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Tandem Thorpe reaction/palladium catalyzed asymmetric allylic 

alkylation: Access to chiral β-enaminonitriles with excellent 

enantioselectivity 

Da-Chang Bai,[a] Xiu-Yan Liu,[a] Hao Li,[a] Chang-Hua Ding,*[a] and Xue-Long Hou*[a,b] 

Abstract: A new type of nucleophile, 3-imino nitrile carbanion  

generated in-situ by Thorpe reaction of acetonitrile with base, was 

developed successfully and applied in Pd-catalyzed asymmetric 

allylic alkylation with mono substituted allyl reagents under 

Pd/SIOCPhox catalysis, affording β-enaminonitrile products in high 

yields with excellent regio- and enantioselectivities.  

Since its discovery in about 40 years ago, palladium-catalyzed 
asymmetric allylic alkylation (AAA) has demonstrated its power 
in enantioselective construction of carbon-carbon and carbon-
hetero atom bonds as well as in organic synthesis.[1] To date 
many efforts have been paid to the development of new type of 
nucleophiles including carbon nucleophiles.[1-3] Although α-
carbanions of ketones and carboxylic acid derivatives have 
successfully been used as carbon nucleophile in Pd-catalyzed 
AAA,[2,4e-h,k,l] few reports appeared regarding the use of α-
carbanion of nitriles in Pd-catalyzed AAA, probably due to the 
"hardness" of carbanion and its interconversion between the C- 
and N-metalated forms.[3] Because of rich chemistry of nitriles[5] 

and importance of nitrogen-containing molecules in life science,[6] 

development of nitrile-containing carbanion as nucleophile in Pd-
catalyzed AAA is highly demands. We have been involved in Pd-
catalyzed AAA for years and developed some new types of 
nucleophiles.[4] During the study on the use of “hard” carbanions 
in the reaction, we found that a novel carbon-nucleophile, 3-
imino nitrile carbanion,[7] was formed and corresponding allylic 
allylation products were afforded in excellent ee when using 
acetonitrile in Pd-catalyzed AAA. In this communication, we 
would report this tandem Thorpe reaction/Pd-catalyzed 
asymmetric allylic alkylation of acetonitrile with mono substituted 
allyl reagents, affording β-enaminonitrile products in high yields 
with excellent regio- and enantioselectivities (Scheme 1). 
Despite the importance of this useful building block,[8,9] only 
limited methods have been reported for their synthesis.[10] 

At the beginning, we used acetonitrile to react with cinnamyl 
phosphate 1a in the presence of Pd/SIOCPhox catalyst with 
LHMDS as base to see if α-carbanion of acetonitrile was 
produced and reacted as nucleophile. However, we could not 
obtain the expected allylic alkylation product 2a, instead, we 
separated allylated nitrile 3a, which contains β-enaminonitrile 

group, a useful subunit in the synthesis of heterocycles and 
polymers as well as in pharmaceutical chemistry.[8,9] Obviously, 
3a should be produced from the reaction of allyl reagent 1a with 
nucleophile C, a new type of nucleophile formed in situ from two 
molecules of acetonitrile by attack of α-carbanion of acetonitrile 
A to another acetonitrile followed by isomerization (Scheme 1).  
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Scheme 1. 3-Imino nitrile carbanion prepared in situ from acetonitrile 

Table 1. Optimization of reaction parameters for Pd-catalyzed allylic alkylation 
of 3-imino nitrile carbanion with allyl substrate 1[a] 

 
entry L solvent Yield (%)[b] B/L[c] E/Z[c] ee (E/Z)(%)[d]

1 L1 THF 82 97/3 89/11 85/91 

2 L4 THF 78 91/9 89/11 55/60 

3 L3 THF 30 90/10 88/12 -65/-- 

4 L2 THF 26 91/9 88/12 ND 

5 L5 THF 75 97/3 89/11 85/83 

6 L6 THF 84 93/7 85/15 -24/0 

7[e] L1 THF 51 95/5 89/11 73/-- 

8[f] L1 THF 40 36/64 -- 33 /-- 
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9 L1 DME 73 95/5 88/12 87/84 

