ORIGINAL RESEARCH

Synthesis and evaluation of analgesic, anti-inflammatory, and anticancer activities of new pyrazole-3(5)-carboxylic acid derivatives

Burcu Çalışkan · Akın Yılmaz · İlker Evren · Sevda Menevşe · Orhan Uludag · Erden Banoglu

Received: 28 December 2011/Accepted: 19 April 2012/Published online: 6 May 2012 © Springer Science+Business Media, LLC 2012

Abstract In this article, we synthesized a series of novel 1-benzyl-5(3)-p-tolyl-1H-pyrazole-3(5)-carboxylic acid derivatives and characterized by IR, ¹H NMR, and mass spectroscopy. Compounds were evaluated for their in vivo analgesic and anti-inflammatory activity using the p-benzoquinone-induced writhing test and the carrageenan-induced paw edema model, respectively. Out of 14 compounds tested, 7a, 7c, 7e, 7f, 7i, 8a-b, and 8f-g exhibited potent analgesic and/or anti-inflammatory activity as compared to reference drugs aspirin and indomethacin. Anticancer activity of these compounds was assessed against five cancer cell lines with the MTT assay (HL-60, human promyelocytic leukemia cells; HeLa, human cervical cancer cells; Raji, human B lymphocyte cell line; MCF7, human breast adenocarcinoma cell line; MDA-MB-231, estrogen-independent human breast cancer cell line). Compounds 7a, 8a, and 8b with high anti-inflammatory activity, and also 7d and 7j with mild anti-inflammatory activity exhibited promising anticancer activity against some selected cell lines.

Keywords Carrageenan · Hind paw edema · Benzoquinone · Writhings · Cell lines

B. Çalışkan · E. Banoglu (🖂)

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Yenimahalle, Ankara, Turkey e-mail: banoglu@gazi.edu.tr

A. Yılmaz · S. Menevşe

Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Etiler, 06100 Besevler, Ankara, Turkey

İ. Evren · O. Uludag

Department of Pharmacology, Faculty of Pharmacy, Gazi University, Etiler, 06330 Yenimahalle, Ankara, Turkey

Introduction

Fast and effective relief of pain and inflammation in human beings is an ongoing challenge for medical researchers. Non-steroidal anti-inflammatory drugs (NSAIDs) represent an important therapeutic class for the alleviation of pain and inflammation associated with a number of pathological conditions including arthritis, Alzheimer's disease, atherosclerosis, and cancer (Barthel and Axford-Gatley, 2010; Bhalke and Chavan, 2011; Charo and Taub, 2011; Fischer et al., 2011; Heneka et al., 2011). Recent epidemiological studies have shown a link between inflammation and cancer suggesting that patients with chronic inflammatory diseases could be more prone to suffering from various types of cancers such as bladder, cervical, gastric, skin, intestinal, and prostate cancers (Grossman et al., 2000; Mantovani et al., 2008; Muller-Decker et al., 1998). An increasing body of evidence has demonstrated that certain tumors and cancer lines overexpress arachidonic acid (AA) metabolizing enzymes, i.e., 5-lipoxygenase (5-LO) and cyclooxygenases (COX-1 and COX-2) (Grossman et al., 2000; Muller-Decker et al., 1998; Radmark and Samuelsson, 2010; Sheng et al., 1997; Wang and Dubois, 2010) and their pro-inflammatory metabolic products, i.e., leukotrienes (LT) and prostaglandins (PG). Pharmacological inhibition of 5-LO has been shown to potently suppress tumor cell growth by inducing cell cycle arrest and triggering cell death via an intrinsic apoptotic pathway (Ghosh and Myers 1997, 1998). There is also a strong evidence for COX-2 being the major form in cancer cells for production of PGE2 which promotes cancer cell growth and survival by several mechanisms including increased proliferation and inhibition of apoptosis (Greenhough et al., 2009; Grossman et al., 2000; Muller-Decker et al., 1998; Sheng et al., 1997). In addition, microsomal prostaglandin E synthase-1 (mPGES-1), a downstream

enzyme for PGE_2 formation, has been linked to development of various types of cancers including nonsmall cell lung, colorectal, gastric, and pancreatic cancers (Nakanishi *et al.*, 2010; Radmark and Samuelsson, 2010). Although our understanding of the complicated roles of AA-derived eicosanoids in tumor microenvironment is continuously improving, there is a strong chance that the development of novel anti-inflammatory agents clearly may lead to more effective cancer chemopreventive and/or therapeutic agents.

Pyrazoles are widely used as core motifs for a large number of compounds for development of new therapeutics for inflammation and cancer (Bekhit et al., 2010; Keter and Darkwa, 2011). In the last decade, we and others have reported a large series of pyrazole derivatives having promising anti-inflammatory (Banoglu et al., 2005, 2004, 2003; Caliskan et al., 2011; Ergun et al., 2010; Nagarapu et al., 2011) and anticancer activities (Ding et al., 2009; Farag et al., 2010; Lian et al., 2009; Nitulescu et al., 2010; Xia et al., 2007, 2008; Zheng et al., 2010, 2009), indicating the use of pyrazole motif as a powerful tool for novel medicines. Among the reported studies, pyrazole-5-carboxylate (Wei et al., 2006; Zheng et al., 2010), pyrazole-5carboxamide (Ding et al., 2009), and pyrazole-5-carbohydrazide (Lian et al., 2009; Xia et al., 2007; 2008; Zheng et al., 2009) derivatives were shown to have a significant anticancer activity against A549 lung cancer cell lines by inducing apoptosis or autophagy. Therefore, with the aim of obtaining new compounds with anti-inflammatory and also with anticancer activity, we synthesized a series of 1-benzyl-3(5)-p-tolyl-1H-pyrazole-5(3)-carboxylic novel acid amides and esters and evaluated the effects of these compounds on carrageenan-induced hind paw edema and benzoquinone-induced writhing test as well as for their anticancer activity against five different cancer cell lines with the MTT assay.

Results and discussion

Chemistry

The synthesis of the resulting amide and ester derivatives is outlined in Scheme 1. Methyl 2,4-dioxo-4-(p-tolyl)butanoate (**3**) was prepared by Claisen condensation of 4-methylaceto-phenone (**1**) with dimethyl oxalate (**2**) in the presence of sodium metoxide. Then, the starting intermediate methyl 3-(p-tolyl)-1H-pyrazole-5-carboxylate (**4**) was readily obtained by the reaction of **3** with hydrazine in acetic acid. After benzylation of **4** with benzyl chloride in the presence of K₂CO₃ in acetonitrile, the regioisomers formed were successfully separated by automated flash chromatograpy to yield methyl 1-benzyl-3-(p-tolyl)-1H-pyrazole-5-carboxylate (**5**) and methyl 1-benzyl-5-(p-tolyl)-1H-pyrazole-3-carboxylate (**6**) in 77 and 15 %

yields, respectively. The benzylation process predominantly occured at a position to yield 1-benzyl-3-phenylpyrazole-5carboxylate isomer in a ratio of 5:1. The difference between the absolute chemical shift values of methylene protons in ¹H NMR was a clear indication of distinguishing between both regioisomers as pointed out previously for similar derivatives (Xia et al., 2007, 2008). Thus, comparison of the ¹H NMR spectra of both isomers showed that while the two methylene protons in 1-benzyl-3-phenyl isomer (5) appeared at relatively downfield around 5.8 ppm, the same protons in 1-benzyl-5-phenyl isomer (6) resonated at relatively upfield at about 5.4 ppm, therefore clearly distinguishing between the regioisomers. After hydrolysis of the esters to carboxylic acids (7, 8), the title amide and ester derivatives were obtained by the reaction of appropriate amines and phenols using EDC as the carboxylate activator. Compounds were purified by automated flash chromatography and checked for purity with UPLC before being tested in biological experiments (purity was >97 %). The structures of all compounds were elucidated by high resolution mass spectrometry, IR, and ¹H NMR spectral data.

