Chemoenzymatic synthesis of the *trans*-dihydrodiol isomers of monosubstituted benzenes *via anti*-benzene dioxides

Derek R. Boyd, $*^{a,b}$ Narain D. Sharma, a,b Nuria M. Llamas, a Colin R. O'Dowd^a and Christopher C. R. Allen^c

Received 16th March 2006, Accepted 29th March 2006 First published as an Advance Article on the web 2nd May 2006 DOI: 10.1039/b603928f

Enantiopure *cis*-2,3-dihydrodiols, available from dioxygenase-catalysed *cis*-dihydroxylation of monosubstituted benzene substrates, have been used as synthetic precursors of the corresponding *trans*-3,4-dihydrodiols. The six-step chemoenzymatic route from *cis*-dihydrodiol precursors, involving acetonide, tetraol, dibromodiacetate and diepoxide intermediates, and substitution of vinyl bromide and iodide atoms, has been used in the synthesis of ten *trans*-dihydrodoil derivatives of substituted benzenes. The general applicability of the method has been demonstrated by its use in the synthesis of both enantiomers of the *trans*-1,2-and 3,4-dihydrodiol derivatives of toluene.

Introduction

The dioxygenase-catalysed metabolism of mono- and poly-cyclic arenes, in prokaryotic (bacterial) cells, has been widely studied. Since the first report by Gibson *et al.*,¹ several hundred examples of cis-dihydrodiol metabolites have been reported to date, and in many cases the bioproducts have been used as synthetic precursors.²⁻¹² Alternative metabolic pathways for arenes A have been adopted in eukaryotic (animal, plant and fungal) cells involving monooxygenase enzymes to yield the corresponding arene oxides $\mathbf{B}_{1,2}$, $\mathbf{B}_{2,3}$ and $\mathbf{B}_{3,4}$ as initial metabolites (Scheme 1). Arene oxide intermediates are often unstable and rapidly isomerise to phenols (mainly D_2 and D_4) or undergo epoxide hydrolasecatalysed hydrolysis to yield the corresponding trans-dihydrodiols C_{1,2}, C_{2,3} and C_{3,4}. The small number of arene oxide metabolites that have been isolated (or detected) to date include the monocyclic arene oxide derivatives ($\mathbf{B}_{1,2} = \mathbf{B}_{2,3} = \mathbf{B}_{3,4}$ where $\mathbf{R} = \mathbf{H}$ and $\mathbf{B}_{1,2}$ where $R = CO_2Me$) from benzene¹³ (A, R = H) and methyl benzoate¹⁴ (A, $R = CO_2Me$) respectively (Scheme 1). Arene oxide intermediates have also been isolated from polycyclic aromatic hydrocarbon (PAH) metabolism, e.g. naphthalene¹⁵ and polycyclic azaarene metabolism e.g. quinoline.16 Similarly, only a few transdihydrodiol metabolites have been isolated from monocyclic arenes *e.g.* benzene ($C_{1,2} = C_{2,3} = C_{3,4}$ where R = H)¹⁷ and monosubstituted benzene substrates ($C_{2,3}$ where $R = CO_2H$)^{18,19} and ($C_{3,4}$ where R = Cl, Br, CO₂H).^{18,20,21} In contrast, transdihydrodiols are generally the major mammalian metabolites from PAHs including potent carcinogens such as benzo[a]pyrene.²²

trans-Dihydrodiols have been found to be much more stable than the corresponding *cis*-dihydrodiols and thus could, in principle, be more useful as synthetic precursors.²³ However, at present only *trans*-dihydrodiols $C_{2,3}$ and $C_{3,4}$ (R = CO₂H) of

Scheme 1

benzoic acid are available in significant quantities from arene biotransformations,^{18,19} and have proved to be versatile starting compounds for the synthesis of natural products.²⁴ *trans*-Dihydrodiols **C** containing substituents other than a carboxylic group are not yet available as direct bacterial biotransformation products. To address this issue a limited range of *trans*-3,4-dihydrodiols of type $C_{3,4}$ (Scheme 1), were earlier obtained using a novel chemoenzymatic route from the corresponding *cis*-dihydrodiol precursors. Thus, in a preliminary communication we reported that *trans*-diols $C_{3,4}$ (R = Cl, Br, I) can be produced *via* the corresponding *anti*-benzene dioxide intermediates.²⁵ This route has now been adopted for a wider range of both *trans*-dihydrodiol regioisomers and enantiomers.

In the Results and discussion section, the term *cis*-2,3dihydrodiol has been used to describe bioproducts obtained *via cis*-dihydroxylation at the 2,3-bond of a monosubstituted

[&]quot;School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK BT9 5AG. E-mail: dr.boyd@qub.ac.uk; Fax: +44 2890 323321; Tel: +44 2897 274421

^bCenTACatQueen's University Belfast, Belfast, UK BT9 5AG

^cSchool of Biological Sciences, Queen's University Belfast, Belfast, UK BT9 5AG

benzene. Similarly, the terms *trans*-1,2-dihydrodiol and *trans*-3,4-dihydrodiol have been used to describe derivatives formed by epox-idation/hydrolysis at the 1,2- and 3,4-bonds of monosubstituted benzenes. However, it should be noted that the correct systematic nomenclature used in the Experimental section describes each of these 2,3-*cis*-, 1,2-*trans*- and 3,4-*trans*-dihydrodiols as 1,2-diols.

Results and discussion

The *cis*-dihydrodiol metabolites of fluorobenzene (**1a**), chlorobenzene (**1b**), bromobenzene (**1c**), iodobenzene (**1d**), and toluene (**1e**) are readily available in good quantities through large-scale biotransformations, using the UV4 constitutive mutant strain of the soil bacterium *Pseudomonas putida*.²⁶ With the exception of the *cis*-dihydrodiol of fluorobenzene **1a** (*ca*. 60% ee), the other diols **1b–1e** were enantiopure (>98% ee).

A six-step synthetic sequence, involving acetonide formation $(1 \rightarrow 2)$, *cis*-dihydroxylation $(2 \rightarrow 3 \text{ or } 2 \rightarrow 4)$, deprotection $(3 \rightarrow 5)$, dibromodiacetylation $(5 \rightarrow 6)$, benzene dioxide formation $(6 \rightarrow 7)$ and reduction $(7 \rightarrow 8)$, was used to form the corresponding

halogenated *trans*-dihydrodiols **8a–8d** (Scheme 2). The bromine and iodine atoms present in *trans*-dihydrodiols **8c** and **8d** were, in turn, found to be readily substituted yielding additional *trans*dihydrodiols **8f**, **8h** and **8i** (Scheme 3). Minor modification of the procedure, involving separation of the isomeric *cis*-diols **3e** and **4**, *via* dibenzoates **3e**_{Bz} and **4**_{Bz} (Scheme 4), were required for the synthesis of the corresponding toluene *trans*-dihydrodiol **8e** and **14** (Schemes 2 and 4).

Protection of *cis*-dihydrodiols **1a–1e**, as acetonides **2a–2e**, was achieved in high yield (93–97%) using a mixture of acetone and dimethoxypropane. The acetonide derivatives **2a–2e** have been widely used in synthesis, since they are less likely to aromatise than the corresponding *cis*-dihydrodiols.^{27–31} The acetonide group present in compounds **2a–2e** was used to stereodirect further oxidation. Thus, the steric requirements of the acetonides **2a–2d**, using osmium tetroxide and 4-methylmorpholine-*N*-oxide (NMNO), yielded the diol acetonide derivatives **3a–3d** (70–87% yield) exclusively (Scheme 2). *cis*-Dihydroxylation of acetonide **2e** proved to be exceptional; it gave a 60 : 40 mixture of regioisomers

Scheme 2 Reagents: i 2,2-DMP; ii NMNO, OsO₄, Me₂CO, H₂O; iii THF, TFA, H₂O; iv AcOCMe₂COBr, MeCN; v NaOMe, Et₂O; vi Pd(OAc)₂, CO, K₂CO₃, THF, H₂O.

Scheme 3 Reagents: i Pd(OAc)₂, CO, NaOAc, MeOH; ii KOH, H₂O; iii H⁺; iv (Ph₃P)₄Pd, Bu₃SnC₄H₃S; v TBDMSOTf, CH₂Cl₂, Et₃N; vi PhMgBr, Ni(ac)₂, EtO₂; vii Bu₄NF, THF.

Scheme 4 *Reagents*: i OsO₄, NMNO, Me₂CO, H₂O; ii BzCl, pyridine; iii NaOH, MeOH; iv THF, TFA, H₂O; v AcOCMe₂COBr, MeCN; vi NaOMe, Et₂O; vii Pd(OAc)₂, CO, K₂CO₃, THF, H₂O.

3e and **4** in which the diol moiety was *anti* to the acetonide group in each case. This mixture was separated, by flash chromatography (25% EtOAc in hexane), as dibenzoates $3e_{Bz}$ and 4_{Bz} . Basecatalysed hydrolysis of dibenzoate $3e_{Bz}$ regenerated a pure sample of the required diol acetonide 3e (Scheme 4).

Hydrolysis of the diol acetonides **3a–3e**, under acidic conditions (TFA or HCl) yielded (90–96%) the corresponding tetraols **5a–5e** (Scheme 2). Treatment of each of the tetraols **5a–5e**, with 2-acetoxyisobutyryl bromide (2.5 mol equiv.), then afforded (70–88%) bis-*trans*-bromoacetates **6a–6e**. The latter isomers were formed, exclusively, *via* nucleophilic attack of bromide at the allylic positions of the transient 1,3-dioxolane intermediates.

Treatment of bis-*trans*-bromoacetates **6a–6e** with sodium methoxide gave *anti*-benzene dioxides **7a–7e** (68–82% yield, Scheme 2). Dioxides **7a–7e** proved to be configurationally stable at elevated temperatures, in contrast to the corresponding *syn*-benzene dioxides which were found to racemize, at *ca.* 85 °C, *via* an electrocyclic rearrangement through the valence tautomeric 1,4-dioxocins.²⁵

The final stage of the six-step synthesis, from cis-2,3dihydrodiols 1a-1e, involved a novel palladium catalysed reduction reaction (Scheme 2). Aryl iodides can be substituted with a carboxy group, on treatment with catalytic quantities of Pd(OAc)₂ in a mixture of K₂CO₃, THF, H₂O under CO atmosphere.³² When these conditions were applied to the antibenzene dioxide 7d, substitution of the vinylic iodine atom did not occur; instead reduction to the corresponding trans-3,4dihydrodiol 8d (90% yield) was observed. Similar conditions were then employed to convert the other anti-benzene dioxides 7a-7c, 7e to the corresponding *trans*-dihydrodiols 8a-8c, 8e (68-86% yield). While the mechanism of this catalytic redox reaction has not been elucidated yet, it is assumed that it proceeds through the reduction of Pd(II) diacetate to Pd(0) with concomitant oxidation of CO to CO_2 . The assumption was supported by the observation that the anti-benzene dioxides 7 were also reduced, in lower yields, to the corresponding *trans*-dihydrodiols 8, with $(PPh_3)_4Pd$ in a mixture of K₂CO₃, THF, H₂O without the CO atmosphere.

