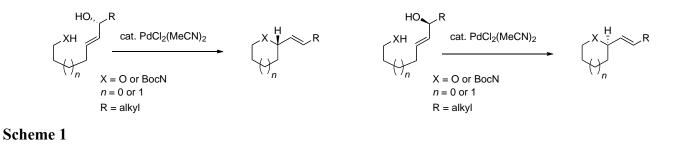
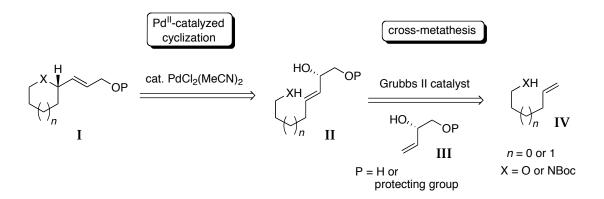
HETEROCYCLES, Vol. 80, No. 2, 2010, pp. 1463 - 1469. © The Japan Institute of Heterocyclic Chemistry Received, 31st July, 2009, Accepted, 4th September, 2009, Published online, 9th September, 2009 DOI: 10.3987/COM-09-S(S)95


# A SHORT ACCESS TO CHIRAL NON-RACEMIC OXA- AND AZAHETEROCYCLES BY CROSS-METATHESIS AND PD-CATALYZED CYCLIZATION SEQUENCE

#### Jun'ichi Uenishi\* and Yogesh S. Vikhe

Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8412, Japan. E-mail: juenishi@mb.kyoto-phu.ac.jp

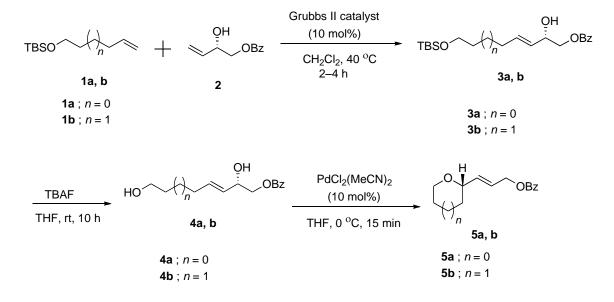

Abstract – A concise synthesis of chiral non-racemic 2-(3-benzoyloxyprop-1enyl)tetrahydrofuran (**5a**), tetrahydropyran (**5b**), and piperidine (**8**) is described. Cross-metathesis of optically pure (*S*)-1-*O*-benzoyl-3-butene-1,2-diol (**2**) with protected 4-pentenol, 5-hexenol, and 5-hexenylamine gave the corresponding allyl alcohols (**3a**), (**3b**), and (**7**) in one step, respectively.  $PdCl_2(MeCN)_2$ catalyzed cyclization of **4a**, **4b**, and **7** afforded **5a**, **5b**, and **8** in excellent yields with high enantiomeric purity.

Pd<sup>II</sup>-catalyzed reactions are valuable in stereoselective organic synthesis.<sup>1</sup> We have recently reported that the Pd<sup>II</sup>-catalyzed reaction of chiral non-racemic  $\zeta$ -,  $\varepsilon$ -hydroxy, and  $\zeta$ -*N*-Boc-amino allyl alcohol occurs to give substituted tetrahydrofurans, tetrahydropyrans and piperidines with high stereoselectivity through the 1,3-chirality transfer process.<sup>2</sup> The *syn* oxy- and azapalladations occur predominantly in intra- and intermolecular reactions,<sup>3,2d</sup> and we have achieved the stereocontrolled synthesis of natural products, such as (-)-aspergillide B,<sup>4a</sup> (-)-diospongin B, <sup>4b</sup> (-)-laulimalide, <sup>4c</sup> and (+)-coniine,<sup>2d</sup> using this reaction.



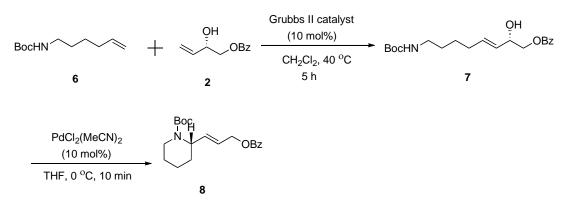
This paper is dedicated to Professor Akira Suzuki on the occasion of his 80<sup>th</sup> birthday.

