Accepted Manuscript

Electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α , β -unsaturated esters: Synthesis of 5-aryl substituted γ -butyrolactones and lactams

Naoki Kise, Yusuke Hamada, Toshihiko Sakurai

PII: S0040-4020(17)30026-1

DOI: 10.1016/j.tet.2017.01.013

Reference: TET 28383

To appear in: *Tetrahedron*

Received Date: 28 September 2016

Revised Date: 4 January 2017

Accepted Date: 6 January 2017

Please cite this article as: Kise N, Hamada Y, Sakurai T, Electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α , β -unsaturated esters: Synthesis of 5-aryl substituted γ -butyrolactones and lactams, *Tetrahedron* (2017), doi: 10.1016/j.tet.2017.01.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical abstract

Electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α,β-unsaturated esters: synthesis of 5-aryl-γ-butyrolactones and lactams Naoki Kise*, Yusuke Hamada, and Toshihiko Sakurai

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552, Japan

Electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α , β -unsaturated esters: synthesis of 5-aryl substituted γ -butyrolactones and lactams

Naoki Kise,* Yusuke Hamada, and Toshihiko Sakurai

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University,

4-101, Koyama-cho Minami, Tottori 680-8552, Japan

*Corresponding author. E-mail address: kise@bio.tottori-u.ac.jp (N. Kise)

ABSTRACT

The electroreductive intermolecular coupling of aromatic ketones and aldehydes with α , β -unsaturated esters in the presence of TMSCl gave the adducts as γ -trimethylsiloxy esters. The detrimethylsilylation of the adducts with TBAF afforded 5-aryl substituted γ -butyrolactones. The electroreductive coupling of N-(4-methoxyphenyl)-1-arylmethaneimines with methyl acrylate in the presence of TMSCl gave the adducts as methyl 4-aryl-4-((4-methoxyphenyl)amino)butanoates. The adducts were transformed to 5-aryl- γ -butyrolactams by cyclization with NaH and subsequent oxidation with CAN. (±)-Norcotinine was prepared from nicotinaldehyde by this method. The electroreductive coupling of aromatic ketones and aldimines with acrylonitrile in the presence of **TMSCl** 4-aryl-4-(trimethylsiloxy)butanenitriles gave and 4-aryl-4-((4-methoxyphenyl)amino)butanenitriles, respectively.

Keywords: Reductive coupling; Electroreduction; Aromatic ketones; Aromatic aldimines; γ -Butyrolactones; γ -Butyrolactams

1. Introduction

In 1980, Shono and co-workers reported that the electroreductive cross-coupling of carbonyl compounds with α,β -unsaturated esters is a useful method for the synthesis of γ -butyrolactones.¹ After that, this type of reaction has also been realized with Zn^2 and $SmI_2^{3,4}$ as a reducing agent. In the first electroreductive intermolecular coupling¹ and the intramolecular coupling subsequently reported by Little and co-workers,⁵ the employed carbonyl compounds were unfortunately limited Therefore, we attempted the inter- and intramolecular to aliphatic ketones and aldehydes. electroreductive coupling of aromatic carbonyl compounds with α , β -unsaturated esters to extend the scope of the electroreductive coupling. Meanwhile, we have already reported the preliminary results of the electroreductive coupling of aromatic aldimines with α , β -unsaturated esters.⁶ Thereafter, the Ni-catalyzed reductive coupling of aldimines with activated alkenes was reported.⁷ This paper prompted us to further investigate the scope of the electroreductive coupling of aromatic aldimines with α , β -unsaturated esters. We report in this paper the electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α , β -unsaturated esters (Scheme 1). From the resultant γ -trimethylsiloxy and γ -amino esters (Y = CO₂Me), the corresponding 5-aryl substituted γ -butyrolactones and lactams were readily provided, respectively.⁸ (±)-Norcotinine could be synthesized from nicotinaldehyde by this method. In addition, we report that the electroreductive coupling of aromatic ketones and aldimines with acrylonitrile (Y = CN) produced 4-aryl-4-(trimethylsiloxy)butanenitriles and 4-aryl-4-((4-methoxyphenyl)amino)butanenitriles (Scheme 1).

Scheme 1. Electroreductive coupling of aromatic ketones, aldehydes and aldimines with α , β -unsaturated esters and acrylonitrile.