Substitution of the vinylic halogen atoms of *trans*-3,4dihydrodiols **8** (**8c** where $\mathbf{R} = \mathbf{Br}$; **8d** $\mathbf{R} = \mathbf{I}$), prepared by the Pd(0) catalysed reduction method, provided additional members of this series (Scheme 3). Thus, the iodine atom in *trans*-dihydrodiol **8d** was directly replaced by a carbomethoxy group using similar conditions to those used for the reduction of the anti-benzene dioxides 7a-7e (Scheme 2), i.e. Pd-catalysed carbonylation in MeOH containing sodium acetate to yield (80%) trans-3,4dihydrodiol 8f (Scheme 3). The alkaline hydrolysis of the methyl ester group in a racemic sample of compound 8f has been reported to gave racemic carboxylic acid 8g (KOH, H₂O; 74% yield).³³ Both trans-2,3- and 3,4-dihydrodiol derivatives of benzoic acid have also been reported as enantiopure secondary metabolites of the shikimate pathways using recombinant cells of Escherichia coli18 and Klebsiella pneumoniae.¹⁹ trans-3,4-Dihydrodiol 8g is now available by a direct biotransformation procedure,¹⁸ chemical synthesis³³ or by our chemoenzymatic method. Palladium-catalysed crosscoupling, using (PPh₃)₄Pd and 2-(tributylstannyl)thiophene and trans-dihydrodiol 8d as starting material, resulted in the direct replacement of the iodine atom by a 2-thienyl group to give transdihydrodiol 8h (83% yield, Scheme 3).

Protection of the *trans*-dihydrodiol **8c** by reaction with TB-DMSOTf yielded di-TBDMS derivative **9** (92%) and facilitated the indirect cross-coupling of the vinyl bromide with phenyl-magnesium bromide in the presence of nickel(II) acetylacetonate. The phenyl di-TBDMS derivative **10** (52% yield) on deprotection yielded (89%) the *trans*-3,4-dihydrodiol derivative of biphenyl **8i** (Scheme 3).

Diol acetonide **4**, obtained in high yield (87%) by hydrolysis of the corresponding dibenzoate derivative $\mathbf{4}_{Bz}$, was used as a precursor in the synthesis of the (+)-*trans*-1,2-dihydrodiol **14** (Scheme 4). The sequence used for the chemoenzymatic synthesis of diol **14** (70% yield from dioxide **13**) was similar to that used in Scheme 1 and involved tetraol (**11**, 82% yield), bis-bromoacetate (**12**, 79% yield), *anti*-benzene dioxide (**13**, 68% yield) intermediates. The versatility of this method is shown by the synthesis of both *trans*-1,2- (**14**) and *trans*-3,4-dihydrodiols (**8e**) from the corresponding *cis*-2,3-dihydrodiol precursor (**1e**).

The present method also appears to be applicable to a relatively wide range of *trans*-3,4-dihydrodiol derivatives (*e.g.* **8a–8h**, Schemes 2 and 3) that could be synthesised from monosubstituted benzene *cis*-2,3-dihydrodiol precursors (*e.g.* **1a–1e**). Unfortunately, only *trans*-1,2-dihydrodiol derivatives of monosubstituted benzene rings (*ipso-trans*-dihydrodiols) bearing an alkyl (*e.g.* **14**) or aryl group are likely to be sufficiently stable to permit their

Scheme 5 *Reagents*: i *P. putida* UV4/O₂; ii 2,2-DMP; iii OsO₄, NMNO, Me₂CO, H₂O; iv THF, TFA, H₂O; v H₂, Pd–C, NaOAc, MeOH; vi AcOCMe₂COBr, MeCN; vii NaOMe, Et₂O; viii Pd(OAc)₂, CO, K₂CO₃, THF, H₂O.

synthesis and isolation. Thus, no attempts were made to synthesise the *trans*-1,2-dihydrodiols from the corresponding halobenzene *cis*-dihydrodiols (**1a**-1**d**).

Using 4-iodotoluene 15 as substrate, the corresponding *cis*dihydrodiol metabolite 16 had earlier been isolated as a bioproduct from whole cells of P. putida UV4 (65% yield).34 Conversion of the available cis-dihydrodiol 16 (ca. 80% ee) to (-)-transdihydrodiol 14 ($[a]_D$ -37, 82% ee, Scheme 5), was carried out by employing a synthetic sequence similar to that used earlier to convert the cis-dihydrodiol 1e (>98% ee) precursor into (+)trans-dihydrodiol 14 ($[a]_D$ +45, >98% ee, Schemes 2 and 4). The only significant difference was the inclusion of a catalytic hydrogenolysis step $(19 \rightarrow 11)$. The synthetic sequence again involved the formation of acetonide 17, diol acetonide 18, tetraols 19 and 11, bis-bromoacetate 12, and anti-benzene dioxide 13 intermediates, in similar yields to those previously reported, followed by the reduction step to give the (-)-trans-dihydrodiol 14 (Scheme 5). Iodotetraol intermediate 19 was also converted to trans-dihydrodiol 22, via dibromodiacetate 20 and dioxide 21 intermediates, to provide a further example of this novel type of ipso-trans-dihydrodiol. Direct substitution of the iodine atom in compound 22, using methods already described (Scheme 3) could, in principle, yield a further range of ipso-trans-dihydrodiol derivatives of disubstituted benzene substrates.

In a similar manner, hydrogenolysis of the *cis*-dihydrodiol metabolite **16** (82% ee) derived from 4-iodotoluene **15** yielded the *abnormal* (–)-*cis*-dihydrodiol enantiomer of toluene **1e** which was converted to the corresponding (+)-*trans*-3,4-dihydrodiol **8e** (*ca.* 80% ee) using the route shown in Scheme 2.

Conclusion

A generally applicable route to the synthesis of a series of *trans*-3,4and -1,2-dihydrodiols of either absolute configuration, from the corresponding *cis*-2,3-dihydrodiol metabolites, *via* the formation and reduction of the corresponding *anti*-benzene dioxide intermediates, has been devised. A minor modification of this method has allowed the synthesis of both enantiomers of the 1,2- and 3,4-*trans*-dihydrodiols (**14** and **8e**) of toluene.

Experimental

NMR (¹H and ¹³C) spectra were recorded on Bruker Avance DPX-300 and DPX-500 instruments and mass spectra were run at 70 eV, on a VG Autospec Mass Spectrometer, using a heated inlet system. Accurate molecular weights were determined by the peak matching method, with perfluorokerosene as the standard. Elemental microanalyses were carried out on a PerkinElmer 2400 CHN microanalyser. For optical rotation ($[a]_D$) measurements (*ca.* 20 °C, 10⁻¹ deg cm² g⁻¹), a PerkinElmer 341 polarimeter was used. Flash column chromatography and preparative layer chromatography (PLC) were performed on Merck Kieselgel type 60 (250–400 mesh) and PF_{254/366} respectively. Merck Kieselgel type 60F₂₅₄ analytical plates were used for TLC. Compounds (1*S*,2*S*)-**1a** (*ca.* 60% ee), (1*S*,2*S*)-**1b–1d**, (1*S*,2*R*)-**1e**, **2d–6d** (*ca.* 98% ee) and (1*R*,2*R*)-**16** (*ca.* 80% ee), available from earlier work,^{26,34,35} were used for this study.

Syntheses of acetonide derivatives 2a-2c, 2e and 17

To an ice cooled solution of *cis*-dihydrodiol (2.5–10 mmol), in a mixture of acetone (5 cm³) and 2,2-DMP (10 cm³), *p*toluenesulfonic acid (0.05 g) was added. The reaction mixture was stirred in an ice bath (15 min) and then at room temperature until the diol had reacted completely (TLC analysis). The solvents were removed under reduced pressure and the residue extracted with a mixture of water (25 cm³) and diethyl ether (2 × 30 cm³). The diethyl ether extract was washed with water (20 cm³), dried (Na_2SO_4) , concentrated, and the crude acetonide obtained was purified by flash column chromatography (20% EtOAc in hexane). Acetonides **2a–2c** and **2e** were found to be spectrally identical to those reported.^{27–31}

(3a*S*,7a*S*)-4-Fluoro-2,2-dimethyl-3a,7a-dihydro-1,3-benzodioxole 2a²⁷. Colourless oil (1.6 g, 95%); $[a]_D + 2$ (*c* 1.4, CHCl₃); δ_H (500 MHz, CHCl₃) 1.43, 1.46 [3 H × 2, s, C(Me)₂], 4.72 (1 H, dd, $J_{3a,F}$ 9.3, $J_{3a,7a}$ 3.5, 3a-H), 4.87 (1 H, dd, $J_{7a,7}$ 6.0, $J_{7a,3a}$ 3.5, 7a-H), 5.59 (1 H, dd, $J_{7,6}$ 9.7, $J_{7,7a}$ 6.0, 7-H), 5.74 (1 H, dd, $J_{6,7}$ 9.7, $J_{6,5}$ 3.8, 6-H), 5.91 (1 H, dd, $J_{5,F}$ 10.9, $J_{5,6}$ 3.8, 5-H); m/z (EI) 155 (M⁺ - Me, 3%), 128 (3), 113 (31), 112 (100), 100 (15), 97 (4), 84 (17), 73 (6), 57 (34), 53 (8), 43 (29), 39 (15) and 31 (7).

(3a*S*,7a*S*)-4-Chloro-2,2-dimethyl-3a,7a-dihydro-1,3-benzodioxole 2b²⁸. Colourless oil (0.6 g, 94%); $[a]_D$ +43 (*c* 0.67, CHCl₃); (lit.²⁸ $[a]_D$ +45); δ_H (300 MHz, CDCl₃) 1.42, 1.43 [3 H × 2, s, C(Me)₂], 4.68 (1 H, d, $J_{3a,7a}$ 5.3, 3a-H), 4.78 (1 H, dd, $J_{7a,3a}$ 5.3, $J_{7a,7}$ 4.1, 7a-H), 5.92 (2 H, m, $J_{6,5}$ 4.1, 6-H, 7-H), 6.12 (1 H, d, $J_{5,6}$ 4.1, 5-H).

(3a*S*,7a*S*)-4-Bromo-2,2-dimethyl-3a,7a-dihydro-1,3-benzodioxole 2 c^{29} . Colourless oil (0.57 g, 95%); [a]_D +45 (c 0.70, CHCl₃); $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.43, 1.44 [3 H × 2, s, C(Me)₂], 4.73 (2 H, m, 3a-H, 7a-H), 5.88 (1 H, $J_{6,7}$ 9.6, $J_{6,5}$ 6.0, 6-H), 5.96 (1 H, m, 7-H), 6.35 (1 H, d, $J_{5,6}$ 6.0, 5-H).

(3a*R*,7a*S*)- and (3a*S*,7a*R*)-2,2,4-Trimethyl-3a,7a-dihydro-1,3benzodioxole 2e³¹. Colourless oil (1.3 g, 97%); $[a]_{\rm D}$ +98 (c 0.65, CHCl₃); (lit.³¹ $[a]_{\rm D}$ +95); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.27, 1.43 [3 H × 2, s, C(Me)₂], 1.89 (3 H, s, Me), 4.40 (1 H, s, $J_{3a,7a}$ 8.7, 3a-H), 4.63 (1 H, dd, $J_{7a,3a}$ 8.7, $J_{7a,7}$ 4.2, 7a-H), 5.77 (1 H, $J_{5,6}$ 6.2, 5-H), 5.83 (1 H, dd, $J_{7,6}$ 9.7, $J_{7,7a}$ 4.2, 7-H), 5.97 (1 H, dd, $J_{6,7}$ 9.7, $J_{6,5}$ 6.2, 6-H). (3a*S*,7a*R*) Enantiomer, colourless oil, $[a]_{\rm D}$ –89 (c 0.53, CHCl₃).

