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Abstract Benzimidazoles have been reported to have a

wide range of biological and therapeutic properties. For

this reason a variety of methods for their synthesis has been

described, following one of the two general routes: the

coupling of o-phenylenediamine and carboxylic acids or

their derivatives using a strong acid and high temperature,

or a two-step sequence that involves oxidative cyclodehy-

drogenation of Schiff’s bases, obtained by the reaction of

o-phenylenediamines and aromatic aldehydes. A simple,

efficient, and environmentally friendly procedure for the

synthesis of substituted 2- and 2,5(6)-substituted benzimi-

dazoles is herein described. The procedure is carried out by

treatment of o-phenylenediamine or 4-chloro-o-phenyl-

enediamine with aryl or heteroaryl aldehydes. Bentonite

clay is used as catalyst in dry acetonitrile at room tem-

perature. This procedure has several important advantages,

including short reaction times, large-scale preparations,

easy isolation of the products, and good to excellent yields.
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Introduction

Benzimidazoles have received considerable attention due

to their wide range of biological and therapeutic properties.

For example, they have been investigated as anti-helmin-

thic [1, 2], anti-parasitic [3, 4], anti-thrombosis, anti-

inflammatory, anti-bronchoconstrictive, anti-neoplastic [5–

8], neuroprotective [9], antifungal [10], and antiviral agents

[11]. Therefore, it is not surprising that a wide variety of

methods for synthesizing the benzimidazole nucleus have

been developed and described in the literature.

Within the abundance of methods, there are two general

routes for the synthesis of benzimidazoles. One is the cou-

pling of o-phenylenediamine and carboxylic acids [12, 13] or

their derivatives [10, 14–16] using a strong acid and high

temperature (i.e., harsh experimental conditions). The other

is a two-step sequence that involves oxidative cyclodehy-

drogenation of Schiff’s bases, obtained by the reaction of

o-phenylenediamines and aromatic aldehydes [17–19].
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A variety of catalysts, including In(OTf)3 [20], functional-

ized silica gel with sulfonic acid [21], and SiO2/ZnCl2 [22],

have recently been used for the synthesis of these compounds

under strictly anhydrous reaction conditions.

In the search for more efficient and environmentally

friendly methods, bentonite clay is herein considered as a

catalyst. Given that bentonite clays work as both Lewis and

Brönsted [23] acids, their acidic properties are well known.

They are able to interact with carbon–oxygen double bonds to

promote the addition of a nucleophile to the electrophilic

carbon. Therefore, they are widely employed as heteroge-

neous catalysts in several interesting organic transformations,

such as condensation reactions between carbonyl compounds

and amines.

Thus, Eynde described the N–C bond formation catalyzed

by bentonite clay in imidazolidine synthesis [24]. Likewise,

Penieres reported the synthesis of benzimidazoles assisted

by bentonite clay under IR irradiation [25]. Recently, Pitc-

humani reported the synthesis of 2-phenylbenzimidazole by

two procedures. In one of them he used K10-clay as a het-

erogeneous catalyst, with water/methanol as solvent, and

stirred the mixture for 24 h at room temperature. In the other

he used Zn2?-K10-clay under the same conditions. Yields

were 26 and 98 % of the benzimidazoles [26].

An important focus of our group is the synthesis of mol-

ecules to be used as potential antimicrobial agents. Since we

require an efficient and inexpensive method for benzimid-

azole synthesis, we decided to investigate bentonite clay as a

possible catalyst in the absence of other Lewis acids

(Table 1). We herein report a simple and straightforward

procedure to obtain 2- and 2,5(6)-substituted benzimidaz-

oles, starting with commercially available compounds and

employing bentonite clay as a heterogeneous catalyst.

Results and discussion

The benzimidazoles 3a–3h (Scheme 1) were prepared

using o-phenylenediamine 2 and aryl (heteroaryl)

aldehydes 1 in a 1:1.1 molar ratio, with bentonite clay (one

part by weight relative to aldehyde) in dry acetonitrile. The

reaction mixture was stirred at room temperature for 1 h.

Compounds 3a–3h were obtained as beige amorphous

solids in excellent yields, with melting points similar to

those described in the literature. The products were char-

acterized by analysis of their spectroscopic data. Their

infrared spectra showed an intense absorption band near

3,300 cm-1, which was assigned to the stretching fre-

quency of the amino group of the imidazole ring.