Pharmacology

Our previous findings with certain pyrazole-based compounds resulted in derivatives with potent in vivo antiinflammatory and analgesic activity (Banoglu et al., 2005, 2004, 2003). Our ongoing work also demonstrated that transformation of 1,5-diarylpyrazole-3-propanoic acid scaffold into lipophilic amides and esters acted as suppressors of LT biosynthesis in intact PMNL, and some compounds showed a potent inhibition of COX-1 along with inhibition of LT biosynthesis providing a potent antiinflammatory potential (Caliskan et al., 2011; Ergun et al., 2010). Especially, amidation with *t*-butylbenzylpiperazine and ethyl piperidinecarboxylate, and esterification with *i*-propyl- or *t*-butylphenol highly contributed to the efficiency of compounds for inhibition of LT formation in intact cells (Caliskan et al., 2011). In addition, combination of N1-phenyl and C5-p-methylphenyl substitution at a central pyrazole for amides and esters even increased the potency leading to dual inhibition of platelet COX-1 activity and LT biosynthesis for potential anti-inflammatory activity. Based on aforementioned observations and also the previous findings indicating pyrazole-5-carboxylic acid nucleus as suitable for anti-cancer activity (Wei et al., 2006; Xia et al., 2007, 2008; Zheng et al., 2010, 2009), we prepared a novel series of amide and ester derivatives of 1-benzyl-3-(p-tolyl)-1H-pyrazole-5-carboxylic acid (7a-j) and also the regioisomeric counterparts bearing 1-benzyl-5-(p-tolyl)-1H-pyrazole-3-carboxylic acid core as 8ab and 8f-g. Since we previously reported the positive effects of C5-p-methylphenyl substitution about a central pyrazole and amidation with piperazines, we kept the Scheme 1 Synthesis of the amide and ester derivatives of 1-benzyl-5(3)-p-tolyl-1H- pyrazole-3(5)-carboxylic acids (Reagents and conditions: a (i) sodium methoxide, MeOH (ii) H⁺; b NH₂NH₂·H₂O, AcOH; c Benzyl chloride, K₂CO₃, AcCN, chromatographic separation of regioisomers 5 and 6; d LiOH, THF, H₂O; e amine/phenol, EDC, DMAP, CH₂Cl₂)

p-methylphenyl substitute pyrazole core structure constant and studied the effect of different amide and ester side chains on their analgesic, anti-inflammatory, and anticancer activities.

Analgesic activity of title compounds was screened in vivo in mice using the *p*-benzoquinone-induced writhing test (Okun *et al.*, 1963). *p*-Benzoquinone test commonly used as a fast screening model to access the activity of novel candidates as potential analgesics. In addition,

quinone derivatives that were used as a chemical inducer of algesia exhibited more effective and potent activity as of acetic acid which is an another commonly used method. These models induce a characteristic and quantifiable overt pain-like behavior described as writhing response or abdominal contortions. It was demonstrated that cytokines such as TNF α (tumor necrosis factor α), IL (interleukin)-1 β , and chemokines act in synergy to induce the writhing response. In fact, cyclooxygenase products and cysteinyl

Table 1 Analgesic and anti-inflammatory effects of the test compounds on *p*-benzoquinone (PBQ)-induced abdominal constriction test and carrageenan (CG)-induced hind paw edema model in mice, respectively

Test compounds	npounds Number of writhings \pm SEM (analgesic activity, %) ^a	Swelling in thickness (×10 ⁻² mm) \pm SEM (inhibition of edema, %) ^b			
		90 min	180 min	270 min	360 min
Control	28.2 ± 2.8	38.0 ± 2.0	51.0 ± 3.0	75.0 ± 3.0	77.0 ± 3.0
7a	$6.5 \pm 2.1 \; (77.0\%)^{***}$	$28.0 \pm 4.0 \; (26.7\%)$	$34.0 \pm 5.0 \; (33.3\%)$	$34.0 \pm 4.0 \; (54.4\%)^{***}$	33.0 ± 5.0 (57.6%)***
7b	29.8 ± 4.3	44.2 ± 5.4	$49.0 \pm 4.0 \; (4.1\%)$	$55.0 \pm 3.0 \; (26.7\%)^*$	$53.0 \pm 2.0 \; (30.4\%)^*$
7c	13.3 ± 2.7 (53.0%)*	$31.0 \pm 7.0 \; (17.8\%)$	$28.0\pm5.0\;(44.7\%)^*$	$19.0 \pm 5.0 \; (74.4\%)^{***}$	36.0 ± 5.0 (53.3%)***
7d	30.3 ± 4.6	$36.0\pm7.0\;(3.7\%)$	$43.0\pm 5.0\;(16.5\%)$	$57.0 \pm 5.0 \; (24.4\%)^*$	$57.0 \pm 8.0 \; (25.3\%)^*$
7e	14.4 ± 3.5 (48.9%)*	$29.0 \pm 6.0 \; (23.0\%)$	39.0 ± 8.0 (24.1%)	$42.0\pm7.0\;(44.4\%)^{***}$	$44.0 \pm 6.0 \; (42.8\%)^{***}$
7f	25.1 ± 3.6 (10.9%)	40.0 ± 6.1	$33.0 \pm 4.0 \; (35.0\%)$	$38.0 \pm 4.0 \; (50.0\%)^{***}$	29.0 ± 3.0 (62.0%)***
7g	18.7 ± 5.8 (33.0%)	38.3 ± 4.0	$39.0 \pm 4.0 \; (24.0\%)$	$53.0 \pm 5.0 \; (29.0\%)^*$	$53.0\pm 6.0\;(31.5\%)^*$
7h	27.4 ± 4.4	42.5 ± 5.3	$47.0 \pm 5.0 \; (9.0\%)$	$68.0\pm 6.0\;(10.0\%)$	80.0 ± 6.2
7i	$12.2 \pm 4.2 \ (56.9\%)^*$	40.0 ± 5.8	$43.0\pm5.0\;(17.0\%)$	$58.0 \pm 4.0 \; (22.2\%)$	$66.0 \pm 4.0 \; (14.1\%)$
7j	$24.0 \pm 3.4 \; (14.9\%)$	$35.0\pm 5.0\;(6.6\%)$	$43.0 \pm 4.0 \; (15.4\%)$	$61.6 \pm 5.0 \; (19.2\%)$	$62.0\pm7.0\;(18.8\%)$
8a	4.8 ± 1.7 (83.2%)***	40.0 ± 4.3	$44.0 \pm 4.0 \; (13.9\%)$	32.0 ± 3.0 (57.8%)***	31.0 ± 4.0 (59.8%)***
8b	11.5 ± 3.6 (59.2%)*	$34.0 \pm 4.0 \; (8.9\%)$	$28.0\pm 8.0\;(46.3\%)^*$	31.0 ± 5.0 (58.9%)***	28.0 ± 5.0 (63.4%)***
8f	7.5 ± 3.5 (73.4%)***	$28.0 \pm 4.0 \; (26.0\%)$	$37.0 \pm 6.0 \; (28.5\%)$	$34.0\pm 6.0\;(54.0\%)^{***}$	32.0 ± 7.0 (58.7%)***
8g	15.3 ± 1.8 (45.7%)	$27.0\pm 5.0\;(27.4\%)$	$42.0\pm 8.0\;(18.7\%)$	$37.0 \pm 5.0 \; (50.4\%)^{***}$	$40.0 \pm 3.0 \ (47.8\%)^{***}$
ASA	8.8 ± 2.9 (68.9%)***				
INDO		$32.0 \pm 4.0 \; (15.5\%)$	35.0 ± 4.0 (31.7%)	$41.0 \pm 3.0 \; (45.6\%)^{***}$	$42.0 \pm 4.0 \; (45.7\%)^{***}$

Data obtained from animal experiments were expressed as means \pm SEM. ASA aspirin, 100 mg/kg (body weight); *INDO* indomethacin, 10 mg/kg (body weight); and all test drugs, 100 mg/kg (body weight) were s.c. administered to mice (n = 6-12) for ^a PBQ-induced writhing and ^b CG-induced paw edema tests, respectively. * Statistically significance were evaluated from the control by One-way ANOVA post hoc Dunnett's test (* p < 0.05, ** p < 0.01, *** p < 0.001)

leukotrienes also contribute to nociception in this model. The PBQ but not acetic acid writhing also depends on cytokines such as IL-18 and interferon (IFN)- γ , and endothelin-1. It was also shown that PBQ-induced writhing response in mice depends on spinal activation of ERK, JNK, p38, and PI3K, and microglia (Pavao-de-Souza et al., 2012; Verri et al., 2008). Meanwhile, a hotplate latency tests are reported to quantify antinociception mediated primarily by spinal and supraspinal mechanisms, and generally used to evaluate the analgesic activity of centrally acting substances such as narcotics (Baker et al., 2002). As it is very common in the literature and also our experience in our laboratory also confirms this fact in our various demonstrations, we employed p-Benzoquinoneinduced writhing test to evaluate the analgesic activity of title compounds.