(3a*S*,7a*S*)-4-Iodo-2,2,7-trimethyl-3a,7a-dihydro-1,3-benzodioxole 17. Colourless viscous oil (1.07 g, 93%); $R_{\rm f}$ 0.53 (10% Et₂O in hexane); $[a]_{\rm D}$ +69 (*c* 0.77, CHCl₃); (Found: M⁺, 291.9949. C₁₀H₁₃O₂I requires 291.9960); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.43, 1.44 [3 H × 2, s, C(Me)₂], 1.88 (3 H, s, Me), 4.46 (1 H, d, $J_{7a,3a}$ 8.4, 7a-H), 4.74 (1 H, d, $J_{3a,7a}$ 8.4, 3a-H), 5.50 (1 H, d, $J_{6.5}$ 6.2, 6-H) 6.55 (1 H, d, $J_{5.6}$ 6.2, 5-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 20.29, 25.39, 26.90, 76.03, 78.82, 96.27, 106.33, 120.54, 134.30, 134.91; *m/z* (EI) 292 (M⁺, 78%), 277 (84), 235 (80), 165 (24), 150 (87), 127 (86), 109 (90), 77 (77), 65 (87), 59 (84), 41 (93), 38 (85) and 29 (100).

Syntheses of diol acetonides 3a-3c and 18

To a solution of acetonides **2a–2c** or **17** (1.5–3.0 mmol), in a mixture of acetone–water (5 : 1; 15 cm³), was added NMNO (2.3 mol equiv.) and a catalytic amount of osmium tetroxide (*ca.* 0.002 g). The reaction mixture was stirred at room temperature until the dihydroxylation was completed (TLC analysis). A saturated solution of sodium metabisulfite (1 cm³) was added and the reaction mixture stirred at room temperature (30 min). The solvents were removed *in vacuo*, a saturated solution of NaCl was added (30 cm³), and the mixture extracted with EtOAc (2 × 35 cm³). The organic extract was dried (Na₂SO₄), concentrated under reduced pressure, and the crude diol acetonides **3a–3c** or **18** purified by flash column chromatography (50% EtOAc in hexane).

(3aS,4R,5R,7aS)-7-Fluoro-2,2-dimethyl-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol 3a. Viscous oil which solidified on standing to give an off-white crystalline solid (0.27 g, 89%); mp 48–50 °C; $[a]_D$ –46 (*c* 0.77, CHCl₃); (Found: M⁺ – Me 189.0566. C₈H₁₀FO₄ requires 189.0563); δ_H (500 MHz, CDCl₃) 1.39, 1.47 [3 H × 2, s, C(Me)₂], 4.01 (1 H, dd, $J_{4,3a}$ 6.3, $J_{4,5}$ 3.7, 4-H), 4.45 (1 H, dd, $J_{5,4}$ 4.8, $J_{5,6}$ 4.4, 5-H), 4.48 (1 H, dd, $J_{3a,7a}$ 7.7, $J_{3a,4}$ 6.3, 3a-H), 4.71 (1 H, dd, $J_{7a,F}$ 4.8, $J_{7a,3a}$ 3.4, 7a-H), 5.43 (1 H, dd, $J_{6,F}$ 14.7, $J_{6,5}$ 4.4, 6-H); δ_C (125 MHz, CDCl₃) 26.02, 27.86, 65.59, 70.40, 70.90, 76.19, 106.00, 111.04, 157.60; *m/z* (EI) 189 (M⁺ – Me, 74%), 129 (19), 117 (12), 111 (25), 101 (100), 99 (18), 83 (17), 73 (12), 59 (33) and 55 (29).

(3a*S*,4*R*,5*R*,7a*S*)-7-Chloro-2,2-dimethyl-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol 3b. Colourless oil (0.50 g, 72%); $[a]_{\rm D}$ -8 (*c* 0.67, CHCl₃) (lit.³⁶ $[a]_{\rm D}$ -8.1); $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.41, 1.44 [3 H × 2, s, C(Me)₂], 2.78 (1 H, br s, OH), 2.83 (1 H, br s, OH), 4.16 (1 H, m, 4-H), 4.41 (1 H, br s, 5-H), 4.46 (1 H, m, $J_{3a,7a}$ 5.6, 3a-H), 4.60 (1 H, d, $J_{7a,3a}$ 5.6, 7a-H), 5.93 (1 H, d, $J_{6,5}$ 3.4, 6-H).

(3a*S*,4*R*,5*R*,7a*S*)-7-Bromo-2,2-dimethyl-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol 3c. Colourless crystals (0.4 g, 70%); mp 114 °C (lit.³⁶ mp 113–114 °C); $[a]_D - 11 (c \ 0.57, CHCl_3)$, (lit.³⁵ $[a]_D - 11.6$); δ_H (500 MHz, CHCl₃) 1.41, 1.44 [3 H × 2, s, C(Me)₂], 2.52 (2 H, br s, OH), 4.19 (1 H, t, $J_{4,3a} = J_{4,5}$ 5.4, 4-H), 4.37 (1 H, br s, 5-H), 4.45 (1 H, m, 7a,-H), 4.66 (1 H, dd, $J_{3a,4}$ 5.4, $J_{3a,2}$ 1.4, 3a-H), 6.16 (1 H, dd, $J_{6,5}$ 3.2, $J_{6,2}$ 0.9, 6-H).

(3a*R*,4*R*,5*R*,7a*S*)-7-Iodo-2,2,4-trimethyl-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol 18. Colourless crystals (0.9 g, 91%); mp 149 °C (EtOAc–hexane); $R_{\rm f}$ 0.47 (50% EtOAc in hexane); $[a]_{\rm D}$ +34 (*c* 0.46, CHCl₃); (Found: C 36.45, H 4.4; C₁₀H₁₅IO₄ requires C 36.8, H 4.6%); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.39 (3 H, s, Me), 1.39, 1.46 [3 H × 2, s, C(Me)₂], 4.10 (1 H, d, $J_{3a,7a}$ 4.8, 3a-H), 4.11 (1 H, d, $J_{5,6}$ 2.1, 5-H), 4.61 (1 H, d, $J_{7a,3a}$ 4.8, 7a-H), 6.32 (1 H, d, $J_{6,5}$ 2.1, 6-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 24.30, 27.01, 27.99, 71.70, 72.94, 79.45, 81.10, 101.93, 110.89, 139.79; *m/z* (EI) 326 (M⁺, 2%), 311 (30), 283 (27), 253 (5), 251 (12), 225 (22), 223 (10), 207 (9), 195 (12), 167 (11), 141 (7), 126 (15), 124 (100), 115 (89), 95 (33), 81 (16), 74 (27), 68 (31), 65 (8) and 59 (88).

Syntheses of diol acetonides 3e and 4

Catalytic *cis*-dihydroxylation (OsO₄) of acetonide **2e** (1.0 g, 6.0 mmol) gave a mixture, of diastereoisomeric diols **3e** and **4**, which was converted into the corresponding benzoate derivatives (benzoyl chloride/pyridine). The mixture was separated by flash column chromatography (25% EtOAc in hexane) to provide pure samples of dibenzoates **3e**_{Bz} and **4**_{Bz}.

(3a*R*,4*S*,5*R*,7a*R*) - 4 - (Benzyloxy) - 2,2,7 - trimethyl - 3a,4,5,7atetrahydro-1,3-benzodioxol-5-yl benzoate $3e_{Bz}$. Colourless viscous oil (1.38 g, 56%); R_f 0.48 (25% EtOAc in hexane); $[a]_D$ -252 (*c* 0.72, CHCl₃); (Found: M⁺ - Me, 393.1323. C₂₃H₂₁O₆ requires 393. 1338); δ_H (500 MHz, CDCl₃) 1.43, 1.51 [3 H × 2, s, C(Me)₂], 1.96 (3 H, s, Me), 4.66 (1 H, d, $J_{7a,3a}$ 6.1, 7a-H), 4.75 (1 H, dd, $J_{3a,4}$ 8.2, $J_{3a,7a}$ 6.1, 3a-H), 5.52 (1 H, dd, $J_{4,5}$ 3.9, $J_{4,3a}$ 8.2, 4-H), 5.75 (1 H, dd, $J_{5,6}$ 4.1, $J_{5,4}$ 3.9, 5-H), 5.85 (1 H, d, $J_{6,5}$ 4.1, 6-H), 7.35-7.42 (4 H, m, Ar-H), 7.50-7.55 (2 H, m, Ar-H), 7.96-7.99 (4 H, m, Ar-H); m/z (EI) 393 (M⁺ - Me, 17%), 366 (14), 245 (54), 228 (62), 147 (23), 106 (90), 95 (15), 77 (61), 51 (100), 43 (85) and 39 (32). (3a*S*,4*R*,5*R*,7a*S*) - 4 - (Benzyloxy) - 2,2,4 - trimethyl - 3a,4,5,7atetrahydro-1,3-benzodioxol-5-yl benzoate 4_{Bz}. White crystalline solid (1.0 g, 41%); mp 111–112 °C (from hexane); $R_{\rm f}$ 0.29 (25% EtOAc in hexane); $[a]_{\rm D}$ +146 (*c* 0.99, CHCl₃); (Found: C 70.45, H 5.6; C₂₄H₂₄O₆ requires C 70.6, H 5.9%); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.36, 1.38 [3 H × 2, s, C(Me)₂], 1.42 (3 H, s, Me), 4.23 (1 H, d, $J_{3a,7a}$ 5.2, 3a-H), 4.73 (1 H, dd, $J_{7a,3a}$ 5.2, $J_{7a,57}$ 3.9, 7a-H), 5.65 (1 H, d, $J_{5,6}$ 3.9, 5-H), 5.70 (1 H, m, $J_{7,6}$ 10.3, $J_{7,7a}$ 3.9, 7-H), 5.99 (1 H, dd, $J_{6,7}$ 10.3, $J_{6,5}$ 3.9, 6-H), 7.46–7.49 (4 H, m, Ar-H), 7.60–7.62 (2 H, m, Ar-H), 8.07–8.13 (4 H, m, Ar-H); *m/z* (EI) 409 [(M + H)⁺, 0.2%], 289 (12), 231 (5), 203 (6), 125 (11), 115 (19), 105 (100), 86 (22), 84 (35) and 77 (24).

(3aS,4R,5R,7aR)- and (3aR,4S,5S,7aS)-2,2,7-Trimethyl-3a,4, 5,7a-tetrahydro-1,3-benzodioxole-4,5-diol 3e. A solution of dibenzoate $3e_{Bz}$ (1.5 g, 3.7 mmol) in MeOH (30 cm³) was treated with aqueous NaOH (5%, 15 cm³) and the mixture stirred at room temperature until the starting material had reacted completely (TLC analysis). A saturated aqueous solution of NH₄Cl (5 cm³) was then added and the mixture heated (15 min) on a water bath (60 °C). The solvents were removed under reduced pressure and the residue obtained was purified by flash column chromatography (50% EtOAc in hexane). Diol acetonide 3e was obtained as a white crystalline solid (0.7 g, 95%); mp 90 °C; [*a*]_D –96 (*c* 0.58, CHCl₃); (Found: M⁺, 200.1042. $C_{10}H_{16}O_4$ requires 200.1048); δ_H (500 MHz, CDCl₃) 1.39, 1.44 [3 H × 2, s, C(Me)₂], 1.87 (3 H, s, Me), 3.89 (1 H, dd, J_{4,5} 3.7, J_{4,3a} 7.1, 4-H), 4.26 (1 H, dd, J_{5,4} 3.7 J_{5,6} 3.2, 5-H), 4.34 (1 H, dd, *J*_{3a,4} 7.1, *J*_{3a,7a} 6.0, 3a-H), 4.48 (1 H, d, *J*_{7a,3a} 6.0, 7a-H), 5.63 (1 H, d, J_{6,5} 3.2, 6-H); δ_C(125 MHz, CDCl₃) 20.39, 25.99, 27.95, 66.41, 71.20, 75.42, 75.91, 109.45, 124.29, 136.04; m/z (EI) 200 (M⁺, 18%), 185 (90), 167 (61), 125 (91), 112 (27), 109 (38), 107 (90), 100 (93), 86 (32), 84 (100), 82 (89), 77 (93), 73 (95), 66 (92), 60 (87), 57 (93), 50 (87), 44 (72), 42 (95), 39 (93), 30 (47) and 27 (86).