2. Results and discussion

2.1. Electroreductive coupling of aromatic ketones and aldehydes with α , β -unsaturated esters and nitriles.

In the previous report,¹ the electroreduction was carried out in Et₄NOTs/DMF in the presence of TMSCI. Under these conditions, aromatic ketones and aldehydes did not give any coupled product with α,β -unsaturated esters. On the other hand, we have already reported that the electroreductive coupling of aromatic ketones with N-acylimidazoles,^{9a} aliphatic aldehydes and ketones,^{9b} 3-methoxycarbonylindoles,^{9c} 1-*E*-crotonyl- and 1-cinnnamoylimidazolidine-2-ones,^{9d} and 1,3-dimethyluracils^{9e,f} were effected in Bu₄NClO₄/THF or Bu₄NPF₆/THF in the presence of TMSCl. We therefore applied these conditions to the electroreduction of benzophenone (1a) with methyl acrylate (2a), and found that methyl 4,4-diphenyl-4-((trimethylsilyl)oxy)butanoate (3a) was obtained in almost the same yield (93-95%) under the both conditions. In addition, Pt, Au, Ag, Zn, and Pb gave almost the same results as a cathode material. Hence, we carried out the electroreduction of benzophenones 1a-g with α,β -unsaturated esters 2a-d (5 or 2 equiv) in Bu₄NClO₄/THF using a Pt cathode, and the results are summarized in Table 1. The adducts were obtained as TMS ethers 3a-g by the reductive coupling of 1a-g with 2a, and subsequent detrimethylsilylation of **3a-g** with TBAF gave 5,5-diaryl- γ -butyrolactones **4a-g** (runs 1-7). Although the adducts 3h-v obtained by the reactions with 2b-d could not be purified, the corresponding γ -butyrolactones **4h-v** could be isolated after detrimethylsilylation of the crude **3h-v** (runs 8-22).

Similarly to our already reported reactions,⁹ the presence of TMSCl is essential for the present electroreductive couplings. When the electroreduction of **1a** with **2a** was carried out in the absence of TMSCl, 1,1,2,2,-tetraphenylethane-1,2-diol was obtained as an only product by pinacol coupling of **1a**. This catholyte system (Bu₄NClO₄/THF) was employed to the electroreduction of hexanal with **2a** to compare with the previously reported catholyte system (Et₄NOTs/DMF).¹ As

shown in Scheme 2, the corresponding γ -butyrolactone **i** was obtained in 33% yield, and dimethyl adipate (**ii**) was formed as the major product (60% yield) by hydrodimerization of **2a**. Since it has been reported that the same γ -butyrolactone **i** was obtained in 86% yield,¹ these results show that Et₄NOTs/DMF is superior to Bu₄NClO₄/THF as the catholyte for the electroreductive coupling of aliphatic aldehydes with **2a**.

∽ ∧ .СНО		20	+2e TMSCI	1M	HCI	
(5 mmol)	+	2a (1 mmol)	Bu ₄ NClO ₄ /THF (Et ₄ NOTs/DMF)	-		A.
				+		
			i 33% (86% in ref. 1)		ii 60%)~
		1 4 6				

Ar Ar	+	R^2 TMS R^1 CO_2Me		Ar Ar	$Ar \mid P^{1}$	CO₂M€	e TBAF	Ar~	$R^1 R^2$
1a-g (1 mmol)		2a-d (5 or 2 mmol)			3a-k				4a-v
run	1	Ar ₂ C=O	2	\mathbf{R}^1	R^2	3	% yield ^b	4	% yield ^b
1	1a	Ar = Ph	2a ^c	Н	Н	3a	95	4a	90
2	1b	$Ar = 4 - MeOC_6H_4$	$2a^{c}$	Н	Н	3b	90	4 b	85
3	1c	$Ar = 4 - FC_6H_4$	$2a^{c}$	Н	Н	3c	86	4c	80
4	1d	dibenzosuberone	$2a^{c}$	Н	Н	3d	87	4d	69
5	1e	dibenzosuberenone	$2a^{c}$	Н	Н	3 e	84	4e	71
6	1f	9-fluorenone	$2a^{c}$	Н	Н	3f	37	4f	32
7	1g	xanthone	$2a^{c}$	Н	Н	3g	65	4 g	57
8	1a	Ar = Ph	2b ^c	Me	Н			4h	58
9	1b	$Ar = 4 - MeOC_6H_4$	2b ^c	Me	Н			4i	65
10	1c	$Ar = 4 - FC_6H_4$	2b ^c	Me	Н			4 j	54
11	1d	dibenzosuberone	2b ^c	Me	Н			4 k	37
12	1e	dibenzosuberenone	2b ^c	Me	Н			41	38
13	1g	xanthone	2b ^c	Me	Н			4m	30
14	1a	Ar = Ph	2c ^c	Н	Me			4n	63
15	1d	dibenzosuberone	2c ^c	Н	Me			4o	46
16	1g	xanthone	2c ^c	Н	Me			4 p	51
17	1a	Ar = Ph	$2d^d$	Ph	Н			4 q	53
18	1b	$Ar = 4-MeOC_6H_4$	$2d^d$	Ph	Н			4r	25
19	1c	$Ar = 4 - FC_6H_4$	$2d^d$	Ph	Н			4 s	48
20	1d	dibenzosuberone	$2d^d$	Ph	Н			4t	47
21	1e	dibenzosuberenone	$2d^d$	Ph	Н			4u	58
22	1g	xanthone	$2d^d$	Ph	Н			4 v	36