However, there were a few drawback using this synthesis. First, the substituent R group has been limited to alkyl groups so far. Second, chiral secondary allyl alcohol has to be prepared for every substrate. Therefore, flexible syntheses for various chiral non-racemic allyl alcohols are highly desired for the synthesis of chiral heterocycles.<sup>5</sup> For this reason, we designed a new synthetic approach for the preparation of chiral non-racemic heterocylic compound **I**, as shown in Scheme 2. A cross-metathesis of terminal alkene **IV** that has heteroatom functionality at  $\gamma$ - or  $\delta$ -position, with chiral non-racemic but-3-en-1,2-diol **III**, would provide chiral non-racemic allyl alcohol **II** in one step. This allyl alcohol could be transformed quite easily with PdCl<sub>2</sub>(MeCN)<sub>2</sub> catalyst into **I** *via* an intramolecular SN2' reaction. The resulting heterocyclic compound **I** possesses a protected allyl alcohol unit, which is able to transform into other functional groups to extend its carbon chain.




Scheme 2 A synthetic plan of chiral non-racemic heterocycles

In this note, we report a short and convenient synthetic route for the 2-(3-benzoyloxyprop-1-enyl) substituted chiral non-racemic tetrahydrofuran (**5a**), tetrahydropyran (**5b**), and piperidine (**8**) by cross-metathesis and consecutive  $Pd^{II}$ -catalyzed cyclization reaction.


The synthesis of oxa-heterocycles is shown in Scheme 3. A mixture of alkene **1a** and optically pure allyl alcohol (**2**) (>98% ee)<sup>6</sup> was heated in CH<sub>2</sub>Cl<sub>2</sub> at 40 °C in the presence of 10 mol% of Grubbs II catalyst<sup>7</sup> to give **3a** in 60% yield along with two alkenes derived from the homo-metathesis reactions of each **1a** and **2**. Similarly, the reaction of **1b** with **2** gave **3b** in 61% yield. Deprotection of the TBS group of **3a** and **3b** with TBAF in THF at rt for 10 h afforded the precursors for the cyclization, **4a** and **4b**, in 91% and 84% yields, respectively. The cyclization of **4a** and **4b** were conducted in the presence of 10 mol% of Cl<sub>2</sub>(MeCN)<sub>2</sub> at 0 °C for 15 min in THF. Compound **5a** was obtained in 87% yield from **4a**. The enantiomeric ratio was determined to be 97.5:2.5 by chiral HPLC analysis, while cyclization of **4b** afforded **5b** in 92% yield with a 99:1 ratio of enantiomers. We have also examined a cross-metathesis

reaction of **1** with (*S*)-3-butene-1,2-diol, though the chemical yield of the cross-metathesis product was unsatisfactory. The stereochemistry of the products were assumed to have an (*S*)-configuration based on the previous results that we have reported in this series.<sup>2-4</sup> In fact, ozonolysis and Kraus oxidation of **5a** afforded (–)-tetrahydrofuran-2-carboxylic acid, of which the chiral center was identified to be *S*.<sup>8</sup>



Scheme 3 Synthesis of 5a and 5b

The synthesis of **8** is performed by the same reaction sequence described for **5** using *N*-Boc protected 5-hexenylamine  $(6)^{9}$  as a partner of cross-metathesis instead of **1**. The cross-metathesis of **6** and **2** was carried out in CH<sub>2</sub>Cl<sub>2</sub> at 40 °C in the presence of 10 mol% of Grubbs II catalyst for 5 h to give **7** in 56% yield. Then, the precursor **7** was subjected to a Pd<sup>II</sup>-catalyzed cyclization in THF at rt for 10 min to give piperidine (**8**) in 97% yield. Although the chemical yield was excellent, the enantiomeric ratio was found to be slightly lower (93:7) than that of **5**. This trend is consistent with the previous results, <sup>2d</sup> in which the reaction of an *N*-protected nitrogen nucleophiles was less stereoselective than that of a hydroxy nucleophiles.