The results shown in Table 1 indicated that the preparation of the amide derivatives of both regioisomeric 1-benzyl-3(5)-*p*-tolyl-1*H*-pyrazole-5(3)-carboxylic acids with ethyl piperidinecarboxylate resulted in compounds with potent analgesic activity (**7a**, 77 % and **8a**, 83 %) which was higher than aspirin at the same dose of 100 mg/kg. In the case of *t*-butylbenzylpiperazine amides (**7b**, **8b**), there was a discrepancy in favor of 1-benzyl-5-(*p*-tolyl)-1*H*-pyrazole-3-carboxamide core (**8b**, 59 %) since **7b**

failed to induce analgesic activity. In addition, trimethoxybenzylpiperazine amide (7c) and the carbohydrazide derivative (7e) of pyrazole-5-carboxylic acid nucleus resulted in comparable activity with respect to reference aspirin with a small decrease in the inhibitory potential of writhing movements. In the case of ester analogs, while the *t*-butylphenyl ester of 1*H*-pyrazole-3-carboxylate core (8f) demonstrated very potent analgesic activity (73 %), the regioisomeric counterpart (7f) lacked the similar potency (11 %). The replacement of *t*-butyl in 8f with *i*-propyl (8g) in the ester part caused a decrease in analgesic potency (45 %). Moreover, while the 7h with a larger heptyloxyphenyl group in the ester portion was ineffective, trifluoromethylphenyloxyphenyl group in the ester portion (7i) restored the analgesic efficiency (57 %).

Anti-inflammatory activities of the compounds were also in good correlation with the analgesic activity results, tested by using the carrageenan-induced hind paw edema model (Table 1) (Kasahara *et al.*, 1985). As shown, the same amide derivatives (**7a**, **7c**, **7e**, **8a**, and **8b**) as well as ester derivatives (**7f**, **8f**, and **8g**) resulted in potent anti-inflammatory activity which was comparable to indomethacin. It is claimed that an edema produced by carrageenan is a biphasic event and the inhibitory effects of compounds which act on the first stage are attributable to the inhibition of the release of chemical mediators such as histamine, serotonin, and bradykinin (Vinegar et al., 1969). However, the second phase of edema might be related to the release of AA metabolites since it is potently suppressed by aspirin, indomethacin, and other COX inhibitor drugs (Vinegar et al., 1969). As shown in Table 1, the most active derivatives showed a similar pattern with indometacin with an absolute gradual increase in the second phase (270 min), therefore suggesting that these compounds might exert their anti-inflammatory activities through the mechanisms involving the inhibition of the formation of AA metabolites. It should be noted that the amidation of the carboxylic acid with lipophilic amines such as ethyl piperidinecarboxylate (7a-8a), t-butylbenzylpiperazine (8b), and trimethoxybenzylpiperazine (7c) had a significant impact for rising the anti-inflammatory potential of either regioisomeric pyrazole-3(5)-carboxylic acids. In the case of ester derivatives, only the incorporation of small lipophilic ester parts such as t-butylphenyl (7f-8f) or i-propylphenyl (8g) was able to contribute to an increase in the anti-inflammatory activity. Taken together, we can conclude that 1-benzyl-3(5)-(p-tolyl)-1H-pyrazole-5(3)-carboxylic acid cores can be modified to a potent analgesic and anti-inflammatory compounds by preparing lipophilic amide (i.e. 4-t-butylbenzylpiperazine and ethyl piperidinecarboxylate) and ester derivatives (i.e. 4-t-butylphenyl) with potential for novel treatments of inflammation-related disorders as was in good agreement with our previous findings for 1,5-diarylpyrazole-3-propanoic acid amides (Caliskan et al., 2011).

Since the formation of pro-inflammatory eicosanoids (i.e. PGs and LTs) are evidenced to be a visible key regulators of cell proliferation and neo-angiogenesis, the inhibitors of the pathways for their formation are being investigated as potential anti-cancer drugs (Claria and Romano, 2005; Romano and Claria, 2003). Hormonedependent MCF-7 cells have a basal level of COX-1 and a barely detectable and transient COX-2 inducible expression, and hormone-independent MDA-MB-231 breast cancer cell lines show a low expression of COX-1 but a constitutive level of COX-2 (Liu and Rose, 1996). Moreover, overexpression of COX-2 has been reported in hematological cancer models such as Raji (Burkitt's lymphoma) (Sobolewski et al., 2010; Wun et al., 2004). COX-2 and 5-LO also differentially expressed in the HeLa (human cervical cancer cells) and HL-60 (a human promyelocytic leukemia) cell lines and their growth was found sensitive to NSAID treatment (Agrawal and Fentiman 2008; Chao et al., 2005; Liu et al., 2011; Pereg and Lishner 2005; Sobolewski et al., 2010; Totzke et al., 2003; Werz et al., 1997). Considering that our compounds displayed promising in vivo anti-inflammatory activities presumably by inhibiting the formation of AA metabolites, we selected above cell lines which provides a suitable cellular model system to investigate the anti-cancer potential of these derivatives.

The results for each tested compounds at a 50 µM screening dose are reported as growth percentages compared with the untreated control cells after 24 and 48 h of drug exposure (Table 2). Owing to the solubility problems, compounds 7c and 7e were not evaluated in the MTT assay. The compound **8b** bearing *t*-butylbenzylpiperazine group in the amide part of pyrazole-3-carboxamide core displayed significant growth inhibitory activity against all cell lines (85 % for HL-60, 60 % for MDA-MB-231, 65 % for HeLA, 50 % for MCF7, and 70 % for Raji cells at 48 h). For estrogen-independent breast cancer cells (MDA-MB-231), all compounds demonstrated mild to moderate inhibitory activity on cell viability at 48 h (25-75 % inhibition), as the compound 7j, an imidazolylphenyl ester of pyrazole-5-carboxylate, being the most efficient derivative (75 %). The efficiency of compounds against HeLa cervical cancer cells was also ranged between 20 and 70 % with 7j (66 %) and 8b (65 %) showing equipotent inhibitory activity which was followed by 8a (52 %) and 7a (50 %) having the most considerable growth inhibition at both end time points. The sensitivity of 8a (60 %) and 8b (70 %) was found higher to B lymphocyte cell line (Raji) among all other derivatives. For human breast adenocarcinoma MCF7 cell line, only 7j (58 %) and 8b (54 %) showed inhibitory potential on cell growth while others found mostly inefficient. Lastly, for HL-60 leukemia cell line, 8b (88 %) followed by 7d (70 %, 3-pyridinylmethyl amide derivative) displayed significant antitumor activity, especially at 24 h. HL-60 leukemia cells were insensitive to all other derivatives. Compounds 7j and 8b were chosen for concentration-response studies at five-concentrations on selected cell lines where their inhibitory potential was more pronounced. IC₅₀ values for **8b** for HeLa and HL-60, and for 7j for HeLa cell lines were calculated as 30.5, 24.4, and 30.4 µM, respectively.

Since lipophilicity is an important factor for molecules to cross cell membranes and the partition coefficient log P is a parameter describing this behavior of a drug molecule, we calculated the predicted lipophilicity (log P) values of the synthesized compounds using ACD/Labs 6.0 software. While the lipophilicity (log P) values of tested compounds were in the range of 3.15–8.62, our results indicated that compounds possessing the lipophilicity with log P values in the range of 3.15–5.31 (**7a**, **7d**, **7j**, **8a**, and **8b**) demonstrated better inhibitory effects on the growth of selected cancer cells. Our results showed good correlation with previously published anticancer activity of similar pyrazole derivatives in which they showed growth inhibitory effect on A549 lung cancer cells with log P values in the range of 3.12–4.94 (Xia *et al.*, 2007, 2008).