Table 1. Electroreductive coupling of 1a-g with 2a-d and transformation to 4a-v^a

^aThe electroreduction of **1** (1 mmol) and **2** (5 or 2 mmol) in Bu_4NClO_4/THF using a Pt cathode at a constant current of 200 mA (200 C). ^bIsolated yields based on **1**. ^c5 mmol. ^d2 mmol.

The electroreduction of **1a** with methyl cinnamates **2d-h** was carried out with the molar ratio of **1a/2d-h** as 2/1, since **2d-h** are more expensive than **1a** (Table 2). After desilylation of the crude adduct **3q**, the yield of **4q** was improved to 75% (run 1) in comparison to 53% yield of run 17 in Table 1. As shown in Table 3, aryl alkyl ketones **1h-n** (runs 1-9) and aromatic aldehydes **1o-s** (runs 10-14) were employed in place of benzophenones **1a-g**. The reaction of acetophenone (**1h**) with 2a gave the product **5a** in 78% yield, and subsequent desilylation of **5a** afforded 5-phenyl-5methyl- γ -butyrolactone (**6a**) in 96% yield (run 1). Although the adducts **5b,c** obtained by the reactions of **1h** with **2b,c** could not be purified, the corresponding γ -butyrolactones **6b** (63%) and **6c** (69%) could be isolated as mixtures of two diastereomers (50:50 dr) after treatment of the crude **2b,c** with TBAF (runs 2 and 3). Other acetophenones **1i-k** (runs 4-6) and phenyl alkyl ketones **1l-n** (runs 7-9) also applicable to the electroreductive coupling with **2a**, and the corresponding 5-aryl-5-methyl- γ -butyrolactones **6d-f** and 5-phenyl-5-alkyl- γ -butyrolactones **6g-i** were obtained by desilylation of the adducts **5d-f** and **5g-i**, respectively. Although the yields were lowered (35-56%), aromatic aldehydes **1o-s** were reacted with **2a** to give **5j-n** (runs 10-14). Desilylation of **5j-n** produced 5-aryl- γ -butyrolactones **6j-n** in high yields.

Ph (2	Ph O 1a mmol)	+	R ¹ CO ₂ Me 2d-h (1 mmol)	TBAF	Ph Ph 4q,w-z
	run	2	R^1	4	% yield ^a
	1	2d	Ph	4 q	75
	2	2e	$4-MeOC_6H_4$	4 w	71
	3	2f	$4-FC_6H_4$	4 x	73
	4	2g	3,4-methylenedioxyphenyl	4 y	73
	5	2h	2-naphthyl	4z	63

Table 2. Electroreductive coupling of 1a with 2d-h and transformation to 4q,w-z

^aIsolated yields based on **2**.

Ar R		+ R^{1} $CO_{2}Me$ $TMSCI$	R^1 R^2 R O O O					
1h- (1 mn	p 10l)	2a R' = R ² = H 2b R ¹ = Me, R ² = H		5a	-k			6a-k
,	,	2c $R^1 = H, R^2 = Me$ (5 mmol)						
run	1	Ar	R	2	5	% yield ^a	6	% yield ^b (dr) ^c
1	1h	Ph	Me	2a	5a	78	6a	96
2	1h	Ph	Me	2b			6b	63 ^a (50:50)
3	1h	Ph	Me	2c			6c	69 ^a (50:50)
4	1i	4-MeOC ₆ H ₄	Me	2a	5d	63	6d	90
5	1j	$4-FC_6H_4$	Me	2a	5e	85	6e	92
6	1k	2-naphthyl	Me	2a	5f	82	6f	96
7	1 l	Ph	Et	2a	5g	87	6g	93
8	1m	Ph	<i>n</i> -Pr	2a	5h	89	6h	91
9	1n	Ph	<i>i</i> -Pr	2a	5i	93	6i	92
10	10	Ph	Н	2a	5j	49	6j	92
11	1p	$4-MeOC_6H_4$	Н	2a	5k	56	6k	91
12	1q	$4-FC_6H_4$	Н	2a	51	35	6l	89
13	1r	3,4-methylenedioxyphenyl	н	2a	5m	50	6m	94
14	1 s	2-naphthyl	н	2a	5n	45	6n	95