Scheme 4

We have demonstrated a short synthetic method for the optically pure oxa- and azaheterocycles by cross-metathesis and  $Pd^{II}$ -catalyzed cyclization reactions. An allyl alcohol unit of the resulting heterocycles can be functionalized for the further carbon extension reaction. The formation of (*R*)-enantiomers of **5** and **8** would be expected, if an (*R*)-enantiomer of **5** is used for the metathesis reaction. Thus, this method would be useful for the synthesis of natural products containing chiral THF, THP and piperidine rings in the molecules.

## EXPERIMENTAL

**General.** Column chromatography was performed on E. Merck silica gel (230–400 mesh). The plate used for TLC is E. Merck precoated silica gel 60  $F_{254}$  (0.25–mm thick). Optical rotations were measured on a JASCO P–2200 polarimeter. Infrared (IR) spectra were recorded on a JASCO FT/IR–410 spectrometer. NMR spectra were recorded on a JEOL–AL300 (300 MHz for <sup>1</sup>H NMR and 75 MHz for <sup>13</sup>C NMR) in CDCl<sub>3</sub>, and chemical shifts are reported relative to TMS as internal standard or solvent (CDCl<sub>3</sub>, 7.26 ppm). Low-resolution and high-resolution mass spectra (Exact FAB–MS) were obtained with a JEOL JMS–SX 102. Non-aqueous reactions were carried out in flame-dried glassware under an Ar atmosphere. THF were dried over sodium benzophenone ketyl. CH<sub>2</sub>Cl<sub>2</sub> was dried over P<sub>4</sub>O<sub>10</sub>. These solvents were distilled freshly before use.

Cross-metathesis reaction; Synthesis of 3a and 3b. A mixture of (S)-2-hydroxybut-3-envl benzoate (2) (100 mg, 0.52 mmol) and terminal alkene 1a or 1b (0.78 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was heated at 40 °C for 2-4 h in the presence of Grubbs II catalyst (44 mg, 0.052 mmol). Solvent was removed and the residue was purified by flash chromatography on silica gel eluted with 25% EtOAc in hexane to give 3a in 60% yield or 3b in 61% yield. (2S,3E)-7-(tert-Butyldimethylsilyloxy)-2-hydroxyhept-3-enyl benzoate (3a); Colorless oil;  $[\alpha]_D^{20} + 3.8$  (c 0.8, CHCl<sub>3</sub>);  $R_f = 0.27$  (20% EtOAc in hexane); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.07–8.03 (m, 2H), 7.59–7.53 (m, 1H), 7.46–7.41 (m, 2H), 5.83 (dtd, J = 15.4, 6.7, 1.1 Hz, 1H), 5.58 (ddt, J = 15.4, 6.4, 1.2 Hz, 1H), 4.47 (m, 1H), 4.36 (dd, J = 11.3, 3.6 Hz, 1H), 4.27 (dd, J = 11.3, 7.3 Hz)1H), 3.60 (t, J = 6.2 Hz, 2H), 2.5–2.2 (br, 1H), 2.12 (q, J = 6.9 Hz, 2H), 1.64–1.55 (m, 2H), 0.89 (s, 9H), 0.04 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) & 166.6, 134.1, 133.1, 129.9, 129.7, 128.4, 128.0, 70.9, 68.6, 62.3, 32.0, 28.6, 25.9, 18.3, -5.30, -5.32; IR (film, cm<sup>-1</sup>) 3434, 2929, 1723, 1602, 1452, 1274, 1177, 1100, 970, 836, 776, 711; MS (CI) m/z 365 (M<sup>+</sup>+1); HRMS calcd for C<sub>20</sub>H<sub>33</sub>O<sub>4</sub>Si (M<sup>+</sup>+1) 365.2148; Found: m/z 365.2150. (2S,3E)-8-(tert-Butyldimethylsilyloxy)-2-hydroxy-oct-3-enyl benzoate (3b); Colorless oil;  $[\alpha]_D^{20}$  +5.7 (c 1.01, CHCl<sub>3</sub>);  $R_f = 0.53$  (20% EtOAc in hexane); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.07–8.04 (m, 2H), 7.60–7.54 (m, 1H), 7.47–7.41 (m, 2H), 5.82 (dtd, J = 15.4, 6.6, 0.7 Hz, 1H), 5.56 (ddt, J = 15.4, 6.6, 1.4 Hz, 1H), 4.48 (m, 1H), 4.37 (dd, J = 11.3, 3.6 Hz, 1H), 4.27 (dd, J = 11.3, 7.3 Hz)