10 L1 Et2O 89 97/3 88/12 89/91 

11 L1 dioxane 72 99/1 86/14 88/90 

12 L1 toluene 95 95/5 89/11 91/93 

13 L1 CH2Cl2 NR -- -- -- 

14 L7 toluene 96 96/4 89/11 94/93 

15 L8 toluene 74 95/5 83/17 62/66 

16 L9 toluene 73 95/5 80/20 87/90 

17[g] L7 toluene 88 96/4 89/11 88/90 

18[h] L7 toluene 99 98/2 89/11 94/97 

19[i] L7 toluene 99 96/4 90/10 95/95 

20[j] L7 toluene 90 >99/1 90/10 96/98 

[a] Reaction conditions: 1a/LiHMDS/[Pd(η3-C3H5)Cl]2/L = 100/125/2.5/6, 0.25 
mL CH3CN, 0.2 mmol 1 in solvent (3.0 mL), CH3CN reacted with base for 1.5 
h, room temperature, monitored by TLC. [b] Isolated yield. [c] Determined by 
1H NMR. [d] Determined by HPLC. [e] 1b with OCO2Me as leaving group was 
used instead of 1a. [f] 1c with Cl as leaving group was used instead of 1a. [g] 
0 oC. [h] 40 oC. [i] LiCl (1.0 equiv). [j] LiCl (1.0 equiv), CH3CN reacted with base 
for 24 h at room temperature. 

To understand better this tandem reaction and to improve its 
efficiency, the influence of the reaction parameters on the 
reaction was investigated. SIOCPhox ligands developed by us4 
were adopted as they showed excellent regio- and 
enantioselectivities in the Pd-catalyzed AAA. When cinnamyl 
phosphate 1a was reacted with acetonitrile using LHMDS as 
base in the presence of [Pd(η3-C3H5)Cl]2 and (Sc,Rphos,Ra)-
SIOCPhox (L1) in THF at room temperature, allylation product 
3a was obtained in 82% yield with B/L ratio of 97/3, E/Z ratio of 
89/11, and ee of 85% for E isomer (Table 1, entry 1). The 
evaluation of SIOCPhox ligands revealed the importance of their 
structure in controlling the yield and enantioselectivities of the 
product (Table 1, entries 1-6). The examination of leaving group 
(LG) of allyl substrate 1 showed that the phosphate ester was 
best (Table 1, entry 1 vs entries7 and 8). The screen of solvent 
effect indicated that toluene was the choice among tested 
solvents since the reactivity and the enantioselectivity is better 
than other solvents (Table 1, entry 1 vs entries 9-13). With 
toluene as solvent, the substituent of oxazoline in SIOCPhox 
ligand was examined (Table 1, entries 14-16). When the 
(Sc,Rphos,Ra)-SIOCPhox (L7) with Ph as substituent was used, 
the ee increased to 94% while the yield and the E/Z-selectivity 
was maintained (Table 1, entry 14). When the reaction 
temperature was 0 oC , the ee of the major product decreased to 
88% while it was 40 oC, the ee of the major product was same 
as that at room temperature (Table 1, entry 14 vs entries 17-18). 
It was found that the use of LiCl as additive benefited the 
reactivity and selectivity (Table 1, entry 19). When the reaction 
time of CH3CN with base was extended, the ee of the major 
product increased to 96% with excellent regio- and E/Z-
selectivities (Table 1, entry 20).  