Table 3. Electroreductive coupling of 1h-p with 2a-c and transformation to 6a-k

^aIsolated yields based on **1**. ^bIsolated yields based on **5**. ^cDiastereomeric ratio.

In the previous report,¹ it is presumed that the electroreductive coupling is initiated by the electron transfer to methyl acrylate (2a), since 2a is more reducible than aliphatic carbonyl compounds. We measured the cyclic voltammetry (CV) of 1a, 1h, 1l, and 2a (3 mM) in 0.03 M Bu₄NClO₄/DMF on a platinum cathode. The first reduction peaks of their CV data showed that 1a (-1.85 V vs SCE), 1h (-2.10 V vs SCE), and 1l (-1.94 V vs SCE) were more reducible than 2a, since the CV data of 2a gave no reduction peak from 0 to -2.20 V vs SCE. These results suggest that the electroreductive coupling of aromatic carbonyl compounds 1a, 1h, and 1l with 2a is

initiated by the electron transfer to **1a**, **1h**, and **1ly**. Hence, the presumed reaction mechanism of the electroreductive coupling of **1a** with **2a** can be illustrated as Scheme 3. As previously reported,⁹ carbanion **A** is formed by the two-electron transfer to **1a** and *O*-silylation with TMSCl. The successive nucleophilic 1,4-addition of **A** to **2a** and *O*-silylation of the resultant enolate anion **B** produce silyl ketene acetal **C**. Finally, the labile **C** is readily desilylated to **3a** during workup.

Scheme 3. Presumed reaction mechanism of electroreductive coupling of 1a with 2a.

Next, to expand the scope of the electroreductive coupling of aromatic ketones with α , β -unsaturated carbonyl compounds, acrylonitrile (7) was employed in place of methyl acrylate 2a. The electroreduction of 1a,h with 7 under the same conditions as described above also gave the adducts as 4-trimethylsiloxybutanenitriles 8a,h, although the yields of 8a,h were moderate (Scheme 4). The desilylation of 8a,h by treatment with TBAF afforded 4-hydroxybutanenitriles 9a,h.

Scheme 4. Electroreductive coupling of 1a,h with 7 and desilylation of 8a,h.

The electroreductive intramolecular coupling of ω -keto- α , β -unsaturated esters **10a-c** (n = 0~2) were also effected under the same conditions, although the four-, five-, and six-membered cyclized products **11a-c** were obtained as diastereomeric mixtures (Scheme 5). The desilylation of **11a-c** with TBAF gave *cis*- γ -butyrolactones **12a-c** and *trans*- γ -hydroxy esters **13a-c**.

Scheme 5. Electroreductive intramolecular coupling of 10a-c and desilylation of 11a-c.

Unfortunately, the electroreduction of 10d (n = 3) and subsequent desilylation with TBAF gave complex mixture. From the mixture, simply reduced alcohol iii and 4-(trimethylsilyl)phenyl analog of 10d (iv) were isolated, although intramolecularly coupled products 12d and 13d could not

be detected (Scheme 6).

Scheme 6. Electroreduction of 10d.

2.2. Electroreductive coupling of aromatic aldimines with methyl acrylate and acetonitrile.

In the preliminary report,⁶ we disclosed that the electroreduction of N-(4-methoxyphenyl)-1-phenylmethanimine (14a) and