1H), 3.59 (t, J = 5.8 Hz, 2H), 2.17 (d, J = 3.8 Hz, 1H), 2.08 (q, J = 6.6 Hz, 2H), 1.56–1.37 (m, 4H), 0.89 (s, 9H), 0.04 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.6, 134.5, 133.1, 129.9, 129.7, 128.4, 127.9, 71.0, 68.6, 62.9, 32.2, 32.0, 25.9, 25.2, 18.4, -5.28, -5.3; IR (film, cm<sup>-1</sup>) 3431, 2930, 2857, 1723, 1602, 1452, 1386, 1274, 1177, 1101, 1026, 971, 835, 776, 771; MS (CI) *m/z* 379 (M<sup>+</sup>+1); HRMS calcd for C<sub>21</sub>H<sub>35</sub>O<sub>4</sub>Si (M<sup>+</sup>+1) 379.2304; Found: *m/z* 379.2313.

Preparation of 4a and 4b. To a solution of 3a or 3b (0.12 mmol) in THF (1 mL) was added TBAF (182 µL, 0.18 mmol, 1 M in THF) and the mixture was stirred for 10-12 h at rt. The mixture was diluted with EtOAc and washed with water. The organic layer was dried over MgSO<sub>4</sub> and evaporated. The residue was purified on flash silica gel column chromatography eluted with 80% EtOAc in hexane to give 4a in 91% yield or 4b in 84% yield. (2S,3E)-2,7-Dihydroxyhept-3-envl benzoate (4a); Colorless oil;  $\left[\alpha\right]_{D}^{20}$  -1.6 (c 0.63, CHCl<sub>3</sub>);  $R_f = 0.23$  (60% EtOAc in hexane); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.06–8.03 (m, 2H), 7.60–7.53 (m, 1H), 7.46–7.40 (m, 2H), 5.82 (dtd, J = 15.4, 6.8, 1.1 Hz, 1H), 5.59 (ddt, J = 15.4, 6.4, 1.2 Hz, 1H), 4.46 (m, 1H), 4.35 (dd, J = 11.2, 3.8 Hz, 1H), 4.27 (dd, J = 11.2, 7.3 Hz, 1H), 3.62 (t, J = 6.4 Hz, 2H), 2.22 (br s, 2H), 2.15 (q, J = 6.9 Hz, 2H), 1.64 (quin, J = 6.6 Hz, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$ 166.7, 133.6, 133.1, 129.8, 129.6, 128.4, 128.3, 70.8, 68.5, 62.1, 31.7, 28.5; IR (film, cm<sup>-1</sup>) 3389, 2938, 1716, 1601, 1451, 1277, 1119, 971, 712; MS (CI) m/z 251 (M<sup>+</sup>+1); HRMS calcd for C<sub>14</sub>H<sub>19</sub>O<sub>4</sub> (M<sup>+</sup>+1) 251.1283; Found: *m/z* 251.1277. (2*S*,3*E*)-2,8-Dihydroxyoct-3-enyl benzoate (4b); Colorless oil; [α]<sub>D</sub><sup>20</sup> -9.9 (c 0.55, CHCl<sub>3</sub>);  $R_f = 0.1$  (40% EtOAc in hexane); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.07–8.03 (m, 2H), 7.6–7.54 (m, 1H), 7.47–7.41 (m, 2H), 5.81 (dtd, J = 15.4, 6.7, 1.1 Hz, 1H), 5.57 (ddt, J = 15.5, 6.6, 1.1 Hz, 1H), 4.46 (m, 1H), 4.36 (dd, J = 11.3, 3.6 Hz, 1H), 4.27 (dd, J = 11.3, 7.3 Hz, 1H), 3.61 (t, J = 6.4 Hz, 2H), 2.1 (q, J = 6.6 Hz, 2H), 1.75–1.40 (m, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.6, 134.1, 133.1, 129.8, 129.6, 128.4, 128.2, 70.9, 68.5, 62.6, 32.0, 31.9, 25.0; IR (film, cm<sup>-1</sup>) 3392, 2935, 1714, 1602, 1452, 1275, 1116, 1070, 971, 755, 713; MS (CI) m/z 265 (M<sup>+</sup>+1); HRMS calcd for C<sub>15</sub>H<sub>21</sub>O<sub>4</sub> (M<sup>+</sup>+1) 265.1440; Found: *m/z* 265.1437.