(3aR,4S,5S,7aS) Enantiomer, mp 85 °C, $[a]_D$ +76.0 (*c* 0.51, CHCl₃).

(3a*S*,4*S*,5*S*,7a*S*) - 2,2,4 - Trimethyl - 3a,4,5,7a - tetrahydro - 1,3benzodioxole-4,5-diol 4. Alkaline hydrolysis of the dibenzoate 4_{Bzz} (0.9 g, 2.2 mmol) under similar conditions, yielded diol acetonide 4 as white crystalline solid (0.4 g, 91%); mp 59–60 °C (from EtOAc– hexane); [*a*]_D +79 (*c* 0.62, CHCl₃); (Found: M⁺ – Me, 184.9923. C₉H₁₃O₄ requires 184.9937); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.36 (3 H, s, Me), 1.36, 1.46 [3 H × 2, s, C(Me)₂], 2.63 (1 H, br s, OH), 2.87 (1 H, br s, OH), 4.13 (1 H, s, 5-H), 4.18 (1 H, d, $J_{3a,7a}$ 5.0, 3a-H), 4.64 (1 H, dd, $J_{7a,3a}$ 5.0, $J_{7a,7}$ 2.7, 7a-H), 5.67 (1 H, m, $J_{7.6}$ 10.3, 7-H), 5.75 (1 H, d, $J_{6.7}$ 10.3, 6-H); δ_{C} (125 MHz, CDCl₃) 23.82, 26.57, 27.78, 69.29, 72.50, 73.31, 79.82, 109.59, 127.67, 129.62; *m/z* (EI) 185 (M⁺ – Me, 39%), 157 (7), 127 (31), 125 (54), 115 (98), 107 (27), 100 (7), 97 (66), 87 (12), 83 (24), 81 (62), 74 (33), 69 (28), 59 (62), 53 (25), 45 (17), 43 (98), 41 (68), 32 (100) and 28 (90).

Syntheses of tetraols 5a–5c, 5e, 11 and 19

Method (a): a solution of the diol acetonide (1.5-5.0 mmol) in MeOH (25 cm³) was treated with aqueous HCl solution (1.5 M, 10 cm³) and the mixture heated at 50 °C until the starting material had reacted completely (TLC analysis). The crude tetraol, obtained after removal of the solvents, was purified either by chromatography or by crystallization. Method (b): alternatively,

a solution of the diol acetonide (1 mmol), in a mixture of THF (4 cm³), water (1 cm³) and TFA (0.5 cm³), was heated at 50 $^{\circ}$ C until the starting material had reacted completely.

(1*R*,2*R*,3*S*,4*S*)-5-Fluoro-5-cyclohexene-1,2,3,4-tetraol 5a. Removal of the acetonide group of diol 3a (method a) gave tetraol 5a as colourless crystals (0.7 g, 90%); mp 152–155 °C (from MeOH–acetone); [*a*]_D –3.0 (*c* 0.5, MeOH); (Found: C 43.6, H 5.5; C₆H₉FO₄ requires C 43.9, H 5.5%); $\delta_{\rm H}$ (500 MHz, CD₃OD) 3.54 (1 H, dd, $J_{3,2}$ 10.3, $J_{3,4}$ 4.4, 3-H), 3.68 (1 H, dd, $J_{2,3}$ 10.3, $J_{2,1}$ 4.7, 2-H), 4.07 (1 H, dd, $J_{1,6}$ 5.3, $J_{1,2}$ 4.7, 1-H), 4.12 (1 H, dd, $J_{4,F}$ 8.0, $J_{4,3}$ 4.4, 4-H), 5.25 (1 H, dd, $J_{6,F}$ 13.8, $J_{6,1}$ 5.3, 6-H); $\delta_{\rm C}$ (125 MHz, CD₃OD) 64.88, 66.80, 68.23, 68.56, 106.38, 160.99; *m/z* (EI) 164 (M⁺, 2%), 146 (2), 128 (4), 129 (33), 117 (8), 113 (12), 111 (21), 104 (43), 85 (31), 71 (74), 57 (79), 43 (100), 39 (17), 32 (13) and 29 (27).

(1*R*,2*R*,3*S*,4*S*)-5-Chloro-5-cyclohexene-1,2,3,4-tetraol 5b. Cleavage of acetonide group of diol 3b (method b) yielded tetraol 5b, a white solid, (0.56 g, 92%); mp 147–149 °C (from acetone); $[a]_{\rm D}$ –161 (*c* 0.47, MeOH); (Found: M⁺ – H₂O, 162.0091. C₆H₇ClO₃ requires 162.0084); $\delta_{\rm H}$ (500 MHz, D₂O) 4.01 (1 H, dd, $J_{3,2}$ 9.9, $J_{3,4}$ 4.4, 3-H), 4.14 (1 H, dd, $J_{2,3}$ 9.9, $J_{2,1}$ 5.1, 2-H), 4.44 (1 H, d, $J_{4,3}$ 4.4, 4-H), 4.47 (1 H, t, $J_{1,2} = J_{1,6}$ 5.1, 1-H), 6.19 (1 H, d, $J_{6,1}$ 5.1, 6-H); $\delta_{\rm H}$ (75 MHz, D₂O) 66.73, 68.21, 68.99, 71.22, 127.37, 135.47; *m*/*z* (EI) 162 (M⁺ – H₂O, 13%), 133 (22), 122 (75), 120 (100), 93 (42), 91 (82), 60 (40), 39 (36) and 29 (40).

(1*R*,2*R*,3*S*,4*S*)-5-Bromo-5-cyclohexene-1,2,3,4-tetraol 5c. Cleavage of acetonide group of diol 3c (method b) gave tetraol 5c as colourless crystals (0.32 g, 94%); mp 99–102 °C (from MeOH–acetone); $[a]_D -74$ (*c* 0.47, MeOH); (Found: C 32.3, H 3.9; C₆H₉BrO₄ requires C 32.1, H 4.0%); δ_H (500 MHz, D₂O) 3.95 (1 H, dd, $J_{3,2}$ 9.8, $J_{3,4}$ 4.3, 3-H), 4.09 (1 H, dd, $J_{2,3}$ 9.8, $J_{2,1}$ 4.4, 2-H), 4.36 (1 H, m, 1-H), 4.44 (1 H, d, $J_{4,3}$ 4.3, 4-H), 6.36 (1 H, d, $J_{6,1}$ 5.1, 6-H); δ_C (75 MHz, D₂O) 67.45, 68.28, 69.34, 72.70, 126.51, 131.76; *m*/*z* (EI) 206 (M⁺ – H₂O, 4%), 177 (5), 164 (100), 135 (28), 127 (7), 109 (12), 81 (31), 69 (22), 60 (55).and 57 (26).

(1*R*,2*R*,3*R*,4*R*)- and (1*S*,2*S*,3*S*,4*R*)-5-Methyl-5-cyclohexene-1,2,3,4-tetraol 5e. Deprotection of the acetonide group of diol 3e (method a) yielded tetraol 5e (0.8 g, 80%), as a white crystalline solid, mp 176–178 °C (from MeOH); $[a]_D - 280 (c \, 0.86, \, H_2O) (lit.^{37} [a]_D - 272, \, H_2O)$; (Found: C 52.5, H 7.4; C₇H₁₂O₄ requires C 52.5, H 7.5%); δ_H (500 MHz, D₂O) 1.73 (3 H, s, Me), 3.76 (1 H, dd, $J_{2,3}$ 10.5, $J_{2,1}$ 4.0, 2-H), 3.80 (1 H, dd, $J_{3,2}$ 10.5, $J_{3,4}$ 3.9, 3-H), 4.02 (1 H, d, $J_{4,3}$ 3.9, 4-H), 4.15 (1 H, dd, $J_{1,6}$ 5.0, $J_{1,2}$ 4.0, 1-H), 5.55 (1 H, d, $J_{6,1}$ 5.0, 6-H); δ_C (125 MHz, D₂O) 20.06, 66.91, 68.69, 69.07, 70.82, 124.38, 138.77; *m*/*z* (EI) 142 (M⁺ – H₂O, 10%), 124 (16), 133 (11), 100 (97), 96 (34), 81 (11), 71 (100), 69 (17), 60 (10), 57 (18), 55 (25), 43 (59), 41 (49), 39 (34) and 31 (15).

(1S,2S,3S,4R) Enantiomer, white solid, mp 178–180 °C, $[a]_D$ –220 (c 0.89, H₂O).

(1*S*,2*S*,3*S*,4*S*)-2-Methyl-5-cyclohexene-1,2,3,4-tetraol 11. Deprotection of the acetonide group of diol 4 (method a) yielded tetraol 11 as colourless viscous oil (1.6 g, 82%); $[a]_D$ +43 (*c* 0.58, MeOH); (Found: M⁺ – H₂O, 142.0634. C₇H₁₀O₃ requires 142.0630); δ_H (500 MHz, D₂O) 1.21 (3 H, s, Me), 3.67 (1 H, d, $J_{3,4}$ 3.3, 3-H), 3.98 (1 H, d, $J_{1,6}$ 2.7, 1-H), 4.33 (1 H, dd, $J_{4,5} = J_{4,3}$ 3.3, 4-H), 5.52–5.54 (2 H, br s, 5-H, 6-H); δ_C (125 MHz, D₂O) 22.83, 66.85, 69.71, 74.97, 75.96, 129.38, 130.09; m/z (EI) 142 (M⁺ – H₂O, 6%), 125 (20), 113 (13), 99 (90), 97 (33), 95 (24), 86 (82), 81 (50), 74 (88), 69 (36), 57 (85), 55 (68), 53 (44), 45 (25), 43 (83), 41 (71), 39 (66), 21 (50), 29 (100) and 27 (61).

(1*R*,2*R*,3*R*,4*S*)-5-Iodo-2-methyl-5-cyclohexene-1,2,3,4-tetraol 19. Deprotection of diol acetonide 18 (method a) furnished tetraol 19 as colourless glassy solid (0.8 g, 90%); mp 98–100 °C; *R*_r 0.27 (10% MeOH in CHCl₃); [*a*]_D –20 (*c* 1.1, MeOH); (Found: M⁺, 285.9703. C₇H₁₁IO₄ requires 285.9702); $\delta_{\rm H}$ (500 MHz, D₂O) 1.35 (3 H, s, Me), 3.80 (1 H, d, *J*_{3,4} 3.8, 3-H), 4.05 (1 H, d, *J*_{1,6} 4.2, 1-H), 4.30 (1 H, d, *J*_{4,3} 3.8, 4-H), 6.39 (1 H, d, *J*_{6,1} 4.2, 6-H); $\delta_{\rm C}$ (125 MHz, D₂O) 22.15, 71.41, 71.61, 73.25, 75.25, 104.47, 140.73; *m/z* (EI) 286 (M⁺, 28%), 268 (99), 250 (13), 212 (84), 123 (23), 85 (47), 74 (92), 57 (57), 43 (73), 31 (100) and 7 (21).