Table 2. Substrate scope of Pd-catalyzed allylic alkylation of 3-imino nitrile 
carbanion with allyl substrate 1[a] 

 
 

entry R yield (%)[b] B/L[c] E/Z[c] ee (E/Z)
(%)[d] 

1[e] Ph (1a) 3a, 90 >99/1 90/10 96/98 

2[e] 4-MeC6H4 (1d) 3d, 94 95/5 90/10 88/-- 

3 4-iPrC6H4 (1e) 3e, 94 >99/1 90/10 93/-- 

4 4-FC6H4 (1f) 3f, 73 95/5 89/11 95/-- 

5 4-ClC6H4 (1g) 3g, 99 95/5 90/10 87/-- 

6 4-BrC6H4 (1h) 3h, 99 94/6 90/10 89/-- 

7 4-CF3C6H4 (1i) 3i, 81 >99/1 90/10 90/-- 

8[e] 3-MeC6H4 (1j) 3j, 88 99/1 90/10 93/-- 

9 3-MeOC6H4 (1k) 3k, 90 >99/1 88/12 95/-- 

10 2-MeC6H4 (1l) 3l, 98 98/2 90/10 95/-- 

11 2-Naphthyl (1m) 3m, 81 94/6 88/12 94/-- 

12 Cyclohexyl (1n) NR -- -- -- 

[a] Reaction conditions: 1/LiHMDS/[Pd(η3-C3H5)Cl]2/L7 = 100/125/2.5/6, 0.25 
mL CH3CN, 0.2 mmol 1 in solvent (3.0 mL), 30 oC. [b] Isolated yield. [c] 
Determined by 1H NMR. [d] Determined by HPLC. The ee of Z-product except 
for 3a was not determined. [e] Room temperature. 

Under the optimized reaction conditions, the scope of the 
substrates was examined (Table 2). The reaction proceeded 
well for a wide range of cases, affording alkylation products in 
73-99% yields with branched/linear ratio of 94/6-99/1, E/Z ratio 
of 88/12-90/10 and 87-96% ee for (E)-products. In all cases 
excellent regioselectivity was obtained. A little bit lower ee were 
obtained for 3d and 3e with methyl- and isopropyl- on the para-
position of the phenyl ring (Table 2, entries 2 and 3). Fluoro, 
chloro, bromo and trifluoromethyl at the para-position of the 
phenyl ring were tolerated (Table 2, entries 4-7). The reaction 
also worked well for allyl substrates 1 with m-methyl, m-methoxy, 
and o-methyl as substituent on phenyl ring, affording allyl 
products with excellent enantioselectivity (Table 2, entries 8-10). 
The yield was slightly lower when 2-naphthyl allyl substrate 1m 
was used (Table 2, entry 11). No desired product was obtained 
when cyclohexyl allyl reagent 1n was used because β-H 
elimination took place (Table 2, entry 12). 

It is known that various nucleophiles can be obtained with 
different nitrile by Thorpe reaction, so we tried some other 
nitriles in this Pd-catalyzed AAA. When acetonitrile and 
benzonitrile were used in our system, only Thorpe reaction 
occurred but no palladium catalyzed allylic alkylation product 
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was obtained (eq 1), probably due to the steric hindrance of the 
nucleophile generated by Thorpe reaction. 

     
When (Z)-allyl reagent 1o was used in the reaction, similar 

results with that using (E)-allyl reagent were obtained, which 
indicated this reaction proceeded through the same π-
allylpalladium intermediate (eq 2). All of these results support 
the proposed pathway depicted in Scheme 1.[1,11]  

 

The absolute configuration of product 3h was assigned as 
(R) and the alkene configuration was determined as E by X-ray 
analysis of its single crystal.[12]   

In summary, a new type of carbon-nucleophile has been 
developed from the reaction of acetonitrile with base and used in 
Pd-catalyzed AAA with monosubstituted allyl reagents 
successfully, affording β-enaminonitrile products in high yields 
with high regio- and enantioselectivities. These results not only 
show the formation and application of new type of nucleophile in 
Pd-catalyzed AAA but also provide some information, which 
should be useful in the development of new type of nucleophile.  
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