Additionally, compounds 3c, 3d, 3f, 3g, and 3h showed an

intense absorption band close to 1,500 cm-1, which was

assigned to the stretching frequency of the nitro group.

The proton nuclear magnetic resonance (1H NMR)

showed two kinds of signals for the substituted benzimi-

dazoles. One is due to the benzimidazole nucleus and the

other corresponds to the substituents. For such compounds

substituted with a 2-thienyl or 2-furyl, the 1H NMR spectra

showed signals below 8 ppm with overlapping, thus mak-

ing structural assignments for these benzimidazoles

difficult. Nevertheless, the 2-nitrophenylbenzimidazole

showed more separate signals, with some protons for the

core observed below 8 ppm and other protons found above

8 ppm.

On the other hand, the carbon nuclear magnetic reso-

nance (13C NMR) for the synthesized compounds showed a

different number of signals. Some of them were observed

at around 129 ppm, which was assigned to the imine car-

bon (N=C–N) and ipso carbon (C–NO2). In the case of the

2-furanyl substituent, there were signals at 144.5, 145.0,

and 144.0 ppm, corresponding to the imine carbon (N=C–

N), and the C-20 and C-50 furan system (C2–O–C5),

respectively. The clorobenzimidazoles 3e–3h showed a

signal near 133 ppm, which was assigned to the ipso car-

bon (C–Cl).

Conclusion

A new and a convenient one-pot synthesis of 2- and 2,5(6)-

substituted benzimidazoles is reported, using bentonite clay

as a heterogeneous catalyst. The synthetic strategy led to

the formation of a benzimidazole pharmacophore that is

well recognized for its diverse biological activity.

Experimental

Bentonite clay was donated by Dr. Delgado and was heated

at 200 �C for 2 h. As bentonite clay swells when it absorbs

water, it must be activated previous to use at 100 �C.

Acetonitrile was dried with phosphoric pentoxide at room

temperature. Melting points were determined on an

Table 1 Benzimidazoles 3a–3h prepared from o-phenylenediamines

and (hetero)aryl aldehydes using bentonite clay (Scheme 1)

Prod. R R1 Yield/% M.p./�C Lit. m.p./�C

3a H 2-Thienyl 90 333–334 330–332 [19]

3b H 2-Furanyl 75 289–290 284–286 [27]

3c H 4-Nitrophenyl 89 328–329 308 [27]

3d H 3-Nitrophenyl 94 213–215 204–206 [28, 29]

3e Cl 2-Thienyl 64 228–229 226.5–227.5 [30]

3f Cl 4-Nitrophenyl 64 224–226 257 [31]

3g Cl 3-Nitrophenyl 64 245–246 243 [14]

3h Cl 2-Nitrophenyl 64 110–111 108–109 [32]
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electrothermal melting point apparatus. Infrared spectra

(IR) were recorded on a double beam Perkin-Elmer Model

1605 FT/IR spectrometer. NMR spectra were recorded in

acetone-d6 or DMSO-d6 solution on a Gemini 200 or

Eclipse 300 spectrometer, operating at 200 or 300 MHz for
1H NMR and 50 or 75 MHz for 13C NMR. Chemical shifts

are reported in parts per million, relative to Me4Si as the

internal standard. Coupling constants J are expressed in

Hz. Mass spectra were recorded on a double beam Joel

JMS AX505HA spectrometer using the electron impact

technique. All experiments were carried out at room tem-

perature. Purification of the reaction mixtures was carried

out by column chromatography using silica gel (Merck

70–230 mesh) as a solid support, or by recrystallization.

The progress of the reaction was followed by thin layer

chromatography (TLC) on plates of silica gel 60 F254.

Typical procedure

A mixture of 434 mg o-phenylenediamine (4.02 mmol)

and 500 mg thiophene-2-carboxaldehyde (4.46 mmol) was

stirred for 45 min in the presence of commercial bentonite

clay (500 mg) and 15 cm3 dry acetonitrile. The reaction

was monitored by TLC with ethyl acetate/n-hexane (2:3

v/v) as eluent. After completion of the reaction, solvents

were removed under vacuum and the crude residue was

purified by silica gel column chromatography (20 % ethyl

acetate in n-hexane) or by recrystallization (ethyl acetate/n-

hexane). The residual bentonite clay was washed with

30 cm3 acetone, activated at 120 �C for 2 h, and directly

reused in the following reactions with only modest loss of

activity.
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