Cycloaddition reactions of transition metal hydrazides with alkynes and heteroalkynes: coupling of Ti=NNPh₂ with PhCCMe, PhCCH, MeCN and ^tBuCP[†]

Jonathan D. Selby,^a Christian Schulten,^b Andrew D. Schwarz,^a Andreas Stasch,^b Eric Clot,^{*c} Cameron Jones^{*b} and Philip Mountford^{*a}

Received (in Cambridge, UK) 11th August 2008, Accepted 4th September 2008 First published as an Advance Article on the web 23rd September 2008 DOI: 10.1039/b813911c

The first structurally authenticated [2+2] cycloaddition products of any transition metal hydrazide complexes are reported; cycloaddition products of transition metal hydrazides with alkynes and heteroalkynes have been obtained for the first time; these are the first structurally authenticated cycloaddition products for any transition metal M=NNR₂ functional group.

Transition metal hydrazides, (L)M=NNR₂, occupy a pivotal position on the pathway for the biological and laboratory-based conversion of N₂ to ammonia.¹⁻⁴ From the point of view of the productive incorporation of N₂ into value-added products, an understanding of the chemistry of terminal metal hydrazides is clearly essential. Over the past two decades a large effort has been expended on charting the chemistry of the Group 6 metal M=NNR₂ functional groups because of their immediate relevance to biological systems.⁴⁻⁶ In all of this chemistry the M=NNR₂ group reactivity is characterised exclusively by transformations involving the N_β atom and/or N_α-N_β bond reductive cleavage.

Over the last 10 years, landmark achievements have also been made in the activation of N₂ by Group 4 compounds.^{5–8} However, unlike for the Group 6 systems, the reactions of Group 4 M—NNR₂ bonds with unsaturated substrates remain very poorly understood.⁹ This situation contrasts dramatically with the well-established area of imido compounds, (L)M—NR (R = alkyl, aryl): reactions of the M—NR bond are highly developed and lead to a range of valuable new NR-containing products, for example through the hydroamination of alkynes and allenes.^{10–13}

Group 4 hydrazides have nonetheless been implicated in N–C bond forming processes.^{13–15} Thus reactions of hydrazines and alkynes in the presence of supposed hydrazide *precursor* complexes give hydrazone products, apparently consistent with [2+2] cycloaddition reactions of *in situ* generated hydrazide intermediates. However, no discrete $Ti=NNR_2$ species have ever been observed for these systems, nor has direct evidence of the putative [2+2] cycloaddition of

an alkyne and a hydrazide been presented. Indeed, these hydrohydrazination reactions typically require forcing temperatures around *ca.* 100 °C and long (up to 24 h) reaction times. Alternative reaction pathways such as those found in rare earth metal-catalysed hydroaminations¹⁶ cannot *a priori* be ruled out on the available experimental evidence (*i.e.*, substrate insertion into a metal–hydrazide(1–) σ bond).

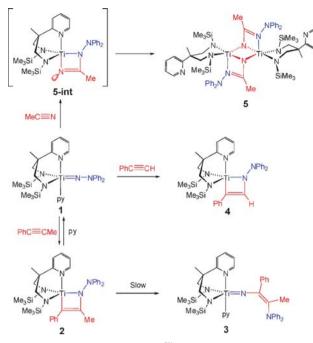
So far, all fully authenticated reactions between isolated, well-defined Group 4 hydrazides and alkynes (and also isocyanides, or chalcogenide delivery agents) have invariably led to N_{α} - N_{β} bond cleavage products (see Fig. 1 for examples).^{9,17–19} Furthermore, no M= N_{α} cycloaddition product has been structurally authenticated for the reaction of *any* transition metal M= NR_2 functional group.



Fig. 1 Products of Group 4 M=NNPh₂ bonds with alkynes (I, II) and 'BuNC (III): facile N_{α} -N_{β} cleavage rather than M=N_{α} bond coupling.

We recently reported general routes to a range of new titanium hydrazide complexes.¹⁸ This has opened up the opportunity to tune and direct the reactions of the Ti=NNR₂ functional group though judicious ligand selection.

Reaction of the terminal hydrazide Ti(N2NPy)(NNPh2)- $(py)^{20}$ (1, Scheme 1) with PhCCMe in C₆D₆ gave an equilibrium mixture containing the cvcloaddition product $Ti(N_2N^{py}){N(NPh_2)C(Me)CPh}$ (2).† Removal of the volatiles and redissolving in C₆D₆ gave pure 2 as judged by NMR spectroscopy. The structure shown in Scheme 1 is fully compatible with the 1- and 2-D ¹H, ¹³C and ROESY spectra, and other data. In particular, the PhC=CMe carbons appeared at 216.1 and 146.3 ppm in typical positions for such metallacycles.^{21,22} Addition of an excess of pyridine to pure 2 reformed 1 and free PhCCMe, confirming the reversibility of the cycloaddition process. Note that reaction of the closely $Ti(N_2N^{Me})(NNPh_2)(py)$ with the related compound same alkyne gave only the N_{α} - N_{β} insertion product $Ti(N_2N^{Me}){NC(Ph)C(Me)NPh_2}(py)$ (II, Fig. 1; N_2N^{Me} MeN(CH₂CH₂NSiMe₃)₂). No Ti=N_{α} cycloaddition products were seen in the reactions for II.