1-(4-chlorophenyl)-*N*-(4-methoxyphenyl)methanimine (14b) with 2a in Et₄NOTs/DMF in the presence of TMSCl gave the adduct 15a and 15b in 63% and 65% yields, respectively (Table 4, runs 1 and 2). We have also revealed that the electroreductive coupling of 14a with *N*-acetylimidazole gave the adduct in slightly higher yields under the conditions in Bu₄NClO₄/THF and Bu₄NPF₆/THF than those in Et₄NOTs/DMF.¹⁰ Although the electroreduction of 14a with 2a was carried out in Bu₄NClO₄/THF and Bu₄NPF₆/THF, the yield of 15a decreased to some extent (58% and 55%, respectively). Therefore, the electroreduction of the other aromatic aldimines 14c-j with 2a was performed in Et₄NOTs/DMF and the adducts 15c-j were obtained in moderate to good yields (Table 4, runs 3-10). The cyclization of 15a-j by treatment with NaH in THF gave 5-aryl-*N*-(4-methoxyphenyl)- γ -butyrolactams 16a-j and then the *N*-4-methoxyphenyl group (An) in 16a-j was removed by treatment with CAN in aqueous acetonitrile to give 5-aryl- γ -butyrolactams 17a-j. From 14j (Ar = 3-pyridyl) derived from nicotinaldehyde, (±)-norcotinine (17j) was synthesized in three steps (run 10). The An group in the adducts 15a-h could be removed by treatment with CAN, and subsequent *N*-protection of the resultant methyl 4-aryl-4-aminobutyrates

with $(Boc)_2O$ gave methyl 4-aryl-4-((*t*-butoxycarbonyl)amino)butyrates **18a-h** (Table 5). These procedures provide a convenient method for the synthesis of γ -aryl substituted γ -amino acid (GABA) derivatives.

Similarly, the electroreduction of **14a-h** with **7** in Et_4NOTs/DMF in the presence of TMSCl afforded 4-aryl-4-((4-methoxyphenyl)amino)butanenitriles **19a-h** (Table 6). The adducts **19a-h** were converted to 4-aryl-4-((*t*-butoxycarbonyl)amino)butanenitriles **20a-h** by the same method as described above.

Ar-	`) N_An	+	+; <u>TM</u> (5 mmol)	2e SCI	Ar NHAn	CO ₂ Me	1) NaH /THF 2) CAN	Ar	
14 a (1 r	nmol)	= 4-Me(JC ₆ H₄		15a-j	5		16a 17a	a-j X = An
-	run	14	Ar	15	% yield ^a	16	% yield ^b	17	% yield ^c
-	1	14a	Ph	15a	63	16a	90	17a	78
	2	14b	$4-ClC_6H_4$	15b	65	16b	86	17b	79
	3	14c	$4-MeOC_6H_4$	15c	51	16c	81	17c	65
	4	14d	$2-MeOC_6H_4$	15d	65	16d	90	17d	72
	5	14e	4-FC ₆ H ₄	15e	60	16e	89	17e	70
	6	14f	4-NCC ₆ H ₄	15f	45	16f	80	17f	78
	7	14g	1-naphthyl	15g	80	16g	86	17g	80
	8	14h	2-naphthyl	15h	74	16h	80	17h	72
	9	14i	3,4-(MeO) ₂ C ₆ H ₃	15i	63	16i	84	17i	63
	10	14j	3-pyridyl	15j	53	16j	80	17j	52

Table 4. Electroreductive coupling of 14a-j with 2a and transformation to 16a-j and 17a-j

^aIsolated yields based on 14. ^bIsolated yields based on 15. ^cIsolated yields based on 16.