Compounds	MDA-MB-231		HeLa		Raji		MCF7		HL60	
	CV%		CV%		CV%		CV%		CV%	
	24 h	48 h	24 h	48 h	24 h	48 h	24 h	48 h	24 h	48 h
DMSO	100 ± 7.08	100 ± 3.71	100 ± 4.13	100 ± 3.8	100 ± 5.02	100 ± 4.26	100 ± 2.74	100 ± 5.08	100 ± 3.55	100 ± 8.41
7а	96.5 ± 2.07	$64 \pm 9.02^{***}$	$53.5 \pm 4.79^{***}$	$49.9 \pm 4.73^{***}$	$77 \pm 4.61^{***}$	97.3 ± 3.39	$54.2\pm 6.68^{***}$	$88.2 \pm 7.43^{*}$	102.4 ± 10.2	91.7 ± 5.26
7b	$74 \pm 8.68^{***}$	* $51 \pm 5.77^{***}$	$84.8\pm 6.97^{**}$	$60.6 \pm 1.16^{***}$	100.8 ± 4.98	108.7 ± 8.32	$94.4 \pm 1.05^{**}$	$66.6 \pm 10.6^{***}$	128.5 ± 1.67	103.8 ± 2.65
7d	$65.1 \pm 9.76^{***}$	* 43.1 \pm 5.78 **	$74.9 \pm 5.16^{***}$	$82.6\pm 8.58^{**}$	$86.4 \pm 1.82^{***}$	93.4 ± 6.96	104.7 ± 7.88	100.4 ± 9.09	$31.7\pm5.86^{***}$	$41.9 \pm 2.69^{***}$
7f	119 ± 8.26	$62.9 \pm 4.9^{***}$	$83.2 \pm 4.4^{***}$	$81.4 \pm 4.83^{***}$	94.9 ± 4.24	102.8 ± 6.11	$93.2\pm3.55^{**}$	94.9 ± 7.0	120.1 ± 7.56	111.8 ± 1.83
7g	$71.9 \pm 9.57^{***}$	* 50.2 \pm 2.99 ***	87.2 ± 1.98	$69.7 \pm 5.3^{***}$	105 ± 4.27	94.2 ± 4.47	$80.3 \pm 9.27^{**}$	$90.5 \pm 2.85^{**}$	114.7 ± 8.56	125.9 ± 5.9
7h	114.6 ± 4.96	$63.2 \pm 12.05^{***}$	109 ± 4.41	$85.3 \pm 6.47^{**}$	$76.3 \pm 1.46^{***}$	$84.3 \pm 3.31^{***}$	100.5 ± 4.07	97.6 ± 9.38	118.1 ± 6.27	108.4 ± 9.85
7i	$75.5 \pm 3.95^{***}$	$50.3 \pm 2.11^{***}$	$89.1\pm8.09^*$	$77.4 \pm 6.49^{***}$	111 ± 2.84	120.9 ± 2.73	$63.6\pm2.91^{***}$	107.2 ± 9.8	114.1 ± 4.3	$86.3 \pm 8.34^{***}$
7j	$33.1 \pm 4.39^{***}$	* 24.4 \pm 2.1 ***	$36.7 \pm 6.01^{***}$	$33.9 \pm 6.47^{***}$	96.5 ± 3.86	105.6 ± 3.94	$67.6 \pm 1.98^{***}$	$52.4 \pm 7.78^{***}$	107.7 ± 2.46	120.8 ± 2.58
8a	121.3 ± 5.23	$71.8 \pm 8.67^{***}$	$66.4 \pm 4.09^{***}$	$47.1 \pm 2.85^{***}$	$56.5\pm0.85^{***}$	$41.6 \pm 0.92^{***}$	$77.8 \pm 8.77^{***}$	94.5 ± 3.93	$88.2 \pm 0.95^{***}$	$78.8 \pm 1.59^{**}$
8b	$67.2 \pm 2.79^{***}$	* 41.1 ± 4.82 ^{***}	$52.5 \pm 2.4^{***}$	$34.5 \pm 4.82^{***}$	$44.4 \pm 2.19^{***}$	$29.6\pm2.74^{***}$	$51.4 \pm 5.14^{***}$	$56.7 \pm 5.63^{***}$	$11.9 \pm 3.92^{***}$	$15.5 \pm 3.64^{**}$
8f	93.7 ± 4.55	$70.5 \pm 8.2^{***}$	117.5 ± 5.33	$62.1 \pm 3.32^{***}$	110.9 ± 5.72	$95.3 \pm 5.55^{**}$	90.9 ± 8.57	$92.4\pm4.88^*$	134.1 ± 5.32	$69.7 \pm 8.47^{**}$
8g	106.2 ± 9.35	$66.2 \pm 2.85^{***}$	$79.6 \pm 4.88^{**}$	$54.6 \pm 4.57^{***}$	$90.1 \pm 5.7^{***}$	$97 \pm 6.75^{**}$	$79.6 \pm 0.52^{***}$	$82.6 \pm 9.78^{**}$	120.2 ± 4.82	$83.6\pm7.8^*$
Cispl	94.5 ± 2.57	$88.4 \pm 4.78^{**}$	$92.3\pm3.41^*$	$71.6 \pm 4.32^{**}$	$79.4 \pm 2.29^{***}$	$31 \pm 0.51^{***}$	$87.9 \pm 5.39^{**}$	$61.1 \pm 6.18^{***}$	$74.8 \pm 0.95^{***}$	$23.9 \pm 1.79^{**}$

lines
cell
cancer
selected
\mathbf{of}
viability
the
on
compounds
he
of 1
Effects
9
e

Conclusion

Our results clearly show that derivatization of 1-benzyl-3(5)-(*p*-tolyl)-1*H*-pyrazole-5(3)-carboxylic acid scaffolds into lipophilic amides and esters act as in vivo potent analgesic and anti-inflammatory compounds as compared to reference drugs aspirin and indomethacin, exemplified by **7a**, **7c**, **7e–f**, **8a–b**, and **8f–g**. Comparison between the regiosiomeric main pyrazole scaffolds, amide (**8a–b**), and ester (**8f–g**) derivatives of 1-benzyl-5-(*p*-tolyl)-1*H*-pyrazole-3-carboxylic acid were more preferred over the same amides (**7a–b**)/esters (**8f–g**) of 1-benzyl-3-(*p*-tolyl)-1*H*pyrazole-5-carboxylic acid. Meanwhile, none of the other ester derivatives of pyrazole-5-carboxylic acid regioisomer were found active indicating that amide derivatization was more useful approach for this scaffold.

The results of the anti-cancer assays revealed an activity at the tested µM range linked particularly five compounds (7a, 7d, 7j, 8a, and 8b) in which three of them (7a, 8a-b) endowed with potent in vivo anti-inflammatory activity in the second phase of carrageenan-induced hind paw edema. Interestingly, among these compounds, the only ester derivative 7j with considerable anti-cancer activity for HeLa and MDA-MB-231 cells lacked the potency as an analgesic or anti-inflammatory agent. Although induction of cytotoxicity toward selected cancer-specific cells does not preclude the probable cytotoxicity against normal cells, the promising results obtained with the compounds bearing 1-benzyl-3(5)-(p-tolyl)-1H-pyrazole-5(3)-carboxylic acid scaffolds encourage us to develop new antitumor substances with good selectivity toward cancer cells and studies for determining the selectivity of new series of compounds are under ongoing work in our laboratory.

Materials and methods

Chemistry

¹H NMR spectra were recorded in CDCl₃ or DMSO- d_6 on a Varian Mercury 400 MHz High Performance Digital FT-NMR spectrometer using tetramethylsilane as the internal standard at the NMR facility of Faculty of Pharmacy, Ankara University. All chemical shifts were recorded as δ (ppm). High resolution mass spectra data (HRMS) were collected in-house using a Waters LCT Premier XE Mass Spectrometer (high sensitivity orthogonal acceleration time-of-flight instrument) operating in ESI (+) method, also coupled to an AQUITY Ultra Performance Liquid Chromatography system (Waters Corporation, Milford, MA, USA). Melting points were determined with an SMP-II Digital Melting Point Apparatus and are uncorrected (Schorpp Geaetetechnik, Germany). IR spectra were obtained using a Perkin Elmer Spectrum 400 FTIR/FTNIR spectrometer equipped with a Universal ATR Sampling Accessory. Flash chromatography was performed with a Combiflash[®]Rf automated flash chromatography system with RediSep columns (Teledyne-Isco, Lincoln, NE, USA) using hexane-ethyl acetate or dichloromethane-methanol solvent gradients. The purity of the final compounds was determined to be >97 % by UPLC with UV detector. 4-(4methylphenyl)-2,4-dioxobutanoate (3) was synthesized by the reaction of 4'-methylacetophenone with dimethyloxalate (Maurin et al., 2004). 2-Hydrazinoquinolin was synthesized by the reaction of 2-chloroquinoline with hydrazine hydrate (Gupta et al., 2007). p-Benzoquinone (PBQ), λ -Carrageenan (type IV) and other biochemical's used in this study were purchased from Sigma-Aldrich Chemical Company (St Louis, MO, USA).

Methyl 3-(p-tolyl)-1H-pyrazole-5-carboxylate (4)

To a mixture of 4-(*p*-tolyl)-2,4-dioxobutanoate (**1**) (12 mmol) in acetic acid (20 ml), hydrazine hydrate (13.2 mmol) was added and heated at reflux temperature for 40 min. The resulting solution was cooled, the precipitate was collected by filtration and washed with water. The product was used for the next step without further purification.Yield 96 %. HRMS (*m*/*z*): $[M + H]^+$ calcd for C₁₂H₁₃N₂O₂, 217.0977; found, 217.0974.