^a Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, UK OX1 3TA. E-mail: philip.mountford@chem.ox.ac.uk

^b School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia. E-mail: Cameron.Jones@sci.monash.edu.au

^c Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1cc 1501, Place Eugène Bataillon, F-34095 Montpellier

Cedex 5, France. E-mail: clot@univ-montp2.fr

[†] Electronic supplementary information (ESI) available: Characterising and crystallographic data, and computational details. CCDC 698353–698355. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b813911c

Scheme 1 Reactions of $\text{Ti}(N_2N^{py})(NNPh_2)(py)$ with alkynes and MeCN.

Although a cycloaddition species is the kinetic product for **1** and PhCCMe, over time (3 days at RT) or upon briefly heating (15 min at 100 °C) new products are formed from which the N_{α} - N_{β} *insertion* product Ti(N_2N^{py} }{NC(Ph)C(Me)NPh₂}(py) (**3**, Scheme 1) was obtained²³ (the Ph*C*=*C*Me carbons appear at 158.2 and 112.3 ppm, these shifts being very similar to those for **II**).

Reaction of **1** with the sterically less demanding PhCCH gave quantitative conversion to the anti-Markovnikov type cycloaddition product $Ti(N_2N^{py})\{N(NPh_2)C(H)CPh\}$ (**4**) in *ca*. 60% yield on the preparative scale (100% conversion by ¹H NMR). Addition of pyridine to pure **4** reformed **1** along with PhCCH. The NMR data for **4** are analogous to those of **2** and also the structurally authenticated imido cycloaddition products $Ti(N_2N^{py})\{N(R)C(H)CPh\}$ (**R** = ^{*t*}Bu or 2,6-C₆H₃ⁱPr₂).²² Like **2**, compound **4** is unstable in solution ($t_{1/2}$ ca. **4** h at 22 °C) but no single product could be isolated.

The high solubility of **2** and **4** and their instability prevented us from obtaining diffraction-quality crystals. However, sunequivocal structural evidence for a [2+2] cycloaddition reaction of the Ti=NNPh₂ group came from adding MeCN (isoelectronic with RCCR') to a solution of **1** in benzene. This formed the "self-trapped" dimer Ti₂(N₂N^{py})₂{ μ -N(NPh₂)C(Me)N}₂ (**5**, Scheme 1). The X-ray structure of **5** (Fig. 2)‡ is consistent with the likely intermediate Ti(N₂N^{py}){N(NPh₂)C(Me)N} (**5-int**) possessing the stereochemistry indicated in Scheme 1. The structural data for **5** (Fig. 2) are consistent with the drawing in Scheme 1.

The MeCN-derived nitrogen in **5-int** (ultimately becoming C(6) and C(6A) in Fig. 2) is presumably highly nucleophilic and so leads to the "self-trapped" final product **5** which is stable in solution due to the Ti₂{ μ -N(NPh₂)C(Me)N}₂ core. The N₂N^{py} ligands in **5** respond to the steric crowding by

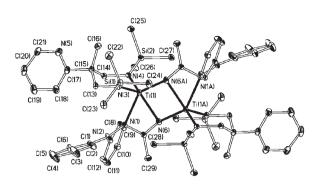
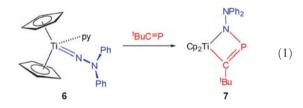



Fig. 2 Displacement ellipsoid plot (20%) of $Ti_2(N_2N^{py})_2$ { μ -N(NPh₂)C(Me)N}₂ (5). Atoms carrying the suffix 'A' are related to their counterparts by the symmetry operator -x + 2/3, -y + 1/3, -z + 1/3: Ti(1)–N(1) 2.3084(13), Ti(1)–N(6) 2.1687(16), Ti(1)–N(6A) 1.8684(14), N(1)–C(28) 1.318(2), N(6)–C(28) 1.334(2), N(1)–N(2) 1.4137(18) Å; H atoms, solvent and minor disorder omitted.

adopting a $\kappa^2(N,N)$ coordination mode. The addition of nitriles to transition metal–nitrogen multiple bonds is extremely rare, even in the extensively studied area of imido chemistry,¹⁰ and has not been seen previously in transition metal hydrazide chemistry.