Pd-Catalyzed cyclyzation of 4a and 4b. A mixture of 4a or 4b (0.1 mmol) and PdCl<sub>2</sub>(MeCN)<sub>2</sub> (2.6 mg, 0.01 mmol) in THF (3 mL) was stirred at 0 °C for 15 min. Then, the mixture was diluted with hexane (2 mL) and purified directly by flash column chromatography on silica gel eluted with 10% EtOAc in hexane to give 5a in 87% yield or 5b in 92% yield. (*S,E*)-2-(3-Benzoyloxyprop-1-enyl)-tetrahydrofuran (5a) Colorless oil;  $[\alpha]_D^{20}$  –5.4 (*c* 1.1, CHCl<sub>3</sub>);  $R_f$  = 0.43 (10% EtOAc in hexane); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.07–8.04 (m, 2H), 7.58–7.52 (m, 1H), 7.46–7.41 (m, 2H), 5.96–5.82 (m, 2H), 4.82 (d, *J* = 4.4 Hz, 2H), 4.38–4.32 (m, 1H), 3.95–3.88 (m, 1H), 3.83–3.76 (m, 1H), 2.13–2.03 (m, 1H), 1.98–1.86 (m, 2H), 1.70–1.59 (m, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 166.3, 135.3, 133.0, 130.1, 129.6,

128.3, 124.9, 78.7, 68.1, 64.7, 32.0, 25.8; IR (film, cm<sup>-1</sup>) 2972, 1720, 1601, 1451, 1271, 1112; MS (EI) m/z 232 (M<sup>+</sup>), 110 (base), 105; HRMS calcd for C<sub>14</sub>H<sub>16</sub>O<sub>3</sub> (M<sup>+</sup>) 232.1099; Found: m/z 232.1102. The enantiomeric ratio was determined to be 97.5:2.5 by chiral HPLC analysis using the following conditions; column, Chiralcel OD-H; detector, 254 nm; solvent, 2–propanol/hexane (1/99); flow rate, 0.8 mL/min. Retention time; t<sub>r</sub>=15.6 min (major isomer) and t<sub>r</sub>=16.5 min (minor isomer). (*S,E*)-2-(3-Benzoyloxyprop-1-enyl)tetrahydro-2*H*-pyran (5b) Colorless oil;  $[\alpha]_D^{20}$  –4.7 (*c* 0.97, CHCl<sub>3</sub>); *R<sub>f</sub>* = 0.4 (10% EtOAc in hexane); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ 8.07–8.03 (m, 2H), 7.58–7.52 (m, 1H), 7.46–7.40 (m, 2H), 5.96–5.82 (m, 2H), 4.82 (dd, *J* = 4.4, 0.9 Hz, 2H), 4.06–4.0 (m, 1H), 3.88–3.82 (m, 1H), 3.49 (td, *J*=11.0, 2.5 Hz, 1H), 1.89–1.82 (m, 1H), 1.71–1.34 (m, 5H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 135.5, 132.9, 130.1, 129.6, 128.3, 124.2, 77.1, 68.4, 64.9, 31.8, 25.8, 23.3; IR (film, cm<sup>-1</sup>) 2864, 1717, 1601, 1452, 1268, 1084, 971, 711; MS (EI) *m*/*z* 246 (M<sup>+</sup>), 124 (base), 105; HRMS calcd for C<sub>15</sub>H<sub>18</sub>O<sub>3</sub> (M<sup>+</sup>) 246.1256; Found: *m*/*z* 246.1258. The enantiomeric ratio was determined to be 99:1 by chiral HPLC analysis using the following conditions; column, Chiralcel OF; detector, 254 nm; solvent, 2–propanol/hexane (1/99); flow rate, 1 mL/min. Retention time; t<sub>r</sub>=27.1 min (minor isomer) and t<sub>r</sub>=35.4 min (major isomer).