Methyl 1-benzyl-3-(4-methylphenyl)-1H-pyrazole-5carboxylate (5) and methyl 1-benzyl-5-(4-methylphenyl)-1H-pyrazole-3-carboxylate (6)

To a mixture of **4** (10 mmol) and K_2CO_3 (12 mmol) in acetonitrile (40 ml), benzyl chloride (15 mmol) was added and refluxed for 8 h. The reaction mixture was cooled to room temperature, filtered, and solvent was evaporated under reduced pressure and the regioisomers were separated by automated flash chromatography. The product **5** was obtained as white solid in 77 % yield and **6** was obtained as white solid in 15 % yield. For **5**; HRMS (*m/z*): $[M + H]^+$ calcd for $C_{19}H_{19}N_2O_2$, 307.1447; found, 307.1444. For **6**; HRMS (*m/z*): $[M + H]^+$ calcd for $C_{19}H_{19}N_2O_2$, 307.1447; found, 307.1452.

1-Benzyl-3-(4-methylphenyl)-1H-pyrazole-5-carboxylic acid (7) and 1-benzyl-5-(4-methylphenyl)-1H-pyrazole-3carboxylic acid (8)

Compounds 5 and 6 (5 mmol) were hydrolyzed to corresponding acids, in THF/water (1:1) with LiOH·H₂O (15 mmol) by heating at 70 °C for 2 h. The reaction mixture was poured into water and acidified with 6 N HCl, precipitate was collected by filtration and washed with water, and used in

the synthesis of amide and ester derivatives. For **7**; Yield 96 %; Mp 190–191 °C; IR (ATR): 1,686 cm⁻¹; ¹H NMR (CDCl₃): δ 2.38 (s, 3H), 5.80 (s, 2H), 7.22–7.29 (m, 8H), 7.73 (d, 2H, J = 8.0 Hz); HRMS (m/z): [M + H]⁺ calcd for C₁₈H₁₇N₂O₂, 293.1290; found, 293.1290. For **8**; yield 98 %; Mp 120–121°C; IR (ATR): 1,675 cm⁻¹; ¹H NMR (CDCl₃): δ 2.39 (s, 3H), 5.40 (s, 2H), 6.91 (s, 1H), 7.03–7.06 (m, 2H), 7.17–7.28 (m, 7H); HRMS (m/z): [M + H]⁺ calcd for C₁₈H₁₇N₂O₂, 293.1290; found, 293.1281.

General synthesis of amide and ester derivatives

To a mixture of the appropriate carboxylic acid derivative **7** or **8** (1 mmol) in 10 ml CH₂Cl₂, the appropriate amine or phenol derivative (1.1 mmol), 4-dimethylaminopyridine (DMAP) (0.2 mmol) and 1-ethyl-3-(3-dimethylaminopropyl) carbodimide (EDC) (1.1 mmol) were added, and stirred at room temperature overnight. The reaction mixture was diluted with CH₂Cl₂ and washed with 1 N HCl (3×20 ml), 5 % NaHCO₃ (3×20 ml), and brine. After drying over Na₂SO₄, solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography.

Ethyl 1-{[1-benzyl-3-(4-methylphenyl)-1H-pyrazol-5-yl]-carbonyl}piperidine-4-carboxylate (7a)

Prepared from ethyl piperidine-4-carboxylate. Yield 63 %; Mp 96–97 °C; IR (ATR): 2976, 1717, 1624, 1440, 1043, 702 cm⁻¹; ¹H NMR (DMSO-d₆): δ 1.06 (bs, 1H), 1.18 (t, 3H, J = 7.2 Hz), 1.40 (bs, 1H), 1.60 (bs, 1H), 1.84 (bs, 1H), 2.32 (s, 3H), 2.52–2.58 (m, 1H), 2.89–3.02 (m, 2H), 3.70 (bs, 1H), 4.07 (q, 2H, J = 7.2 Hz), 4.26 (bs, 1H), 5.42 (s, 2H), 6.93 (s, 1H), 7.18–7.32 (m, 7H), 7.72 (d, 2H, J = 8.0 Hz); HRMS (m/z): [M + H]⁺ calcd for C₂₆H₃₀N₃O₃, 432.2287; found, 432.2271.

1-{[1-Benzyl-3-(4-methylphenyl)-1H-pyrazol-5-yl]-carbonyl}-4-(4-tert-butylbenzyl) piperazine (**7b**)

Prepared from 1-(4-*t*-butylbenzyl)piperazine. Yield 56 %; Mp 145.2–145.5 °C; IR (ATR): 2950, 1626, 1442, 832, 749, 706 cm⁻¹; ¹H NMR (CDCl₃): δ 1.31 (s, 9H), 1.93 (s, 2H), 2.34 (s, 2H), 2.37 (s, 3H), 3.29 (s, 2H), 3.36 (s, 2H), 3.64 (s, 2H), 5.53 (s, 2H), 6.52 (s, 1H), 7.16–7.34 (m, 11H), 7.68 (d, 2H, J = 8.0 Hz); HRMS (m/z): [M + H]⁺ calcd for C₃₃H₃₉N₄O, 507.3124; found, 507.3127.

1-{[1-Benzyl-3-(4-methylphenyl)-1H-pyrazol-5-yl]-carbonyl}-4-(2,3,4-trimethoxybenzyl)piperazine (7c)

Prepared from 1-(2,3,4-trimethoxylbenzyl)piperazine. Yield 50 %; Mp 134–134.5 °C; IR (ATR): 2917, 1628, 1458, 821, 748 cm⁻¹; ¹H NMR (CDCl₃): δ 1.98 (bs, 2H), 2.37 (m, 5H),

3.28 (s, 2H), 3.36 (s, 2H), 3.63 (bs, 2H), 3.85 (s, 3H), 3.87 (s, 6H), 5.52 (s, 2H), 6.52 (s, 1H), 6.62 (d, 1H, J = 8.0 Hz), 6.90 (d, 1H, J = 8.0 Hz), 7.21 (d, 2H, J = 8.0 Hz), 7.24–7.28 (m, 5H), 7.69 (d, 2H, J = 8.0 Hz); HRMS (m/z): [M + H]⁺ calcd for C₃₂H₃₇N₄O₄, 541.2815; found, 541.2795.

1-Benzyl-3-(4-methylphenyl)-N-(pyridin-3-ylmethyl)-1Hpyrazole-5-carboxamide (7d)

Prepared from pyridin-3-ylmethylamine. Yield 55.7 %; Mp 172–173 °C; IR (ATR): 3035, 2935, 1647, 1522, 1428, 1281, 715 cm⁻¹; ¹H NMR (CDCl₃): δ 2.36 (s, 3H), 4.56 (d, 2H, J = 6.4 Hz), 5.82 (s, 2H), 6.37 (t, 1H), 6.79 (s, 1H), 7.19–7.29 (m, 8H), 7.52 (m, 1H), 7.67 (d, 2H, J = 8.4 Hz), 8.52–8.54 (m, 2H); HRMS (m/z): [M + H]⁺ calcd for C₂₄H₂₃N₄O, 383.1872; found, 383.1854.

1-Benzyl-3-(4-methylphenyl)-N'-quinolin-2-yl-1H-pyrazole-5-carbohydrazide (7e)

Prepared from 2-hydrazinoquinoline. Yield 25 %; Mp 231–232 °C; IR (ATR): 3252, 2909, 1654, 1618, 1509, 1429, 759, 718, 699 cm⁻¹; ¹H NMR (CDCl₃): δ 2.36 (s, 3H), 5.72 (s, 2H), 6.80 (d, 1H, J = 8.8 Hz), 7.12 (s, 1H), 7.17–7.33 (m, 8H), 7.51–7.54 (m, 1H), 7.62–7.68 (m, 4H), 7.86 (d, 1H, J = 8.4 Hz); HRMS (m/z): [M + H]⁺ calcd for C₂₇H₂₄N₅O, 434.1981; found, 434.1970.

4-tert-Butylphenyl 1-benzyl-3-(4-methylphenyl)-1Hpyrazole-5-carboxylate (7f)

Prepared from 4-*t*-butylphenol. Yield 78 %; Mp 127–127.6 °C; IR (ATR): 3134, 2958, 1725, 1439, 1247, 1201, 1066, 817 cm⁻¹; ¹H NMR (CDCl₃): δ 1.33 (s, 9H), 2.39 (s, 3H), 5.82 (s, 2H), 7.05 (d, 2H, J = 8.8 Hz), 7.23–7.34 (m, 7H), 7.42 (d, 2H, J = 8.8 Hz), 7.77 (d, 2H, J = 8.0 Hz); HRMS (*m/z*): [M + H]⁺ calcd for C₂₈H₂₉N₂O₂, 425.2229; found, 425.2209.