Hydrogenolysis of iodotetraol 19 to yield (-)-tetraol 11

A solution of the iodotetraol **19** (0.3 g, 1 mmol) in MeOH (10 cm³) containing NaOAc·3H₂O (2 mmol) and Pd/C (3%, 0.05 g) was stirred under hydrogen atmosphere, at atmospheric pressure. When the hydrogenolysis was complete (TLC analysis), the reaction mixture was filtered through a pad of celite and the filtrate concentrated under reduced pressure. The crude hydrogenolysed product was purified by charcoal–celite (1 : 1, w/w) column chromatography (water \rightarrow 10% EtOH in water) to yield (1*R*,2*R*,3*R*,4*R*)-2-methyl-5-cyclohexene-1,2,3,4-tetraol **11** (0.16 g, 95%); [*a*]_D – 34.4 (*c* 0.58, MeOH). The sample had identical spectral characteristics to (1*S*,2*S*,3*S*,4*S*)-tetraol **11**.

Syntheses of bis-bromoacetates 6a-6c, 6e, 12 and 20

To a stirred suspension of the tetraol (0.3-3.0 mmol) in dry acetonitrile (10 cm^3) at 0 °C under nitrogen atmosphere, 1bromocarbonyl-1-methyl-ethylacetate (2.5 mol equiv.) was added dropwise. The reaction mixture was kept stirring at 0 °C (15 min) and then at room temperature (2 h). The solvent was removed under reduced pressure and the residue thoroughly extracted with a mixture of ether (50 cm³) and 3% aqueous NaHCO₃ (30 cm³). The ether extract was washed with water, dried (Na₂SO₄), and concentrated to afford the crude sample of bis-bromoacetate.

(1*S*,2*R*,5*S*,6*S*)-6-(Acetyloxy)-2,5-dibromo-3-fluoro-3-cyclohexenyl acetate 6a. Colourless crystals (1 g, 87%); mp 122–129 °C (from toluene–hexane); R_f 0.45 (25% EtOAc in hexane); $[a]_D$ +35 (*c* 0.71, CHCl₃); (Found: M⁺ – OAc, 312.8883. C₈H₈Br₂FO₂ requires 312.8875); δ_H (500 MHz, CDCl₃) 2.11, 2.13 (3 H each, s, 2 × OCOMe), 4.65 (1 H, dd, J_{2F} 8.2, $J_{2.1}$ 4.8, 2-H), 4.70 (1 H, dd, $J_{5.6}$ 5.1, $J_{5.4}$ 3.5, 5-H), 5.41 (1 H, dd, $J_{6.1}$ 7.2, $J_{6.5}$ 5.1, 6-H), 5.50 (1 H, dd, $J_{1.6}$ 7.2, $J_{1.2}$ 4.8, 1-H), 5.75 (1 H, dd, J_{4F} 12.2, $J_{4.5}$ 3.5, 4-H); δ_C (125 MHz, CDCl₃) 20.64, 20.65, 39.40, 40.80, 71.59, 72.52, 107.70, 154.48 ($J_{C3,F}$ 2.0), 169.03, 169.14; m/z (EI) 313 (M⁺ – OAc, 33%), 295 (12), 233 (19), 193 (45), 129 (51), 112 (47), 101 (81), 70 (33), 59 (70) and 43 (100).

(1*S*,2*R*,5*S*,6*S*)-6-(Acetyloxy)-2,5-dibromo-3-chloro-3-cyclohexenyl acetate 6b. White crystals (0.55 g, 83%); mp 77–79 °C (from MeOH); $[a]_D$ +276 (*c* 0.53, CHCl₃); (Found: C 30.8, H 2.9; C₁₀H₁₁Br₂ClO₄ requires C 30.8, H 2.8%); δ_H (500 MHz, CDCl₃) 2.11, 2.13 (3 H each, s, 2 × OCOMe), 4.66 (2 H, m, 2-H, 5-H), 5.41(1 H, dd, $J_{1.6}$ 6.8, $J_{1.2}$ 4.27, 1-H), 5.54 (1 H, dd, $J_{6.1}$ 6.8, $J_{6.5}$ 4.2, 6-H), 6.22 (1 H, d, $J_{4,5}$ 3.1, 4-H); $\delta_{\rm C}(125$ MHz, CDCl₃) 20.66, 20.67, 41.51, 46.17, 70.98, 72.49, 127.14, 132.61, 168.99, 169.10; m/z (EI) 391 (M⁺, 10%), 389 (4), 311 (9), 309 (7), 251 (33), 249 (26), 209 (50), 207 (45) and 128 (50).

(1*S*,2*R*,5*S*,6*S*)-6-(Acetyloxy)-2,3,5-tribromo-3-cyclohexenyl acetate 6c. White crystals (0.2 g, 80%); mp 88–90 °C (from CHCl₃– hexane); $[a]_{\rm D}$ +189 (*c* 0.51, CHCl₃); (Found: C 27.55, H 2.5; C₁₀H₁₁Br₃O₄ requires C 27.6, H 2.55%); $\delta_{\rm H}$ (500 MHz, CDCl₃) 2.11, 2.13 (3 H each, s, 2 × OCOMe), 4.60 (1 H, m, 5-H), 4.71 (1 H, m, 2-H), 5.42 (1 H, dd, $J_{1.6}$ 6.8, $J_{1.2}$ 4.9, 1-H), 5.55 (1 H, dd, $J_{6.1}$ 6.9, $J_{6.5}$ 4.8, 6-H), 6.43 (1 H, dd, $J_{4.5}$ 3.6, $J_{4.2}$ 1.1, 4-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 20.66, 20.67, 42.07, 48.17, 70.89, 72.41, 123.10, 131.07, 168.97, 169.10; *m*/*z* (EI) 435 (M⁺, 4%), 355 (25), 297 (31), 295 (49), 293 (32), 255 (50), 253 (65), 251 (52), 174 (57), 172 (58) and 43 (100).

(1*S*,2*S*,5*S*,6*S*)- and (1*R*,2*R*,5*R*,6*R*)-6-(Acetyloxy)-2,5-dibromo-3-methyl-3-cyclohexenyl acetate 6e. White crystalline solid (0.45 g, 88%); mp 80–82 °C; $[a]_{\rm D}$ +227 (*c* 0.99, CHCl₃); (Found: M + NH₄⁺, 385.9593. C₁₁H₁₈Br₂NO₄ requires 385.9597); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.98 (3 H, s, Me), 2.10 (6 H, s, 2 × OCOMe), 4.65 (1 H, d, J_{2,1} 7.2, 2-H), 4.67 (1 H, dd, J_{5,6} 7.1, J_{5,4} 2.5, 5-H), 5.34 (1 H, dd, J_{6,1} 9.3, J_{6,5} 7.1, 6-H), 5.45 (1 H, dd, J_{1,6} 9.3, J_{1,2} 7.2, 1-H), 5.80 (1 H, d, J_{4,5} 2.5, 4-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 20.70, 20.75, 21.50, 43.9, 47.60, 71.70, 72.60, 128.00, 134.02, 169.58, 169.70; *m*/*z* (EI) 309 (M⁺(⁷⁹Br) – OAc, 1%), 291 (5), 289 (5), 251 (7) 231 (13), 229 (13), 189 (78), 187 (79), 125 (29), 108 (97), 107 (39), 97 (15), 79 (17) and 43 (100).

(1R,2R,5R,6R) Enantiomer, light yellow oil, $[a]_D - 178$ (*c* 0.65, CHCl₃).

(1*R*,2*R*,5*R*,6*R*) and (1*S*,2*S*,5*S*,6*S*)-6-(Acetyloxy)-2,5-dibromo-1-methyl-3-cyclohexenyl acetate 12. Colourless oil (0.26 g, 79%); $R_{\rm f}$ 0.53 (20% EtOAc in hexane); $[a]_{\rm D}$ –163 (*c* 0.81, CHCl₃); (Found: M⁺, 367.9260. C₁₁H₁₄⁷⁹Br₂O₄ requires 367.9258); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.43 (3 H, s, Me), 1.99, 2.16 (3 H each, s, 2 × -OCOMe), 4.57 (1 H, ddd, $J_{5.6}$ 8.0, $J_{5.2}$ 5.5, $J_{5.4}$ 2.5, 5-H), 5.78 (1 H, ddd, $J_{4.3}$ 10.5, $J_{4.5} = J_{4.2}$ 2.5, 4-H), 5.86 (1 H, dd, $J_{3.4}$ 10.5, $J_{3.2}$ 2.1, 3-H), 6.08 (1 H, d, $J_{6.5}$ 8.0, 6-H), 6.25 (1 H, dd, $J_{2.5}$ 5.5, $J_{2.4}$ 2.4, 2-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 17.71, 20.66, 22.10, 47.00, 49.88, 74.64, 82.53, 127.42, 130.70, 169.27, 170.02; m/z (EI) 372 (M⁺, 20%), 370 (10), 291 (6), 267 (32), 187 (60), 169 (21), 125 (29), 107 (83),77 (61), 51 (33) 43 and (100).

(1S,2S,5S,6S) Enantiomer of compound **12**, colourless oil $[a]_D$ +101 (*c*, 0.74, CHCl₃).

(1*S*,2*S*,5*R*,6*S*)-6-(Acetyloxy)-2,5-dibromo-4-iodo-1-methyl-3cyclohexenyl acetate 20. White crystalline solid (0.14 g, 84%); mp 91 °C (from Et₂O–hexane); R_f 0.64 (25% EtOAc in hexane); $[a]_D$ +14 (*c* 0.72, CHCl₃); (Found: M + NH₄⁺, 511.8565. C₁₁H₁₇Br₂I NO₄ requires 511.8564); δ_H (500 MHz, CDCl₃) 1.58 (3 H, s, Me), 2.00, 2.17 (3 H each, s, 2 × OCOMe), 4.59 (1 H, dd, $J_{5.6}$ 6.1, $J_{5.3}$ 1.4, 5-H), 5.90 (1 H, d, $J_{2.3}$ 2.9, 2-H), 6.14 (1 H, d, $J_{6.5}$ 6.1, 6-H), 6.61 (1 H, dd, $J_{3.2}$ 2.9, $J_{3.5}$ 1.4, 3-H); δ_C (125 MHz, CDCl₃) 18.64, 20.68, 22.18, 48.84, 55.4, 73.38, 80.90, 96.98, 140.87, 168.93, 169.99; *m/z* (EI) 415 (M⁺ – ⁷⁹Br, 0.5%), 394 (4), 375 (3), 373 (3), 315 (10), 313 (10) 254 (6), 251 (13), 234 (13), 188 (16), 186 (18), 124 (44), 74 (14), and 43 (100).

Syntheses of anti-benzene dioxides 7a-7e, 13 and 21

To a solution of bis-bromoacetate (0.4-1.5 mmol) in dry ether (25 cm^3) at 0 °C, was added sodium methoxide (4 mol equiv.) and the mixture stirred (15 min) at 0 °C and then at room temperature (3 h). The reaction mixture was filtered through a pad of celite, the solid residue washed with ether (10 cm³), and the combined filtrate concentrated at atmospheric pressure to yield the dioxide.