$NHAn$ 2) $(Boc)_2O$ $NHBoc$ $15a-h$ $18a-h$ run15Ar18 $NHBoc$ $18a-h$ $1u$ 15Ar18 $1u$ 15aPh18a $1u$ 15aPh18a $2u$ 15b4-ClC ₆ H ₄ 18b $1u$ 15c4-MeOC ₆ H ₄ 18c $3u$ 15c4-MeOC ₆ H ₄ 18c $4u$ 15d2-MeOC ₆ H ₄ 18d $5u$ 15e4-FC ₆ H ₄ 18e $6i$ 15f4-NCC ₆ H ₄ 18f $6i$ 15f1-naphthyl18g 62	Ar		Me 1) CAN	Ar	CO ₂ Me	
15a-h $18a-h$ run15Ar18% yielda115aPh18a70215b4-ClC ₆ H ₄ 18b71315c4-MeOC ₆ H ₄ 18c58415d2-MeOC ₆ H ₄ 18d53515e4-FC ₆ H ₄ 18e67615f4-NCC ₆ H ₄ 18f63715g1-naphthyl18g62	∣ NHAr	n	2) (Boc) ₂ O	 NI	HBoc	
run15Ar18% yielda115aPh18a70215b4-ClC ₆ H ₄ 18b71315c4-MeOC ₆ H ₄ 18c58415d2-MeOC ₆ H ₄ 18d53515e4-FC ₆ H ₄ 18e67615f4-NCC ₆ H ₄ 18f63715g1-naphthyl18g62	15	5a-h		13	8a-h	
115aPh18a70215b $4-\text{ClC}_6\text{H}_4$ 18b71315c $4-\text{MeOC}_6\text{H}_4$ 18c58415d $2-\text{MeOC}_6\text{H}_4$ 18d53515e $4-\text{FC}_6\text{H}_4$ 18e67615f $4-\text{NCC}_6\text{H}_4$ 18f63715g1-naphthyl18g62	run	15	Ar	18	% yield ^a	
215b $4-\text{ClC}_6\text{H}_4$ 18b71315c $4-\text{MeOC}_6\text{H}_4$ 18c58415d $2-\text{MeOC}_6\text{H}_4$ 18d53515e $4-\text{FC}_6\text{H}_4$ 18e67615f $4-\text{NCC}_6\text{H}_4$ 18f63715g1-naphthyl18g62	1	15a	Ph	18 a	70	
315c $4-MeOC_6H_4$ 18c58415d $2-MeOC_6H_4$ 18d53515e $4-FC_6H_4$ 18e67615f $4-NCC_6H_4$ 18f63715g1-naphthyl18g62	2	15b	$4-ClC_6H_4$	18b	71	
415d2-MeOC_6H_418d53515e4-FC_6H_418e67615f4-NCC_6H_418f63715g1-naphthyl18g62	3	15c	4-MeOC ₆ H ₄	18c	58	
515e $4-FC_6H_4$ 18e 67 615f $4-NCC_6H_4$ 18f 63 715g $1-naphthyl$ 18g 62	4	15d	2-MeOC ₆ H ₄	18d	53	
6 15f 4 -NCC ₆ H ₄ 18f 63 7 15g 1 -naphthyl 18g 62	5	15e	$4-FC_6H_4$	18e	67	
7 15g 1-naphthyl 18g 62	6	15f	$4-NCC_6H_4$	18f	63	
	7	15g	1-naphthyl	18g	62	
8 15h 2-naphthyl 18h 65	8	15h	2-naphthyl	18h	65	\sim

Table 5. Transformation of 15a-h to 18a-h

^aIsolated yields based on **15**.

Ar∖ 1 (1	N An 4a-h mmol)	+	7 (5 mmol)		r Cl NHAn 19a-h	N 1) (2) (CAN Boc) ₂ O	Ar CN NHBoc 20a-h
-	run	14	Ar	19	% yield ^a	20	% yield ^b	—
-	1	14a	Ph	19a	68	20a	85	_
	2	14b	$4-ClC_6H_4$	19b	63	20b	86	
	3	14c	4-MeOC ₆ H ₄	19c	51	20c	81	
	4	14d	2-MeOC ₆ H ₄	19d	65	20d	90	
	5	14e	$4-FC_6H_4$	19e	60	20e	89	
	6	14f	$4-NCC_6H_4$	19f	45	20f	80	
	7	14g	1-naphthyl	19g	80	20g	86	
	8	14h	2-naphthyl	19h	74	20h	80	

^aIsolated yields based on 14. ^bIsolated yields based on 19.

3. Conclusion

The electroreductive intermolecular coupling of aromatic ketones 1a-n and aldehydes 1o-s with α , β -unsaturated esters **2a-h** in the presence of TMSCl in Bu₄NClO₄/THF gave the adducts as 5-aryl substituted γ -trimethylsiloxy esters **3a-z** and **5a-n**. The adducts **3a-z** and **5a-n** were transformed to the corresponding γ -butyrolactones **4a-z** and **6a-n** by treatment with TBAF. The electroreductive and 1h with coupling of aromatic ketones **1**a acrylonitrile (7)afforded 4-(trimethylsiloxy)butanenitriles 8a and 8h. The electroreductive intramolecular coupling of aromatic ketones with α , β -unsaturated esters was also effected and four-, five-, and six-membered cyclized products **11a-c** were produced from ω -keto- α , β -unsaturated esters **10a-c**, respectively. The electroreductive coupling of N-(4-methoxyphenyl)-1-arylmethaneimines 14a-j with methyl acrylate (2a)in the presence of TMSC1 in Et₄NOTs/DMF gave methvl 4-aryl-4-((4-methoxyphenyl)amino)butanoates 15a-j. The adducts 15a-j were transformed to 5-aryl- γ -butyrolactams 17a-j by cyclization with NaH and subsequent N-deprotection of the resultant 5-aryl-N-(4-methoxyphenyl)- γ -butyrolactams 16a-j with CAN. (±)-Norcotinine (17j) was prepared from nicotinaldehyde by this method. The electroreductive coupling of **14a-h** with **7** afforded 4-aryl-4-((4-methoxyphenyl)amino)butanenitriles **19a-h**. The adducts **15a-h** and **19a-h** to methyl 4-aryl-4-((t-butoxycarbonyl)amino)butyrates transformed were 18a-h and 4-aryl-4-((t-butoxycarbonyl)amino)butanenitriles 20a-h, respectively, by treatment with CAN and subsequent *N*-protection with $(Boc)_2O$.