4-Isopropylphenyl 1-benzyl-3-(4-methylphenyl)-1Hpyrazole-5-carboxylate (**7g**)

Prepared from 4-*i*-propylphenol. Yield 79 %; Mp 96–97 °C; IR (ATR): 3127, 2949, 1735, 1504, 1241, 1194, 1046, 817 cm⁻¹; ¹H NMR (CDCl₃): δ 1.25 (d, 6H, J = 6.8 Hz), 2.39 (s, 3H), 2.93 (m, 1H), 5.82 (s, 2H), 7.05 (d, 2H, J = 8.8 Hz), 7.23–7.35 (m, 10H), 7.77 (d, 2H, J = 8.0 Hz); HRMS (m/z): [M + H]⁺ calcd for C₂₂H₂₇N₂O₂, 411.2073; found, 411.2059.

4-(Heptyloxy)phenyl 1-benzyl-3-(4-methylphenyl)-1Hpyrazole-5-carboxylate (**7h**)

Prepared from 4-heptyloxyphenol. Yield 78 %; Mp 91.5–92 °C; IR (ATR): 3062, 2947, 1734, 1504, 1246,

1197, 1060, 818 cm⁻¹; ¹H NMR (CDCl₃): δ 0.89 (t, 3H, J = 6.8 Hz), 1.31–1.47 (m, 8H), 1.77 (m, 2H), 2.39 (s, 3H), 3.94 (t, 2H, J = 6.8 Hz), 5.81 (s, 2H), 6.90 (d, 2H, J = 8.8 Hz), 7.03 (d, 2H, J = 8.8 Hz), 7.23–7.35 (m, 7H), 7.76 (d, 2H, J = 8.0 Hz); HRMS (*m*/z): [M + H]⁺ calcd for C₃₁H₃₅N₂O₃, 483.2648; found, 483.2632.

4-[4-(Trifluoromethyl)phenoxy]phenyl 1-benzyl-3-(4methylphenyl)-1H-pyrazole-5-carboxylate (7i)

Prepared from **5** 4-[4-(trifluoromethyl)phenoxy]phenol. Yield 68 %; Mp 109–110 °C; IR (ATR): 3037, 1734, 1495, 1318, 1054, 818, 723 cm⁻¹; ¹H NMR (CDCl₃): δ 2.39 (s, 3H), 5.83 (s, 2H), 7.06–7.10 (m, 4H), 7.16 (d, 2H, J = 8.8 Hz), 7.24–7.32 (m, 7H), 7.35 (s, 1H), 7.59 (d, 2H, J = 8.8 Hz), 7.77 (d, 2H, J = 8.0 Hz); HRMS (m/z): [M + H]⁺ calcd for C₃₁H₂₄F₃N₂O₃, 529.1739; found, 529.1746.

4-(1H-Imidazol-1-yl)phenyl 1-benzyl-3-(4-methylphenyl)-1H-pyrazole-5-carboxylate (**7j**)

Prepared from 4-(1*H*-imidazol-1-yl)phenol. Yield 64 %; Mp 167.5–168 °C; IR (ATR): 3133, 2945, 1736, 1518, 1508, 1199, 1051, 808, 726 cm⁻¹; ¹H NMR (CDCl₃): δ 2.40 (s, 3H), 5.82 (s, 2H), 7.22–7.35 (m, 11H), 7.37 (s, 1H), 7.44 (d, 2H, J = 8.4 Hz), 7.78 (d, 2H, J = 8.0 Hz), 7.84 (s, 1H); HRMS (m/z): [M + H]⁺ calcd for C₂₇H₂₃N₄O₂, 435.1821; found, 435.1820.

Ethyl 1-{[1-benzyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]-carbonyl}piperidine-4-carboxylate (8a)

Prepared from ethyl piperidine-4-carboxylate. Yield 79 %; Mp 98–99 °C; IR (ATR): 3131, 2923, 1720, 1624, 1486, 1164, 1043, 987, 734 cm⁻¹; ¹H NMR (CDCl₃): δ 1.26 (t, 3H, J = 7.0 Hz), 1.73–1.83 (m, 2H), 1.92 (m, 1H), 2.02 (m, 1H), 2.38 (s, 3H), 2.59 (m, 1H), 3.00 (t, 1H), 3.30 (t, 1H), 4.15 (q, 2H, J = 7.0 Hz), 4.57 (m, 1H), 4.68 (m, 1H), 5.32 (s, 2H), 6.69 (s, 1H), 7.04–7.06 (m, 2H), 7.23 (s, 4H), 7.24–7.30 (m, 3H); HRMS (m/z): [M + H]⁺ calcd for C₂₆H₃₀N₃O₃, 432.2287; found, 432.2273.

1-{[1-benzyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]carbonyl}-4-(4-tert-butylbenzyl) piperazine (8b)

Prepared from 1-(4-*t*-butylbenzyl)piperazine. Yield 49 %; Mp 125–126 °C; IR (ATR): 3022, 2958, 1621, 1483, 1255, 963, 815, 729 cm⁻¹; ¹H NMR (CDCl₃): δ 1.32 (s, 9H), 2.39 (s, 3H), 2.80 (bs, 2H), 3.40 (bs, 2H), 3.71 (s, 1H), 4.13 (m, 3H), 4.80 (bs, 1H), 5.28 (s, 3H), 6.77 (s, 1H), 7.00–7.02 (m, 2H), 7.18–7.29 (m, 7H), 7.46 (d, 2H, *J* = 8.0 Hz), 7.53 (d, 2H, *J* = 8.0 Hz); HRMS (*m*/*z*): [M + H]⁺ calcd for C₃₃H₃₉N₄O, 507.3124; found, 507.3114. 4-tert-Butylphenyl 1-benzyl-5-(4-methylphenyl)-1Hpyrazole-3-carboxylate (8f)

Prepared from 4-*t*-butylphenol. Yield 67 %; Mp 119.5–120 °C; IR (ATR): 2946, 1732, 1462, 1204, 1196, 993, 807, 716 cm⁻¹; ¹H NMR (CDCl₃): δ 1.33 (s, 9H), 2.39 (s, 3H), 5.46 (s, 2H), 6.99 (s, 1H), 7.06–7.08 (m, 2H), 7.17 (d, 2H, J = 8.8 Hz), 7.19–7.29 (m, 7H), 7.42 (d, 2H, J = 8.8 Hz); HRMS (*m*/*z*): [M + H]⁺ calcd for C₂₈H₂₉N₂O₂, 425.2229; found, 425.2215.

4-Isopropylphenyl 1-benzyl-5-(4-methylphenyl)-1Hpyrazole-3-carboxylate (**8g**)

Prepared from 4-*i*-propylphenol. Yield 82 %; Mp 129–130 °C; IR (ATR): 3141, 2957, 1732, 1455, 1167, 990, 873, 734 cm⁻¹; ¹H NMR (CDCl₃): δ 1.26 (d, 6H, J = 6.8 Hz), 2.39 (s, 3H), 2.93 (m, 1H), 5.46 (s, 2H), 6.99 (s, 1H), 7.06–7.08 (m, 2H), 7.16 (d, 2H, J = 8.8 Hz), 7.20–7.30 (m, 9H); HRMS (*m*/*z*): [M + H]⁺ calcd for C₂₇H₂₇N₂O₂, 411.2073; found, 411.2054.

Pharmacological screening

Animals

Male, Swiss albino mice (25-30 g) were purchased from the animal breeding laboratories of Refik Saydam Central Institute of Health (Ankara, Turkey). They were housed in a room with controlled temperature $(22 \pm 1 \text{ °C})$, humidity $(55 \pm 10 \%)$, and photoperiod (12:12 h) light–dark cycle for at least a week before being used. They were maintained on standard pellet diet and water ad libitum throughout the experiment. A minimum of six animals were used in each group. Throughout the experiments, animals were processed according to the suggested international ethical guidelines for the care of laboratory animals under the audit of Gazi University Commission of Animal Ethics (Permission no: G.U.ET-11.091/188-17453).