(1*R*,2*S*,4*S*,7*R*)-5-Fluoro-3,8-dioxa-tricyclo[5.1.0.0^{2.4}]oct-5-ene 7a. Light yellow oil (0.14 g, 71%); [*a*]_D -14 (*c* 0.50, CHCl₃); (Found: M⁺, 128.0284. C₆H₃FO₂ requires 128.0273); $\delta_{\rm H}$ (500 MHz, CDCl₃) 3.19 (2 H, m, 4-H, 7-H), 3.70 (1 H, dd, $J_{2,1}$ 4.0, $J_{2,4}$ 3.5, 2-H), 3.88 (1 H, dd, $J_{1,2}$ 4.0, $J_{1,7}$ 3.8, 1-H), 5.53 (1 H, dd, $J_{6,F}$ 9.7, $J_{6,7}$ 4.5, 6-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 46.86, 46.96, 52.36, 54.77, 102.50, 161.92 ($J_{\rm C2,F}$ 2.1); *m*/*z* (EI) 128 (M⁺, 13%), 110 (74), 95 (66), 87 (60), 74 (72), 69 (76), 55 (100), 43 (93), 39 (30) and 29 (67).

(1*R*,2*S*,4*S*,7*R*)-5-Chloro-3,8-dioxa-tricyclo[5.1.0.⁰²⁴]oct-5-ene 7b. White solid (0.07 g, 78%); mp 42–44 °C (from ether–hexane); [*a*]_D –115 (*c* 0.40, CHCl₃); (Found: M⁺, 143.9980. C₆H₅ClO₂ requires 143.9978); $\delta_{\rm H}$ (500 MHz, CDCl₃) 3.15 (1 H, dd, $J_{7,1}$ 4.2, $J_{7,6}$ 4.3, 7-H), 3.20 (1 H, dd, $J_{4,2}$ 4.2, $J_{4,6}$ 2.2, 4-H), 3.72 (1 H, m, 1-H), 3.82 (1 H, m, 2-H), 6.12 (1 H, dd, $J_{6,7}$ 4.3, $J_{6,4}$ 2.2, 6-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 47.26, 52.28, 52.70, 55.26, 124.11, 135.69; *m*/*z* (EI) 145 (M⁺ + 1, 31%), 144 (27), 117 (52), 115 (69), 86 (55), 84 (58), 81 (61), 51 (100), 49 (96) and 43 (83).

(1*R*,2*S*,4*S*,7*R*)-5-Bromo-3,8-dioxa-tricyclo[5.1.0.0²⁴]oct-5-ene 7c. White crystalline solid (0.064 g, 82%); mp 52–54 °C (from CHCl₃–hexane); $[a]_D$ –54 (*c* 0.30, CHCl₃); (Found: M⁺, 187.9469. C₆H₅BrO₂ requires 187.9473); $\delta_{\rm H}$ (500 MHz, CDCl₃), 3.10 (1 H, m, 7-H), 3.32 (1 H, m, 4-H), 3.75 (1 H, m, 1-H), 3.82 (1 H, m, 2-H), 6.39 (1 H, dd, J_{67} 4.3, J_{64} 2.2, 6-H); $\delta_{\rm C}$ (125 MHz, CDCl₃), 47.85, 52.63, 53.70, 55.85, 125.02, 128.59; *m*/*z* (EI) 188 (M⁺, 3%), 161 (85), 159 (86), 141 (43), 132 (51), 130 (49), 109 (52), 81 (94), 53 (94), 51 (100) and 29 (90).

(1*R*,2*S*,4*S*,7*R*)-5-Iodo-3,8-dioxa-tricyclo[5.1.0.0^{2,4}]oct-5-ene 7d. White crystalline solid (0.08 g, 81%); mp 68–70 °C (from CHCl₃–hexane); $[a]_D$ –6.0 (*c* 0.50, CHCl₃); (Found: M⁺, 235.9341. C₆H₃IO₂ requires 235.9334); $\delta_{\rm H}$ (500 MHz, CDCl₃) 2.96 (1 H, dd, $J_{7,1} = J_{7,6}$ 4.1, 7-H), 3.44 (1 H, dd, $J_{4,2}$ 3.9, $J_{4,6}$ 2.0, 4-H), 3.77 (2 H, m, 1-H, 2-H), 6.73 (1 H, dd, $J_{6,7}$ 4.1, $J_{6,4}$ 2.0, 6-H); δ_C (125 MHz, CDCl₃) 48.48, 52.59, 56.52, 56.74, 98.97, 137.25; *m/z* (EI) 236 (M⁺, 81%), 207 (89), 178 (23), 127 (29), 109 (29), 81 (77), 53 (100) and 51 (84).

(1*R*,2*S*,4*S*,7*R*)- and (1*S*,2*R*,4*R*,7*S*)-5-Methyl-3,8-dioxa-tricyclo-[5.1.0.0^{2,4}]oct-5-ene 7e. Colourless oil (0.04 g, 68%); $[a]_{\rm D}$ –183 (*c* 0.53, CHCl₃); (Found: M⁺, 124.0527, C₇H₈O₂ requires 124.0524); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.91 (3 H, s, Me), 2.92 (1 H, dd, $J_{4,2}$ 4.0, $J_{4,6}$ 1.9, 4-H), 3.05 (1 H, dd, $J_{7,1}$ 4.1, $J_{7,6}$ 4.0, 7-H), 3.68 (1 H, dd, $J_{1,7}$ 4.1, $J_{1,2}$ 2.8, 1-H), 3.74 (1 H, dd, $J_{2,4}$ 4.0, $J_{2,1}$ 2.8, 2-H), 5.73 (1 H, dd, $J_{6,7}$ 4.0, $J_{6,4}$ 1.9, 6-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 21.93, 47.31, 50.93, 53.09, 54.37, 122.04, 133.88; *m*/*z* (EI) 124 (M⁺, 19%), 109 (11), 95 (81), 66 (22), 53 (66), 49 (100), 41 (96), 29 (41) and 27 (55). (1*S*,2*R*,4*R*,7*S*) Enantiomer, colourless oil, $[a]_{\rm D}$ +143 (*c* 0.43, CHCl₃).

(1*S*,2*S*,4*S*,7*S*) and (1*R*,2*R*,4*R*,7*R*)-1-Methyl-3,8-dioxa-tricyclo-[5.1.0.0^{2,4}]oct-5-ene 13. Colourless viscous oil (0.04 g, 65%); [*a*]_D +35 (*c* 0.73, CHCl₃); (Found: M⁺, 124.0527. C₇H₈O₂ requires 124.0524); $\delta_{\rm H}(500$ MHz, CDCl₃) 1.56 (3 H, s, Me), 2.95 (1 H, dd, $J_{4.5}$ 4.1, $J_{4.2}$ 2.5, 4-H), 3.15 (1 H, d, $J_{2.4}$ 2.5, 2-H), 3.61 (1 H, d, $J_{7.6}$ 4.1, 7-H), 6.08 (2 H, m, 5-H, 6-H); $\delta_{\rm C}(125$ MHz, CDCl₃), 20.47, 48.02, 53.37, 57.99, 65.85, 129.41, 130.53; m/z (EI) 124 (M⁺, 5%), 109 (12), 107 (100), 95 (65), 66 (7), 53 (39), 43 (95), 39 (48) and 27 (30).

(1R,2R,4R,7R)-Enantiomer of compound **13**, light yellow viscous oil $[a]_D - 32$ (*c* 0.72, CHCl₃).

(1*R*,2*R*,4*R*,7*R*)-5-Iodo-1-methyl-3,8-dioxa-tricyclo[5.1.0.0^{2,4}]oct-5-ene 21. Colourless crystalline solid (0.12 g, 62%); mp 80 °C (from CHCl₃); [*a*]_D +37 (*c* 0.77, CHCl₃); (Found: M⁺, 249.9495. C₇H₇IO₂ requires 249.9491); $\delta_{\rm H}$ (500 MHz, CDCl₃), 1.55 (3 H, s, Me), 2.81 (1 H, d, $J_{7,6}$ 4.3, 7-H), 3.50 (1 H, dd, $J_{4,2}$ 4.1, $J_{4,6}$ 1.9, 4-H), 3.63 (1 H, d, $J_{2,4}$ 4.1, 2-H), 6.74 (1 H, dd, $J_{6,7}$ 4.3, $J_{6,4}$ 1.9, 6-H); $\delta_{\rm C}$ (125 MHz, CDCl₃), 20.20, 55.13, 57.98, 59.00, 60.60, 98.67, 138.13; *m*/*z* (EI) 250 (M⁺, 98%), 235 (8), 227 (47), 222 (83), 207 (93), 179 (54), 178 (93), 165 (25), 140 (72), 123 (92), 108 (31), 94 (92), 80 (90), 77 (68), 65 (80), 50 (100), 39 (96) and 27 (78).

Syntheses of trans-dihydrodiols 8a-8f, 8h, 8i, 14 and 22

A mixture of dioxide (0.32–0.60 mmol), THF (1 cm³), water (0.4 cm³), K_2CO_3 (4 mol equiv.) were stirred in the presence of palladium(II) acetate (*ca*. 0.015 g) under an atmosphere of CO until the dioxide had reacted completely (TLC analysis). The catalyst was filtered off and saturated NaCl solution (6 cm³) was added to the filtrate. The aqueous solution was extracted with EtOAc (3 × 10 cm³), the extract dried (Na₂SO₄), and concentrated under reduced pressure. Purification of the residue by PLC (50% EtOAc in hexane) yielded the *trans*-dihydrodiol.

(1*R*,2*R*)-4-Fluoro-3,5-cyclohexadiene-1,2-diol 8a. White crystalline solid (0.05 g, 70%); mp 43–45 °C (from EtOAc–hexane); $R_{\rm f}$ 0.23 (50% EtOAc in hexane); $[a]_{\rm D}$ –38 (*c* 0.37, CHCl₃); (Found: M⁺, 130.0432. C₆H₇FO₂ requires 130.0430); $\delta_{\rm H}$ (500 MHz, CDCl₃) 4.42 (1 H, dd, $J_{2,1}$ 9.5, $J_{2,3}$ 2.9, 2-H), 4.54 (1 H, dd, $J_{1,2}$ 9.5, $J_{1,6}$ 3.6, 1-H), 5.35 (1 H, dd, $J_{6,5}$ 9.9, $J_{6,1}$ 3.6, 6-H), 5.91 (1 H, dd, $J_{5,F}$ 11.9, $J_{5,6}$ 9.9, 5-H), 6.04 (1 H, dd, $J_{3,F}$ 11.4, $J_{3,2}$ 2.9, 3-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 67.86, 68.69, 121.91, 133.42, 133.56, 159.87 ($J_{C4,F}$ 2.0); m/z (EI) 130 (M⁺, 82%), 117 (45), 113 (53), 99 (92), 87 (94), 81 (87), 73 (93), 59 (76), 55 (97), 47 (52), 39 (86), 31 (100) and 27 (84).