4. Experimental section

4.1. General

THF was freshly distilled from sodium benzophenone ketyl radical. DMF, TMSCl, and TEA were distilled from CaH₂. Column chromatography was performed on silica gel 60. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were measured on a JEOL JNM-ECP500 spectrometer with tetramethylsilane (TMS) as an internal standard. IR spectra were recorded on a Shimadzu IRAffinity-1 infrared spectrometer. HRMS were measured on a Thermo Scientic Exactive FTMS spectrometer. Melting points were uncorrected. Compound **10a-d** were prepared according to the reported method.¹¹

4.2. Typical procedure of electroreductive coupling of 1 with 2

A 0.3 M solution of Bu_4NClO_4 in THF (15 mL) was placed in the cathodic chamber of a divided cell (40 mL beaker, 3 cm diameter, 6 cm height) equipped with a platinum cathode (5 X 5 cm²), a platinum anode (2 X 1 cm²), and a ceramic cylindrical diaphragm (1.5 cm diameter). A 0.3 M solution of Et_4NOTs in DMF (4 mL) was placed in the anodic chamber (inside the diaphragm). Benzophenone (1a) (182 mg, 1.0 mmol), methyl acrylate (2a) (0.45 mL, 5.0 mmol), TMSCl (0.64 mL, 5.0 mmol), and TEA (0.70 mL, 5.0 mmol) were added to the cathodic chamber. After 300 C (3 *F*/mol for 1a) of electricity was passed at a constant current of 200 mA at 25 °C under nitrogen atmosphere, the catholyte was evaporated in vacuo. The residue was dissolved in diethyl ether (20 mL) and insoluble solid was filtered off. After removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel (hexanes-EtOAc) to give **3a** (325 mg) in 95% yield.

4.2.1. *Methyl* 4,4-diphenyl-4-((trimethylsilyl)oxy)butanoate (**3***a*): Colorless paste; *Rf* 0.65 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ –0.10 (s, 9H), 2.16-2.20 (m, 2H), 2.64-2.69 (m, 2H), 3.61 (s, 3H), 7.18-7.22 (m, 2H), 7.24-7.28 (m, 4H), 7.30-7.33 (m, 4H); ¹³C NMR (CDCl₃) δ 1.6 (q), 28.8 (t), 35.9 (t), 51.3 (q), 79.8 (s), 126.7 (d), 127.7 (d), 146.8 (s), 174.1

(s); HRMS (ESI) calcd for $C_{20}H_{27}O_3Si (M + H^+) 343.1729$; found 343.1727.

4.2.2. *Methyl* 4,4-*bis*(4-*methoxyphenyl*)-4-((*trimethylsilyl*)*oxy*)*butanoate* (**3b**): Colorless paste; *Rf* 0.35 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ –0.11 (s, 9H), 2.15-2.20 (m, 2H), 2.57-2.62 (m, 2H), 3.61 (s, 3H), 3.79 (s, 6H), 6.77-6.81 (m, 4H), 7.20-7.24 (m, 4H); ¹³C NMR (CDCl₃) δ 1.4 (q), 28.7 (t), 36.1 (t), 51.0 (q), 54.7 (q), 79.1 (s), 112.7 (d), 127.7 (d), 139.0 (s), 158.1 (s), 174.0 (s); HRMS (ESI) calcd for C₂₂H₃₁O₅Si (M + H⁺) 403.1941; found 403.1938.

4.2.3. *Methyl* 4,4-*bis*(4-fluorophenyl)-4-((*trimethylsilyl*)*oxy*)*butanoate* (**3***c*): Colorless paste; *Rf* 0.55 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ –0.09 (s, 9H), 2.14-2.18 (m, 2H), 2.59-2.64 (m, 2H), 3.61 (s, 3H), 6.93-6.99 (m, 4H), 7.24-7.29 (m, 4H); ¹³C NMR (CDCl₃) δ 1.5 (q), 28.7 (t), 36.0 (t), 51.3 (q), 79.1 (s), 114.6 (d, *J*_{CCF}=21.3 Hz), 128.4 (d, *J*_{CCCF}=7.5 Hz), 142.5 (s, *J*_{CCCCF}=3.6 Hz), 161.6 (s, *J*_{CF}=246.2 Hz), 173.9 (s); HRMS (ESI) calcd for C₂₀H₂₅F₂O₃Si (M + H⁺) 379.1541; found 379.1538.