The successful use of a heteroalkyne in stabilizing **5** prompted us to explore reactions of **1** with phosphaalkynes which have known similarities with alkynes.²⁴ Titanium imido compounds form a range of different products with these substrates.^{10,25,26} Unfortunately, in the case of **1** no reaction took place with 'BuCP.

Mindful of previous reports of the reactions of imidozirconocenes "Cp₂Zr(NR)" ($\mathbf{R} = {}^{\prime}$ Bu or aryl) with ${}^{\prime}$ BuCP²⁵ we carried out the reaction of the very recently reported Cp₂Ti(NNPh₂)(py) (**6**, eqn (1)) with ${}^{\prime}$ BuCP. Brown crystals of Cp₂Ti{N(NPh₂)PC'Bu} (7) were isolated in 70% yield after 30 h at RT. The molecular structure‡ of **7** is shown in Fig. 3 confirming it as a monomeric [2+2] cycloaddition product. Compound **7** is the first report of a M==NNR₂ species reacting with a phosphaalkyne. An excess of pyridine does not displace the 'BuCP from **7**. The reactions of **6** with alkynes, nitriles and other substrates are presently under investigation.

The N(1)–P(1) and C(1)–P(1) distances within the metallacyclic core of 7 are comparable to those in imido-based (L)M{N(R)PCR} units. However, the ³¹P shift of –28.9 ppm for 7 is rather upfield compared to the Cp₂Zr(NR)-derived examples (*ca.* 60–80 ppm)²⁵ and others formed from (L)Ti=NR compounds (*ca.* 200 to 210 ppm).^{25,26}

The orientation of the [2+2] cycloaddition process in 7 appears to be favoured on steric grounds and is analogous to that found previously for imido-derived examples, (L)M{N(R)PCR}. However, the orientation of the less sterically demanding MeCN in **5-int** (and **5**) is the opposite of that in 7 (Ti-heteroatom formation in **5-int** *vs.* Ti-C formation

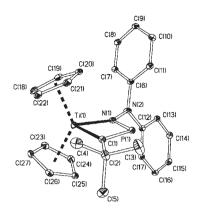
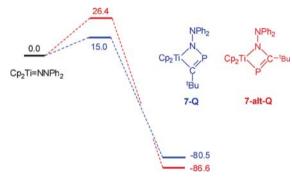



Fig. 3 Displacement ellipsoid plot (20%) of $Cp_2Ti\{N(NPh_2)PC'Bu\}$ (7): Ti(1)–N(1) 1.9770(17), Ti(1)–C(1) 2.115(2), N(1)–P(1) 1.7329(18), C(1)–P(1) 1.677(2), N(1)–N(2) 1.400(2) Å; N(1)–P(1)–C(1) 98.93(9), N(1)–Ti(1)–C(1) 78.51(7)°; H atoms omitted.

in 7). We have calculated the two alternative regioisomers of 7 using DFT (B3PW91), namely 7-Q and 7-alt-Q (see Fig. 4).[†] According to DFT, 7-alt-Q (with a Ti–P bond) is *more* stable (but only marginally, by *ca*. 6 kJ mol⁻¹) than the experimentally observed one in terms of electronic energies.²⁷ The calculated ³¹P shifts of 7-Q and 7-alt-Q are -47.8 and +319 ppm. This supports the suggestion that 7-Q represents the experimental solution and solid-state species.²⁸

Fig. 4 Schematic representation of the two TS and product electronic energies (B3PW91, kJ mol⁻¹) for the reaction of base-free $Cp_2Ti(NNPh_2)$ with ^tBuCP. Further details of the geometries are give in the ESL⁺

Although Fig. 4 shows that formation of **7-alt-Q** is thermodynamically competitive with **7-Q**, the transition state (TS) energies predict that the experimentally observed species (modeled by **7Q**) is certainly kinetically favoured ($\Delta\Delta E^{\ddagger} =$ 11.4 kJ mol⁻¹ in favour of forming **7-Q**). Further calculations using the sterically less demanding phosphaalkyne MeCP gave $\Delta_r E$ values of -97.7 kJ mol⁻¹ for the Ti–C bound isomer Cp₂Ti{N(NPh₂)PCMe} (**8-Q**) but -134.1 kJ mol⁻¹ for the Ti–P bound alternative Cp₂Ti{N(NPh₂)C(Me)P} (**8-alt-Q**). This confirms that the Ti–P/N–C orientated [2+2] cycloaddition process is the electronically preferred one.