(1*R*,2*R*)-4-Chloro-3,5-cyclohexadiene-1,2-diol 8b. White crystalline solid (0.07 g, 88%); mp 114–116 °C (from EtOAchexane); $R_{\rm f}$ 0.30 (40% EtOAc in hexane); $[a]_{\rm D}$ –176 (*c* 0.38, MeOH); (Found: M⁺, 146.0141. C₆H₇ClO₂ requires 146.0135); $\delta_{\rm H}$ (500 MHz, acetone- d_6) 4.25–4.38 (4 H, m, 1-H, 2-H, 2 × OH), 5.78 (1H, dt, $J_{6.5}$ 10.0, $J_{6.1} = J_{6.2}$ 2.0, 6-H), 5.90 (1 H, t, $J_{3.2} = J_{3.5}$ 2.8, 3-H), 5.98 (1 H, dd, $J_{5.6}$ 10.0, $J_{5.3}$ 2.8, 5-H); $\delta_{\rm C}$ (125 MHz, acetone- d_6) 72.99, 74.72, 126.10, 128.12, 128.17, 134.95; *m/z* (EI) 146 (M⁺(³⁵Cl), 85), 128 (33), 117 (74), 102 (82), 100 (100), 81 (75) 65 (95), 53 (100), 39 (78) and 27 (54).

(1*R*,2*R*)-4-Bromo-3,5-cyclohexadiene-1,2-diol 8c. White crystalline solid (0.07 g, 87%); mp 128–130 °C (from CHCl₃); $R_{\rm f}$ 0.40 (50% EtOAc in hexane); $[a]_{\rm D}$ –253 (*c* 0.28, MeOH); (Found: M⁺, 191.9623. C₆H₇BrO₂ requires 191.9609); $\delta_{\rm H}$ (500 MHz, CDCl₃) 2.01 (2 H, br s, OH), 4.45 (2 H, m, 1-H, 2-H), 5.95 (2 H, m,

 $J_{5,6}$ 10.5, $J_{5,3}$ 1.8, 5-H, 6-H), 6.21 (1 H, t, $J_{3,2} = J_{3,5}$ 1.8, 3-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 72.79, 75.24, 125.90, 128.75, 131.80, 129.97; m/z (EI) 192 (M⁺(⁸¹Br), 46%), 190 (M⁺(⁷⁹Br), 46), 174 (19), 172 (19), 163 (25), 161 (27), 146 (54), 144 (50), 111 (17), 93 (25), 83 (37), 82 (33) and 65 (100).

(1*R*,2*R*)-4-Iodo-3,5-cyclohexadiene-1,2-diol 8d. White crystalline solid (0.09 g, 90%); mp 113–115 °C; $R_{\rm f}$ 0.40 (50% EtOAc in hexane); $[a]_{\rm D}$ –145 (*c* 0.38, MeOH); (Found: M⁺, 237.9485. C₆H₇IO₂ requires 237.9491); $\delta_{\rm H}$ (500 MHz, CDCl₃) 2.03 (2 H, br s, OH), 4.42 (2 H, m, 1-H, 2-H), 5.74 (1 H, dd, $J_{6.5}$ 10, $J_{6.1}$ 2.4, 6-H), 6.06 (1 H, ddd, $J_{5.6}$ 10, $J_{5.3}$ 2.1, $J_{5.1}$ 1.9, 5-H), 6.52 (1 H, dd, $J_{3.5}$ 2.1, $J_{3.2}$ 2.0, 3-H); $\delta_{\rm C}$ (75 MHz, CDCl₃) 72.67, 75.91, 89.15, 131.34, 132.39, 138.79; *m*/*z* (EI) 238 (M⁺, 44%), 220 (10), 192 (10), 127 (42), 111 (43), 93 (37), 83 (74), 65 (100) and 55 (80).

(1*R*,2*R*)- and (1*S*,2*S*)-4-Methyl-3,5-cyclohexadiene-1,2-diol 8e. White crystalline solid (0.05 g, 68%); mp 69–70 °C (from EtOAc-hexane); $R_{\rm f}$ 0.34 (50% EtOAc in hexane); $[a]_{\rm D}$ –345 (*c* 0.85, MeOH); (Found: M⁺, 126.0684. C₇H₁₀O₂ requires 126.0681); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.75 (3 H, s, Me), 4.39 (2 H, m, 1-H, 2-H), 5.53 (1 H, b s, 3-H), 5.73 (1 H, d, $J_{6.5}$ 9.7, 6-H), 5.84 (1 H, d, $J_{5.6}$ 9.7, 5-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 20.80, 74.38, 74.72, 124.70, 128.28, 130.19, 132.49; *m*/*z* (EI) 126 (M⁺, 65%), 108 (18), 97 (38), 95 (22), 80 (100), 77 (32), 69 (14), 57 (8), 55 (24), 43 (35), 41 (43), 39 (34), 32 (10) and 28 (66).

(1S,2S) Enantiomer (*ca*: 80% ee), mp 66 °C, $[a]_D$ +270 (*c* 0.70, MeOH).

(3R,4R)-3,4-Dihydroxy-1,5-cyclohexadiene-1-carboxylic acid methyl ester **8f.** A solution of (1R,2R)-4-iodo-3,5cyclohexadiene-1,2-diol 8d (0.03 g, 0.13 mmol) in dry MeOH (2 cm³) containing NaOAc·3H₂O (0.07 g, 0.49 mmol, 4 equiv.) and Pd(OAc)₂ (0.003 g) was stirred (18 h) at room temperature under an atmosphere of CO. The catalyst was removed by filtration, the filtrate concentrated under reduced pressure, and the residue purified by PLC (50% EtOAc in hexane), to give methyl ester 8f as colourless oil (0.016 g, 78%); $R_{\rm f}$ 0.17 (50% EtOAc in hexane); $[a]_{\rm D}$ -94 (c 1.26, MeOH); (Found M⁺, 170.0585. C₈H₁₀O₄ requires 170.0579); $\delta_{\rm H}$ (500 MHz, CDCl₃) 3.78 (3 H, s, COOMe), 4.51–4.62 (2 H, m, 3-H, 4-H), 5.96 (1 H, dd, J_{5.6} 10, J_{5.4} 1.6, 5-H), 6.33 (1 H, dt, $J_{6,5}$ 10, $J_{6,2} = J_{6,4}$ 1.9, 6-H), 6.91 (1 H, m, 2-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 52.14, 73.91, 74.92, 122.19, 128.20, 131.71, 139.50, 165.19; m/z (EI) 170 (M⁺, 48%), 152 (51), 138 (77), 124 (55), 121 (60), 110 (88), 109 (66), 82 (79), 81 (97), 65 (76), 53 (92), 43 (100), 39 (83) and 29 (80).

(1*R*,2*R*)-4-(2'-Thienyl)-3,5-cyclohexadiene-1,2-diol 8h. To a solution of (1*R*,2*R*)-4-bromocyclohexa-3,5-diene-1,2-diol 8c (0.06 g, 0.3 mmol) in dry THF (5 cm³) was added tetrakis(triphenylphosphine)palladium(0) (5 mol%, 0.02 g) and 2-(tributylstannyl)thiophene (0.13 cm³, 0.43 mmol). The reaction mixture was stirred (2 h) at 40 °C, cooled to room temperature, and quenched with a saturated solution of potassium fluoride (3 cm³). The precipitates formed were filtered off, the filtrate extracted with EtOAc, and the extract concentrated. The crude product obtained was purified by PLC (50% EtOAc in hexane) to yield *trans*-dihydrodiol 8h as light yellow oil (0.05 g, 83%); *R*_f 0.29 (50% EtOAc in hexane); [*a*]_D – 136 (*c* 0.76, CHCl₃); (Found: M⁺, 194.0408. C₁₀H₁₀O₂S requires 194.0402); $\delta_{\rm H}$ (500 MHz, CDCl₃) 4.50 (1 H, ddd, $J_{1,2}$ 10.5, $J_{1,6}$ 2.1, $J_{1,5}$ 1.8, 1-H), 4.59 (1 H, dd, $J_{2,1}$

10.5, $J_{2,3}$ 3.0, 2-H), 6.07 (1 H, dd, $J_{5,6}$ 9.9, $J_{5,1}$ 1.8, 5-H), 6.16 (1 H, d, $J_{3,2}$ 3.0, 3-H), 6.31 (1 H, dd, $J_{6,5}$ 9.9, $J_{6,1}$ 2.1, 6-H), 6.99 (1 H, dd, $J_{4',5'}$ 5.1, $J_{4',5'}$ 3.6, 4'-H), 7.03 (1 H, d, $J_{3',4'}$ 3.6, 3'-H), 7.20 (1 H, dd, $J_{5',4'}$ 5.1, $J_{5',3'}$ 1.0, 5'-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 74.54, 75.16, 123.80, 124.33, 125.04, 125.28, 129.04, 130.01, 132.00, 142.74; m/z (EI) 194 (M⁺, 9%), 177 (18), 176 (100), 163 (9), 148 (98), 147 (49), 137 (10), 131 (13), 121 (16), 115 (41), 109 (11), 97 (19), 81 (16), 77 (32), 65 (28), 63 (19) and 57 (25)

(1R,2R)-1,2-Di-tert-butyldimethylsilyloxy-4-bromocyclohexa-**3,5-diene 9.** TBDMSTf (0.95 g, 0.36 mmol) was added dropwise, under nitrogen atmosphere at 0 °C, to a solution of (1R,2R)-4bromocyclohexa-3,5-diene-1,2-diol 8c (0.3 g, 0.15 mmol) in dry CH_2Cl_2 (10 cm³) containing triethylamine (0.46 g, 0.46 mmol). The reaction mixture was stirred (1 h) before quenching with 5% aqueous NaHCO₃ (10 cm³). The organic layer was separated, after diluting with CH₂Cl₂, washed with water and dried (Na₂SO₄). Removal of the solvent gave a crude product which on purification by PLC (ether) yielded di-TBDMS derivative 9 as a colourless viscous oil (0.48 g, 74%); $R_{\rm f}$ 0.35 (ether); $[a]_{\rm D}$ -138 (c 0.76, CHCl₃); (Found: M⁺, 418.1354. C₁₈H₃₅BrO₂Si₂ requires 418.1357); $\delta_{\rm H}(500 \text{ MHz}, \text{CDCl}_3) 0.006 (12 \text{ H}, \text{s}, 2 \times \text{SiMe}_3), 0.81 (18 \text{ H}, \text{s}, 2 \times \text{SiMe}_3)$ CMe₃), 4.32 (2 H, m, 1-H, 2-H), 5.66 (1 H, dd, J_{6,5} 9.7, J_{6,1} 1.8, 6-H), 5.75 (1 H, d, J_{5.6} 9.7, 5-H), 5.93 (1 H, d, J_{3.2} 1.8, 3-H); m/z (EI) 418 (M⁺, 78%), 416 (65), 361 (7), 304 (14), 303 (7), 275 (20), 189 (27), 167 (56), 147 (87), 133 (46), 115 (57), 75 (100), 57 (67), 41 (56) and 32 (46).