Analgesic activity

Analgesic activity was evaluated using the *p*-Benzoquinone (PBQ)-induced writhing test in mice (Okun *et al.*, 1963). Thirty minutes after the subcutaneous administration of a test sample in dimethyl sulfoxide (DMSO) (100 mg/kg body weight), the mice were intraperitoneally injected with 0.1 ml/10 g body weight of 2.5 % (w/v) PBQ solution in distilled water. Control animals received an appropriate volume of dosing vehicle (DMSO). The mice were then kept individually for the observation and the total number of the abdominal contractions (writhing

movements) was counted for the following 15 min, starting 5 min after the PBQ injection. The data represent the average of the total number of writhes observed. Analgesic activity was then expressed as the percentage change from writhing controls.

Anti-inflammatory activity

Carrageenan-induced hind paw edema model was utilized for evaluation of anti-inflammatory activity (Kupeli *et al.*, 2007). Each experimental group contained seven animals minimally. Thirty minutes after the subcutaneous administration of a test sample in DMSO (100 mg/kg body weight) or dosing vehicle, each mouse was injected with freshly prepared suspension of carrageenan (0.5 mg/25 μ l) in physiological saline into sub-plantar tissue of the right hind paw. As a control group, 25 μ l saline was injected into the left hind paw. Paw edema was measured in 90, 180, 270, and 360 min after carrageenan injections. The difference in hind paw thickness was measured by a caliber compasses (Ozaki Co., Tokyo, Japan). Mean values of each treated groups were compared with control group and analyzed by using statistical methods.

Acute toxicity

At the end of these experiments after 48 h observation of all animals, no morbidity or mortality has been recorded.

Cell culture and viability assay

MDA-MB-231 and MCF7 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) whereas HeLa, HL60, and Raji cells were grown in RPMI (Roswell Park Memorial Institute)-1640 medium in a humidified atmosphere containing 5 % CO₂ at 37 °C. Both DMEM and RPMI-1640 medium were supplemented with 10 % fetal bovine serum (FBS), 200 mM L-glutamine, 100 IU/ml penicillin, and 100 µg/ml streptomycin (all from Hyclone Laboratories, Logan, UT, USA). Cell viability was assessed using MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide) assay (Cell Proliferation Kit I, Roche, Germany). In brief, cells were seeded in a 96-well plate at 10,000 cells per well, cultured for overnight in complete growth medium-containing 1 % FBS. Then cells treated with 50 µM of test compounds in DMSO for 24 and 48 h. At the end of the treatment times, MTT reagent at the final concentration of 0.5 mg/ml was added to each well and incubated for an additional 4 h. After formation of blue formazan crystals, medium containing MTT was discarded and DMSO was added to the wells to dissolve crystals. The absorbance of samples was measured with Spectra Max M3 microplate reader (Molecular Devices, Sunnyvale, CA,

USA) at a wavelength of 570 nm. Cell treated with 10 μ M cisplatin were used as a positive control.

Statistical analysis

The data were expressed as means \pm SEM or \pm SD. The significance of differences between the treatment and the control group of animals were determined by one-way ANOVA with Barlett test following post hoc Student–Newman–Keuls multiple comparisons test for analgesic activity and two-way ANOVA following post hoc Bonferroni test for anti-inflammatory activity. Data for anticancer activity were analyzed by one-way ANOVA. *P* value <0.05 was considered statistically significant.

Acknowledgments This investigation was supported by a Scientific Research Grant 02/2010-20 awarded by Gazi University BAP. The authors greatly acknowledge D. A. Alkan (Department of Pharmacology) for her assistance for performing in vivo biological experiments. The authors report no conflicts of interest.

References

- Agrawal A, Fentiman IS (2008) NSAIDs and breast cancer: a possible prevention and treatment strategy. Int J Clin Pract 62(3): 444–449. doi:10.1111/j.1742-1241.2007.01668.x
- Baker AK, Hoffmann VL, Meert TF (2002) Dextromethorphan and ketamine potentiate the antinociceptive effects of mu- but not delta- or kappa-opioid agonists in a mouse model of acute pain. Pharmacol Biochem Behav 74(1):73–86
- Banoglu E, Okcelik B, Kupeli E, Unlu S, Yesilada E, Amat M, Caturla JF, Sahin MF (2003) Amide derivatives of [5-chloro-6-(2-chloro/fluorobenzoyl)-2-benzoxazolinone-3-yl]acetic acids as potential analgesic and anti-inflammatory compounds. Arch Pharm (Weinheim) 336(4–5):251–257. doi:10.1002/ardp.20030 0723
- Banoglu E, Akoglu C, Unlu S, Kupeli E, Yesilada E, Sahin MF (2004) Amide derivatives of [6-(5-methyl-3-phenylpyrazole-1yl)-3(2H)-pyridazinone-2-yl]acetic acids as potential analgesic and anti-inflammatory compounds. Arch Pharm (Weinheim) 337(1):7–14. doi:10.1002/ardp.200200738
- Banoglu E, Akoglu C, Unlu S, Ergun BC, Kupeli E, Yesilada E, Sahin MF (2005) Synthesis of amide derivatives of [6-(3,5-dimethylpyrazol-1-yl)-3(2H)-pyridazinone-2-yl] acetic acid and their analgesic and anti-inflammatory properties. Arzneimittelforschung 55(9):520–527
- Barthel HR, Axford-Gatley RA (2010) Topical nonsteroidal antiinflammatory drugs for osteoarthritis. Postgrad Med 122(6): 98–106. doi:10.3810/pgm.2010.11.2227
- Bekhit AA, Hymete A, El-Din ABA, Damtew A, Aboul-Enein HY (2010) Pyrazoles as promising scaffold for the synthesis of antiinflammatory and/or antimicrobial agent: a review. Mini Rev Med Chem 10(11):1014–1033
- Bhalke RD, Chavan MJ (2011) Analgesic and CNS depressant activities of extracts of Annona reticulata Linn bark. Phytopharmacology 1(5):160–165
- Caliskan B, Luderer S, Ozkan Y, Werz O, Banoglu E (2011) Pyrazol-3-propanoic acid derivatives as novel inhibitors of leukotriene biosynthesis in human neutrophils. Eur J Med Chem 46(10): 5021–5033. doi:10.1016/j.ejmech.2011.08.009

- Chao SH, Wu AB, Lee CJ, Chen FA, Wang CC (2005) Antiinflammatory effects of indomethacin's methyl ester derivative and induction of apoptosis in HL-60 Cells. Biol Pharm Bull 28(12):2206–2210
- Charo IF, Taub R (2011) Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev Drug Discov 10(5): 365–376. doi:10.1038/nrd3444
- Claria J, Romano M (2005) Pharmacological intervention of cyclooxygenase-2 and 5-lipoxygenase pathways. Impact on inflammation and cancer. Curr Pharm Des 11(26):3431–3447
- Ding XL, Zhang HY, Qi L, Zhao BX, Lian S, Lv HS, Miao JY (2009) Synthesis of novel pyrazole carboxamide derivatives and discovery of modulators for apoptosis or autophagy in A549 lung cancer cells. Bioorg Med Chem Lett 19(18):5325–5328. doi:10.1016/j.bmcl.2009.07.131
- Ergun BC, Nunez MT, Labeaga L, Ledo F, Darlington J, Bain G, Cakir B, Banoglu E (2010) Synthesis of 1,5-diarylpyrazol-3propanoic acids towards inhibition of cyclooxygenase-1/2 activity and 5-lipoxygenase-mediated LTB4 formation. Arzneimittelforschung 60(8):497–505
- Farag AM, Ali KA, El-Debss TM, Mayhoub AS, Amr AG, Abdel-Hafez NA, Abdulla MM (2010) Design, synthesis and structureactivity relationship study of novel pyrazole-based heterocycles as potential antitumor agents. Eur J Med Chem 45(12): 5887–5898. doi:10.1016/j.ejmech.2010.09.054
- Fischer SM, Hawk ET, Lubet RA (2011) Coxibs and other nonsteroidal anti-inflammatory drugs in animal models of cancer chemoprevention. Cancer Prev Res (Phila) 4(11):1728–1735. doi:10.1158/1940-6207.CAPR-11-0166
- Ghosh J, Myers CE (1997) Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun 235(2):418–423. doi:10.1006/bbrc. 1997.6799
- Ghosh J, Myers CE (1998) Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci USA 95(22):13182–13187
- Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30(3):377–386. doi:10.1093/ carcin/bgp014
- Grossman EM, Longo WE, Panesar N, Mazuski JE, Kaminski DL (2000) The role of cyclooxygenase enzymes in the growth of human gall bladder cancer cells. Carcinogenesis 21(7): 1403–1409
- Gupta LK, Bansal U, Chandra S (2007) Spectroscopic and physicochemical studies on nickel(II) complexes of isatin-3,2'-quinolylhydrazones and their adducts. Spectrochim Acta A 66:972–975
- Heneka MT, Kummer MP, Weggen S, Bulic B, Multhaup G, Munter L, Hull M, Pflanzner T, Pietrzik CU (2011) Molecular mechanisms and therapeutic application of NSAIDs and derived compounds in Alzheimer's disease. Curr Alzheimer Res 8(2): 115–131
- Kasahara Y, Hikino H, Tsurufuji S, Watanabe M, Ohuchi K (1985) Antiinflammatory actions of ephedrines in acute inflammations1. Planta Med 51(4):325–331. doi:10.1055/s-2007-969503
- Keter FK, Darkwa J (2011) Perspective: the potential of pyrazolebased compounds in medicine. Biometals. doi:10.1007/s10534-011-9496-4
- Kupeli E, Tatli II, Akdemir ZS, Yesilada E (2007) Estimation of antinociceptive and anti-inflammatory activity on Geranium pratense subsp. finitimum and its phenolic compounds. J Ethnopharmacol 114(2):234–240
- Lian S, Su H, Zhao BX, Liu WY, Zheng LW, Miao JY (2009) Synthesis and discovery of pyrazole-5-carbohydrazide N-glycosides as inducer of autophagy in A549 lung cancer cells. Bioorg