(2*S*,3*E*)-8-(*tert*-Butoxycarbonylamino)-2-hydroxyoct-3-enyl benzoate (7). The compound was obtained in 56% yield by the same manner described for the synthesis of **3**. Colorless oil;  $[\alpha]_D^{20}$  +8.1 (*c* 0.66, CHCl<sub>3</sub>);  $R_f = 0.28$  (30% EtOAc in hexane); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.06–8.03 (m, 2H), 7.59–7.53 (m, 1H), 7.46–7.41 (m, 2H), 5.78 (dtd, *J* = 15.4, 6.6, 0.9 Hz, 1H), 5.56 (ddt, *J* = 15.4, 6.4, 1.2 Hz, 1H), 4.52 (br s, 1H), 4.46 (m, 1H), 4.36 (dd, *J* = 11.2, 3.6 Hz, 1H), 4.28 (dd, *J* = 11.3, 7.1 Hz, 1H), 3.07 (q, *J* = 6.2 Hz, 2H), 2.50 (br s, 1H), 2.07 (q, *J* = 6.4 Hz, 2H), 1.56–1.33 (m, 13H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.6, 155.9, 133.8, 133.1, 129.8, 129.6, 128.4, 128.3, 79.1, 70.9, 68.5, 40.3, 31.8, 29.3, 28.4, 25.9; IR (film, cm<sup>-1</sup>) 3389, 2928, 1695, 1452, 1276, 756, 711; MS (CI) *m/z* 364 (M<sup>+</sup>+1); HRMS calcd for C<sub>20</sub>H<sub>30</sub>NO<sub>5</sub> (M<sup>+</sup>+1) 364.2124; Found: *m/z* 264.2129.

(*S,E*)-*N*-*tert*-**Butoxycarbonyl-2-(3-benzoyloxyprop-1-enyl)piperidine (8).** The compound was obtained in 97% yield by the same manner described for the synthesis of **5**. Colorless oil;  $[\alpha]_D^{20}$  –18.4 (*c* 0.84, CHCl<sub>3</sub>);  $R_f = 0.44$  (20% EtOAc in hexane); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.06–8.03 (m, 2H), 7.59–7.53 (m, 1H), 7.46–7.41 (m, 2H), 5.79 (dd, J = 15.7, 4.0 Hz, 1H), 5.73 (dtd, J = 15.7, 5.6, 1.1 Hz, 1H), 4.83–4.81 (m, 3H), 3.95 (d, J = 13.3 Hz, 1H), 2.83 (td, J = 13.0, 2.5 Hz, 1H), 1.74–1.38 (m, 15H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 155.3, 133.8, 133.0, 130.2, 129.6, 128.3, 125.2, 79.5, 65.1, 51.5, 39.8, 29.0, 28.4, 25.4, 19.5; IR (film, cm<sup>-1</sup>) 2937, 1722, 1692, 1452, 1409, 1271, 1163, 1114, 1025, 973, 869, 713; MS (EI) *m/z* 345 (M<sup>+</sup>), 289, 272, 167 (base); HRMS calcd for C<sub>20</sub>H<sub>27</sub>NO<sub>4</sub> (M<sup>+</sup>) 345.1940; Found: *m/z*  345.1935. The enantiomeric ratio was determined to be 93:7 by chiral HPLC analysis using the following conditions; column, Chiralcel AS-H; detector, 254 nm; solvent, 2–propanol/hexane (1/99); flow rate, 1 mL/min. Retention time;  $t_r$ =7.7 min (major isomer) and  $t_r$ =8.4 min (minor isomer).