(1R,2R)-1,2-Di-tert-butyldimethylsilyloxy-4-phenylcyclohexa-3,5-diene 10. To a stirred ether solution (20 cm³, 0 °C, under nitrogen atmosphere) of di-TBDMS derivative 9 (0.40 g, 0.96 mmol) and nickel(II) acetylacetonate (0.01 g, 0.04 mmol), phenyl magnesium bromide solution (1 M in diethyl ether, 1.2 cm³) was added drop-wise. The reaction mixture was stirred (3 h) at 0 °C and subsequently at room temperature (3 h). A saturated aqueous solution of NH₄Cl was added to terminate the reaction. The organic layer was separated, and the remaining aqueous layer extracted with ether. The combined organic extract was dried (Na₂SO₄), concentrated under reduced pressure, and the residue purified by PLC (hexane). (1R,2R)-1,2-Di-tert-butyldimethylsilyloxy-4-phenylcyclohexa-3,5-diene 10 was obtained as colourless viscous oil (0.1 g, 25%); $[a]_{\rm D}$ -81 (c 0.64, CHCl₃); (Found: M⁺, 416.2579. C₂₄H₄₀O₂Si₂ requires 416.2567); $\delta_{\rm H}(500 \text{ MHz}, \text{CDCl}_3) - 0.023, -0.002, 0.011, 0.012 [3 \text{ H each, s},$ $2 \times Si(Me)_2$, 0.80 [18 H, s, $2 \times C(Me)_3$], 4.42 (1 H, dd, $J_{1,2}$ 11.6, J_{1,6} 2.2, 1-H), 4.51 (1 H, dd, J_{2,1} 11.6, J_{2,3} 2.6, 2-H), 5.80 (1 H, dd, J₆₅ 9.9, J₆₁ 2.2, 6-H), 5.84 (1 H, dd, J₃₂ 2.6, J₃₅ 2.0, 3-H), 6.08 (1 H, dd, *J*_{5,6} 9.9, *J*_{5,3} 2.0, 5-H); *m*/*z* (EI) 416 (M⁺, 47%), 301 (22), 244 (13), 228 (87), 211 (95), 199 (54), 167 (56), 154 (98), 133 (56), 115 (93), 105 (72), 73 (64), 57 (92) and 41 (100).

(1*R*,2*R*)-4-Phenylcyclohexa-3,5-diene-1,2-diol 8i. A solution of Bu₄NF (0.8 cm³, 1.0 M in THF) was added to a stirred solution of di-TBDMS 10 (0.1 g, 0.24 mmol) in THF (1 cm³) at 0 °C. After stirring the mixture (3 h) at 0 °C, the solvent was removed under reduced pressure, and the crude product purified by PLC (50% EtOAc in hexane) to yield dihydrodiol 8i as light yellow oil (0.02 g, 44%); [*a*]_D +34 (*c* 0.35, CHCl₃); (Found: M⁺, 188.0856. C₁₂H₁₂O₂ requires 188.0837); $\delta_{\rm H}$ (500 MHz, CDCl₃) 4.51 (1 H, dd, $J_{1,2}$ 12.0, $J_{1,6}$ 2.5, 1-H), 4.60 (1 H, dd, $J_{2,1}$ 12.0, $J_{2,3}$ 2.7, 2-H), 6.08 (1 H, dd, $J_{6,5}$ 9.9, $J_{6,1}$ 2.5, 6-H), 6.12 (1 H, d, $J_{3,2}$ 2.7, 3-H), 6.32 (1 H, d, $J_{5,6}$ 9.9, 5-H), 7.31, 7.34, 7.37, 7.39, 7.41 (5 H, m, Ar-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 76.40, 77.22, 126.32, 126.80, 127.24, 128.60, 128.67, 128.76, 129.50, 130.44, 137.22, 143.11; m/z (EI) 188 (M⁺, 4%), 170 (56), 134 (7), 110 (32), 78 (56), 56 (87), 49 (12), 43 (100) and 25 (10).

(1*S*,2*S*)- and (1*R*,2*R*)-1-Methyl-3,5-cyclohexadiene-1,2-diol 14. Colourless crystalline solid (0.05 g, 70%); mp 202–204 °C (from CHCl₃–hexane); $R_{\rm f}$ 0.38 (50% EtOAc in hexane); $[a]_{\rm D}$ +45 (*c* 0.63, CHCl₃); (Found: M⁺, 126.0676. C₇H₁₀O₂ requires 126.0681); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.26 (3 H, s, Me), 4.49 (1 H, br s, 2-H), 5.79–5.88 (4 H, m, 3-H, 4-H, 5-H, 6-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 19.00, 75.21, 76.48, 123.10, 123.61, 131.53, 135.81; *m*/*z* (EI) 126 (M⁺, 6%), 108 (16%), 105 (90), 97 (29), 83 (53), 71 (61), 57 (100), 43 (89) and 28 (28).

(1R,2R) Enantiomer (ca: 80% ee), $[a]_D - 37$ (c 0.74, CHCl₃).

(1*R*,2*R*)-4-Iodo-1-methyl-3,5-cyclohexadiene-1,2-diol 22. Colourless viscous oil (0.015 g, 20%); $R_{\rm f}$ 0.46 (50% EtOAc in hexane); $[a]_{\rm D}$ +11 (*c* 0.50, CHCl₃); (Found: M⁺, 251.9646. C₇H₉IO₂ requires 251.9647); $\delta_{\rm H}$ (500 MHz, CDCl₃), 1.27 (3 H, s, Me), 4.43 (1 H, d, $J_{2,3}$ 3.1, 2-H), 5.63 (1 H, d, $J_{6,5}$ 10.0, 6-H), 5.99 (1 H, d, $J_{5,6}$ 10.0, 5-H), 6.50 (1 H, d, $J_{3,2}$ 3.1, 3-H); $\delta_{\rm c}$ (125 MHz, CDCl₃) 19.18, 71.50, 76.76, 89.90, 130.18, 136.90, 139.96; *m/z* (EI) 252 (M⁺, 25%), 234 (8), 125 (25), 107 (10), 81 (5), 79 (12), 77 (15), 65 (6), 53 (7), 43 (100), 39 (10) and 27 (7).

Acknowledgements

We gratefully acknowledge financial support from the HEA North South Programme for Collaborative Research and CenTACat (NDS), the European Social Fund (NML) and the Queen's University of Belfast (CRO'D). We also wish to thank the EPSRC National Mass Spectrometry Service Centre at the University of Wales, Swansea, for providing high resolution mass spectral data.

References

- 1 D. T. Gibson, J. R. Koch and R. E. Kallio, Biochemistry, 1968, 7, 2653.
- 2 D. A. Widdowson and D. W. Ribbons, Janssen Chim. Acta, 1990, 8, 3.
- 3 H. J. Carless, *Tetrahedron: Asymmetry*, 1992, **3**, 795.
- 4 G. N. Sheldrake, in *Chirality in Industry*, ed. A. N. Collins, G. N. Sheldrake and J. Crosby, J. Wiley, Chichester, 1992, ch. 6, p. 128.
- 5 S. M. Brown and T. Hudlicky, in *Organic Synthesis: Theory and Applications*, JAI Press Inc., Greenwich, 1993, p. 113.
- 6 S. M. Resnick, K. Lee and D. T. Gibson, J. Ind. Microbiol., 1996, 17, 438.
- 7 D. R. Boyd and G. N. Sheldrake, Nat. Prod. Rep., 1998, 15, 309.

- 8 T. Hudlicky, D. Gonzalez and D. T. Gibson, *Aldrichimica Acta*, 1999, **32**, 35.
- 9 D. T. Gibson and R. E. Parales, *Curr. Opin. Biotechnol.*, 2000, **11**, 236. 10 D. R. Boyd, N. D. Sharma and C. C. R. Allen, *Curr. Opin. Biotechnol.*,
- 2001, **12**, 564.
- 11 R. A. Johnson, Org. React., 2004, 63, 117.
- 12 D. R. Boyd and T. Bugg, Org. Biomol. Chem., 2006, 4, 181.
- 13 A. B. Lindstrom, K. Yeowell-O'Connell, S. Waidyanatha, B. T. Golding, R. Tornero-Velez and S. M. Rapaport, *Carcinogenesis*, 1997, 1637.
- 14 D. R. Boyd, J. T. G. Hamilton, N. D. Sharma, J. S. Harrison, W. C. McRoberts and D. B. Harper, *Chem. Commun.*, 2000, 1481.
- 15 D. M. Jerina, J. W. Daly, B. Witkop, P. Zaltzman-Nirenberg and S. Udenfriend, J. Am. Chem. Soc., 1968, 90, 6525.
- 16 S. K. Agarwal, D. R. Boyd, H. P. Porter, W. B. Jennings, S. J. Grossman and D. M. Jerina, *Tetrahedron Lett.*, 1986, 26, 4253.
- 17 D. M. Jerina, H. Ziffer and J. W. Daly, J. Am. Chem. Soc., 1970, 92, 1056.
- 18 D. Franke, G. A. Sprenger and M. Müller, Angew. Chem., Int. Ed., 2001, 40, 555.
- 19 R. Müller, M. Breuer, A. Wagener, K. Schmidt and E. Leistner, *Microbiology*, 1996, 142, 1005.
- 20 D. M. Jerina, J. W. Daly and B. Witkop, J. Am. Chem. Soc., 1967, 89, 5488.
- 21 T. J. Monks, L. R. Pohl, J. R. Gillette, M. Hong, R. Highet, J. A. Ferranti and J. A. Hinson, *Chem.-Biol. Interact.*, 1982, **41**, 203.
- 22 H. Kroth, H. Yagi, A. Seidel and D. M. Jerina, J. Org. Chem., 2000, 65, 5558.
- 23 D. R. Boyd and N. D. Sharma, J. Mol. Catal. B: Enzym., 2002, 19–20, 31.
- 24 V. Lorbach, D. Franke, M. Nieger and M. Muller, *Chem. Commun.*, 2002, 494.
- 25 D. R. Boyd, N. D. Sharma, C. R. O'Dowd and F. Hempenstall, *Chem. Commun.*, 2000, 2151.
- 26 D. R. Boyd, N. D. Sharma, B. Byrne, M. V. Hand, J. F. Malone, G. N. Sheldrake, J. Blacker and H. Dalton, J. Chem. Soc., Perkin Trans. 1, 1998, 1935.
- 27 M. F. Mahon, K. Molloy, C. A. Pittol, R. J. Pryce, S. M. Roberts, G. Ryback, V. Sik, J. O. Williams and J. A. Winders, *J. Chem. Soc.*, *Perkin Trans.* 1, 1998, 1935.
- 28 T. Hudlicky, J. D. Price and F. Rulin, J. Org. Chem., 1992, 57, 4740.
- 29 M. G. Banwell, J. N. Lambert and S. L. Richards, Aust. J. Chem., 1991, 44, 939.
- 30 J. L. Humphreys, D. J. Lowes, K. A. Wesson and R. C. Whitehead, *Tetrahedron Lett.*, 2004, 45, 3429.
- 31 M. G. Banwell, J. R. Dupuche and R. W. Gable, *Aust. J. Chem.*, 1996, **49**, 639.
- 32 N. A. Bumagin, K. V. Nikitin and I. P. Beletskaya, J. Organomet. Chem., 1988, 358, 563.
- 33 G. A. Berchtold and B. A. Chaisson, J. Am. Chem. Soc., 1974, 96, 2898.
- 34 D. R. Boyd, N. D. Sharma, B. Byrne, S. A. Haughey, M. A. Kennedy and C. C. R. Allen, Org. Biomol. Chem., 2004, 2, 2530.
- 35 D. R. Boyd, N. D. Sharma, N. M. Llamas, J. F. Malone, C. R. O'Dowd and C. C. R. Allen, Org. Biomol. Chem., 2005, 3, 1953.
- 36 T. Hudlicky, F. Rulin, T. Tsunoda, H. Luna, C. Anderson and J. D. Price, *Isr. J. Chem.*, 1991, **31**, 229.
- 37 S. Cai, M. R. Stroud, S. Hakomori and T. Tatsushi, J. Org. Chem., 1992, 57, 6693.