) Synthetic studies on bacitracin. VII. Isomerization ofamino acid components of thiazoline peptides. Bull Chem Soc Jpn 43:1870–1873
- Yonetani K, Hirotsu Y, Shiba T (1975) Racemization of amino acid residues fused in thiazoline, oxazoline, and imidazoline rings. Bull Chem Soc Jpn 48:3302–3305
- Zou B, Long K, Ma D (2005) Total synthesis and cytotoxicity studies of a cyclic depsipeptide with proposed structure of palau'amide. Org Lett 7:4237–4240
- Sugiyama H, Watanabe A, Teruya T, Suenaga K (2009) Synthesis of palau'amide and its diastereomers: confirmation of its stereostructure. Tetrahedron Lett 50:7343–7345
- Ma B, Litvinov DN, He L, Banerjee B, Castle SL (2009) Total synthesis of celogentin C. Angew Chem Int Ed 48:6104–6107
- Ma B, Banerjee B, Litvinov DN, He L, Castle SL (2010) Total synthesis of the antimitotic bicyclic peptide celogentin C. J Am Chem Soc 132:1159–1171
- Kuranaga T, Sesoko Y, Sakata K, Maeda N, Hayata A, Inoue M (2013) Total synthesis and complete structural assignment of yaku'amide A. J Am Chem Soc 135:5467–5474
- Kuranaga T, Mutoh H, Sesoko Y, Goto T, Matsunaga S, Inoue M (2015) Elucidation and total synthesis of the correct structures of tridecapeptides yaku'amides A and B. Synthesis-driven stereochemical reassignment of the four amino acid residues. J Am Chem Soc 137:9443–9451
- Mutoh H, Sesoko Y, Kuranaga T, Itoh H, Inoue M (2016) Total synthesis and functional evaluation of fourteen stereoisomers of yaku'amide B. Importance of stereochemistry for hydrophobicity and cytotoxicity. Org Biomol Chem 14:4199–4204
- Marfey P (1984) Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun 49:591–596
- Yamashita T, Matoba H, Kuranaga T, Inoue M (2014) Total syntheses of nobilamides B and D: application of traceless Staudinger ligation. Tetrahedron 70:7746–7752
- Kuranaga T, Minote M, Morimoto R, Pan C, Ogawa H, Kakeya H (2020) Highly sensitive labeling reagents for scarce natural products. ACS Chem Biol 15:2499–2506
- Nakanishi K, Berova N, Woody RW (1994) Circular dichroism, principles and applications. VCH Publishers Inc., New York

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.