In conclusion, we have reported the first [2+2] cycloaddition reactions of transition metal hydrazides with internal and terminal alkynes, and also aza- and phosphaalkynes. These reactions demonstrate the potential breadth of substrate functionalisation chemistry available using Group 4 hydrazides. Compounds **5** and **7** are the first structurally authenticated cycloaddition products for *any* metal hydrazide. The reactions of **1** with PhCCMe show that the [2+2] cycloaddition reactions to hydrazides can be reversible and that systems capable of forming azametallacycles like **2** (the proposed intermediates in hydroamination catalysis) are also capable of N_{α} - N_{β} insertion chemistry (formation of **3**). This has significant implications for the design and rationalisation of hydroamination and related catalyst systems using hydrazines. The DFT calculations for **7** and its analogues show that alternative coupling modes of M=NNR₂ with unsaturated substrates should be accessible through tuning of substrate and supporting ligand set. Finally, these results will be of benefit in developing Group 4 based N₂ functionalisation chemistry *via* hydrazide intermediates.

We thank the EPSRC (J. D. S., A. D. S.), CNRS (E. C.) and the donors of The American Chemical Society Petroleum Research Fund (C. J.) for support.

Notes and references

[‡] Crystal data for 3, 5 and 7 are provided in CIF format in the ESI.[†]

- 1 R. R. Schrock, Angew. Chem., Int. Ed., 2008, 47, 5512.
- 2 R. R. Schrock, Acc. Chem. Res., 2005, 38, 955.
- 3 B. A. MacKay and M. D. Fryzuk, Chem. Rev., 2004, 104, 385.
- 4 M. Hidai, Coord. Chem. Rev., 1999, 185-186, 99.
- 5 M. D. Fryzuk, Chem. Rec., 2003, 3, 2.
- 6 M. P. Shaver and M. D. Fryzuk, Adv. Synth. Catal., 2003, 345, 1061.
- 7 P. J. Chirik, Dalton Trans., 2007, 16.
- 8 Y. Ohki and M. D. Fryzuk, Angew. Chem., Int. Ed., 2007, 46, 3180.
- 9 D. J. Mindiola, Angew. Chem., Int. Ed., 2008, 47, 1557.
- 10 N. Hazari and P. Mountford, Acc. Chem. Res., 2005, 38, 839.
- 11 A. P. Duncan and R. G. Bergman, Chem. Rec., 2002, 2, 431.
- 12 F. Pohlki and S. Doye, Chem. Soc. Rev., 2003, 32, 104.
- 13 A. L. Odom, Dalton Trans., 2005, 225.
- 14 C. Cao, Y. Shi and A. L. Odom, Org. Lett., 2002, 4, 2853.
- 15 Y. Li, Y. Shi and A. L. Odom, J. Am. Chem. Soc., 2004, 126, 1794.
- 16 S. Hong and T. J. Marks, Acc. Chem. Res., 2004, 37, 673.
- 17 P. J. Walsh, M. J. Carney and R. G. Bergman, J. Am. Chem. Soc., 1991, 113, 6343.
- 18 J. D. Selby, C. D. Manley, M. Felix, A. D. Schwarz, E. Clot and P. Mountford, *Chem. Commun.*, 2007, 4937.
- 19 H. Herrmann, J. L. Fillol, H. Wadepohl and L. H. Gade, Angew. Chem., Int. Ed., 2007, 46, 8426.
- 20 J. D. Selby, C. D. Manley, A. D. Schwarz, E. Clot and P. Mountford, *Organometallics*, DOI: 10.1021/om8007597, accepted for publication.
- 21 N. Vujkovic, B. D. Ward, A. Maisse-Francois, H. Wadepohl, P. Mountford and L. H. Gade, *Organometallics*, 2007, 26, 5522.
- 22 B. D. Ward, A. Maisse-Francois, P. Mountford and L. H. Gade, *Chem. Commun.*, 2004, 704.
- 23 Compound 3 has been structurally characterised: see the ESI[†].
- 24 K. B. Dillon, F. Mathey and J. F. Nixon, *Phosphorus: The Carbon Copy: From Organophosphorus to Phospha-organic Chemistry*, Wiley, London, 1998.
- 25 F. G. N. Cloke, P. B. Hitchcock, J. F. Nixon, D. J. Wilson and P. Mountford, *Chem. Commun.*, 1999, 661.
- 26 S. M. Pugh, D. J. M. Trösch, D. J. Wilson, A. Bashall, F. G. N. Cloke, L. H. Gade, P. B. Hitchcock, M. McPartlin, J. F. Nixon and P. Mountford, *Inorg. Chem.*, 2000, **19**, 3205.
- 27 Given their similarity, the ground state energies of 7-Q and 7-alt-Q could be inverted by solvent effects.
 28 The observed and calculated ³¹P shifts for 7 are more upfield than
- 28 The observed and calculated ³¹P shifts for 7 are more upfield than expected. At first sight this could be attributed to the NNPh₂ in 7. However, replacing NNPh₂ by NPh in 7-Q had little effect on the ³¹P shift (-53.1 ppm). Work is underway to rationalise these differences.