## ACKNOWLEDGEMENTS

This work was supported by the 21st COE Program from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

### REFERENCES

- (a) J. Tsuji, *Palladium reagents and catalysts: Innovation in Organic synthesis*, John Willey & sons, Chichester, 1995; (b) L. S. Hegedus, *Organometallics in Synthesis*, ed. by M. Schlosser, John Willey & Sons, Chichester, 2002, pp. 1123-1217; (c) *Handbook of Organopalladium Chemistry for Organic synthesis*, ed. by E. -i. Negishi, John Willey & sons, New York, 2002; (d) G. Zeni and R. C. Larock, <u>*Chem. Rev.*</u>, 2004, 104, 2285; (e) L. F. Tietze, H. IIa, and H. P. Bell, <u>*Chem. Rev.*</u>, 2004, 104, 3453; (f) E. M. Beccalli, G. Broggini, M. Martinelli, and S. Sottocornola, <u>*Chem. Rev.*</u>, 2007, 107, 5318; (g) J. Muzart, <u>*Tetrahedron*</u>, 2005, 61, 5955.
- (a) J. Uenishi, M. Ohmi, and A. Ueda, <u>Tetrahedron: Asymmetry</u>, 2005, 16, 1299; (b) N. Kawai, J. -M. Lagrange, M. Ohmi, and J. Uenishi, <u>J. Org. Chem.</u>, 2006, 71, 4530; (c) N. Kawai, J.-M. Lagrange, and J. Uenishi, <u>Eur. J. Org. Chem.</u>, 2007, 72, 2808; (d) S. M. Hande, N. Kawai, and J. Uenishi, <u>J. Org. Chem.</u>, 2009, 74, 244.
- (a) J. Uenishi, Y. S. Vikhe, and N. Kawai, <u>Chem. Asian J.</u>, 2008, 3, 473; (b) Y. S. Vikhe, S. M. Hande, N. Kawai, and J. Uenishi, <u>J. Org. Chem.</u>, 2009, 74, 5174.
- (a) S. Hande and J. Uenishi, <u>*Tetrahedron Lett.*</u>, 2009, 50, 189;
   (b) N. Kawai, S. Hande, and J. Uenishi, <u>*Tetrahedron*</u>, 2007, 63, 9049;
   (c) J. Uenishi and M. Ohmi, <u>*Angew. Chem. Int. Ed.*</u>, 2005, 44, 2756.
- 5. We previously used asymmetric alkynylation and *cis*-reduction or lipase catalyzed kinetic acylation.
- Compound 2 was derived from D-manitol and identified by the following references; (a) S. C. Bergmeier and D. M. Stanchina, <u>J. Org. Chem., 1999</u>, 64, 2852; (b) T. Ziegler, F. Bien, and C. Jurisch, <u>Tetrahedron: Asymmetry</u>, 1998, 9, 765.
- 7. A. K. Chatterjee, T.-L. Choi, D. P. Sanders, and R. H. Grubbs, *J. Am. Chem. Soc.*, 2003, 125, 11360.
- 8. (S)-Tetrahydrofuran-2-carboxylic acid; [α]<sub>D</sub><sup>20</sup> –18.4 (c 0.84, CHCl<sub>3</sub>) / [α]<sub>D</sub><sup>20</sup> –30 (c 1.21, CHCl<sub>3</sub>) in P.
  C. Belanger and H. W. R. Williams, <u>Can. J. Chem.</u>, 1983, **61**, 1383.
- X. Hu, K. T. Nguyen, V. C. Jiang, D. Lofland, H. E. Moser, and D. Pei, <u>J. Med. Chem., 2004, 47, 4941</u>.