Deringer

Med Chem 17(20):7085–7092. doi:10.1016/j.bmc.2009. 09.004

- Liu XH, Rose DP (1996) Differential expression and regulation of cyclooxygenase-1 and -2 in two human breast cancer cell lines. Cancer Res 56(22):5125–5127
- Liu W, Zhou J, Bensdorf K, Zhang H, Liu H, Wang Y, Qian H, Zhang Y, Wellner A, Rubner G, Huang W, Guo C, Gust R (2011) Investigations on cytotoxicity and anti-inflammatory potency of licofelone derivatives. Eur J Med Chem 46(3):907–913. doi: 10.1016/j.ejmech.2011.01.002
- Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi:10.1038/nature 07205
- Maurin C, Bailly F, Cotelle P (2004) Improved preparation and structural investigation of 4-aryl-4-oxo-2-hydroxy-2-butenoic acids and methyl esters. Tetrahedron 60(31):6479–6486
- Muller-Decker K, Kopp-Schneider A, Marks F, Seibert K, Furstenberger G (1998) Localization of prostaglandin H synthase isoenzymes in murine epidermal tumors: suppression of skin tumor promotion by inhibition of prostaglandin H synthase-2. Mol Carcinog 23(1):36–44. doi:10.1002/(SICI)1098-2744 (199809)23:1<36:AID-MC5>3.0.CO;2-F
- Nagarapu L, Mateti J, Gaikwad HK, Bantu R, Sheeba Rani M, Prameela Subhashini NJ (2011) Synthesis and anti-inflammatory activity of some novel 3-phenyl-*N*-[3-(4-phenylpiperazinlyl)propyl]-1*H*-pyrazole-5-carboxamide derivatives. Bioorg Med Chem Lett 21(14):4138–4140. doi:10.1016/j.bmcl.2011. 05.105
- Nakanishi M, Gokhale V, Meuillet EJ, Rosenberg DW (2010) mPGES-1 as a target for cancer suppression: a comprehensive invited review "Phospholipase A2 and lipid mediators". Biochimie 92(6):660–664. doi:10.1016/j.biochi.2010.02.006
- Nitulescu GM, Draghici C, Missir AV (2010) Synthesis of new pyrazole derivatives and their anticancer evaluation. Eur J Med Chem 45(11):4914–4919. doi:10.1016/j.ejmech.2010.07.064
- Okun R, Liddon SC, Lasagna L (1963) The effects of aggregation, electric shock, and adrenergic blocking drugs on inhibition of the "writhing syndrome". J Pharmacol Exp Ther 139:107–109
- Pavao-de-Souza GF, Zarpelon AC, Tedeschi GC, Mizokami SS, Sanson JS, Cunha TM, Ferreira SH, Cunha FQ, Casagrande R, Verri WA Jr (2012) Acetic acid- and phenyl-p-benzoquinoneinduced overt pain-like behavior depends on spinal activation of MAP kinases, PI(3)K and microglia in mice. Pharmacol Biochem Behav 101(3):320–328. doi:10.1016/j.pbb.2012.01.018
- Pereg D, Lishner M (2005) Non-steroidal anti-inflammatory drugs for the prevention and treatment of cancer. J Intern Med 258(2):115–123. doi:10.1111/j.1365-2796.2005.01519.x
- Radmark O, Samuelsson B (2010) Microsomal prostaglandin E synthase-1 and 5-lipoxygenase: potential drug targets in cancer. J Intern Med 268(1):5–14. doi:10.1111/j.1365-2796.2010.02246.x
- Romano M, Claria J (2003) Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. FASEB J 17(14): 1986–1995. doi:10.1096/fj.03-0053rev
- Sheng H, Shao J, Kirkland SC, Isakson P, Coffey RJ, Morrow J, Beauchamp RD, DuBois RN (1997) Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 99(9):2254–2259. doi:10.1172/JCI119400
- Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M (2010) The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol 2010:215158. doi: 10.1155/2010/215158
- Totzke G, Schulze-Osthoff K, Janicke RU (2003) Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene 22(39):8021–8030. doi:10.1038/sj.onc.1206837

- Verri WA Jr, Cunha TM, Magro DA, Domingues AC, Vieira SM, Souza GR, Liew FY, Ferreira SH, Cunha FQ (2008) Role of IL-18 in overt pain-like behaviour in mice. Eur J Pharmacol 588(2–3):207–212. doi:10.1016/j.ejphar.2008.04.010
- Vinegar R, Schreiber W, Hugo R (1969) Biphasic development of carrageenin edema in rats. J Pharmacol Exp Ther 166(1):96–103
- Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10(3):181–193. doi:10.1038/nrc2809
- Wei F, Zhao BX, Huang B, Zhang L, Sun CH, Dong WL, Shin DS, Miao JY (2006) Design, synthesis, and preliminary biological evaluation of novel ethyl 1-(2'-hydroxy-3'-aroxypropyl)-3-aryl-1*H*-pyrazole-5-carboxylate. Bioorg Med Chem Lett 16(24): 6342–6347. doi:10.1016/j.bmcl.2006.09.008
- Werz O, Schneider N, Brungs M, Sailer ER, Safayhi H, Ammon HP, Steinhilber D (1997) A test system for leukotriene synthesis inhibitors based on the in vitro differentiation of the human leukemic cell lines HL-60 and Mono Mac 6. Naunyn Schmiedebergs Arch Pharmacol 356(4):441–445
- Wun T, McKnight H, Tuscano JM (2004) Increased cyclooxygenase-2 (COX-2): a potential role in the pathogenesis of lymphoma. Leuk Res 28(2):179–190
- Xia Y, Dong ZW, Zhao BX, Ge X, Meng N, Shin DS, Miao JY (2007) Synthesis and structure-activity relationships of novel

1-arylmethyl-3-aryl-1*H*-pyrazole-5-carbohydrazide derivatives as potential agents against A549 lung cancer cells. Bioorg Med Chem 15(22):6893–6899. doi:10.1016/j.bmc.2007.08.021

- Xia Y, Fan CD, Zhao BX, Zhao J, Shin DS, Miao JY (2008) Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1*H*-pyrazole-5-carbohydrazide hydrazone derivatives as potential agents against A549 lung cancer cells. Eur J Med Chem 43(11):2347–2353. doi:10.1016/j.ejmech.2008.01.021
- Xie YS, Pan XH, Zhao BX, Liu JT, Shin DS, Zhang JH, Zheng LW, Zhao J, Miao JY (2008) Synthesis, structure characterization and preliminary biological evaluation of novel 5-alkyl-2-ferrocenyl-6,7-dihydropyrazolo[1,5-a]pyrazin-4(5H)-one derivatives. J Organomet Chem 693(7):1367–1374
- Zheng LW, Wu LL, Zhao BX, Dong WL, Miao JY (2009) Synthesis of novel substituted pyrazole-5-carbohydrazide hydrazone derivatives and discovery of a potent apoptosis inducer in A549 lung cancer cells. Bioorg Med Chem 17(5):1957–1962. doi: 10.1016/j.bmc.2009.01.037
- Zheng LW, Li Y, Ge D, Zhao BX, Liu YR, Lv HS, Ding J, Miao JY (2010) Synthesis of novel oxime-containing pyrazole derivatives and discovery of regulators for apoptosis and autophagy in A549 lung cancer cells. Bioorg Med Chem Lett 20(16):4766–4770. doi:10.1016/j.bmcl.2010.06.121