4.2.4. Methyl 3-(5-((trimethylsilyl)oxy)-10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-yl)propanoate (3d): Colorless paste; *Rf* 0.5 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ -0.13 (s, 9H), 2.13 (t, 2H, *J*=8.0 Hz), 2.49 (t, 2H, *J*=8.0 Hz), 2.98-3.13 (m, 4H), 3.57 (s, 3H), 7.04-7.07 (m, 2H), 7.14-7.18 (m, 2H), 7.21-7.25 (m, 2H), 7.77-7.81 (m, 2H); ¹³C NMR (CDCl₃) δ 1.8 (q), 29.5 (t), 35.9 (t), 43.6 (t), 51.2 (q), 83.3 (s), 125.7 (d), 127.1 (d), 129.6 (d), 130.3 (d), 140.2 (s), 143.7 (s), 173.9 (s); HRMS (ESI) calcd for C₂₂H₂₉O₃Si (M + H⁺) 369.1886; found 369.1884.

4.2.5. *Methyl 3-(5-((trimethylsilyl)oxy)-5H-dibenzo[a,d][7]annulen-5-yl)propanoate (3e)*: Colorless paste; *Rf* 0.4 (hexanes-ethyl acetate, 10:1); IR (ATR) 1734 cm⁻¹; ¹H NMR (CDCl₃) δ 0.36 (s, 9H), 1.80-1.85 (m, 2H), 2.36-2.42 (m, 2H), 3.53 (s, 3H), 7.03 (s, 2H), 7.21-7.25 (m, 2H), 7.29-7.33 (m, 2H), 7.36-7.42 (m, 2H), 7.80-7.84 (m, 2H); ¹³C NMR (CDCl₃) δ 2.8 (q), 29.5 (t), 30.2 (t), 51.2 (q), 81.5 (s), 124.7 (d), 126.2 (d), 128.3 (d), 128.9 (d), 131.5 (d), 131.9 (s), 142.0 (s), 173.3 (s); HRMS

(ESI) calcd for $C_{22}H_{27}O_3Si (M + H^+)$ 367.1729; found 367.1727.

4.2.6. *Methyl* 3-(9-((*trimethylsilyl*)*oxy*)-9H-fluoren-9-yl)propanoate (3f): Colorless paste; *Rf* 0.5 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ –0.36 (s, 9H), 2.04-2.08 (m, 2H), 2.36-2.40 (m, 2H), 3.54 (s, 3H), 7.26-7.30 (m, 2H), 7.34-7.37 (m, 2H), 7.46-7.48 (m, 2H), 7.60-7.62 (m, 2H); ¹³C NMR (CDCl₃) δ 1.2 (q), 29.1 (t), 37.1 (t), 51.3 (q), 83.1 (s), 119.9 (d), 124.3 (d), 127.6 (d), 128.8 (d), 139.5 (s), 148.1 (s), 173.8 (s); HRMS (ESI) calcd for C₂₀H₂₅O₃Si (M + H⁺) 341.1573; found 341.1572.

4.2.7. *Methyl 3-(9-((trimethylsilyl)oxy)-9H-xanthen-9-yl)propanoate (3g)*: Colorless paste; *Rf* 0.5 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ –0.29 (s, 9H), 1.80-1.84 (m, 2H), 2.45-2.49 (m, 2H), 3.47 (s, 3H), 7.06-7.09 (m, 2H), 7.12-7.16 (m, 2H), 7.28-7.32 (m, 2H), 7.59-7.62 (m, 2H); ¹³C NMR (CDCl₃) δ 1.3 (q), 29.5 (t), 43.2 (t), 51.2 (q), 70.4 (s), 116.0 (d), 123.1 (d), 124.8 (s), 127.7 (d), 129.0 (d), 149.8 (s), 173.1 (s); HRMS (ESI) calcd for C₂₀H₂₅O₄Si (M + H⁺) 357.1522; found 357.1520.

4.2.8. Methyl 4-phenyl-4-((trimethylsilyl)oxy)pentanoate (5a): Colorless paste; Rf 0.55
(hexanes-ethyl acetate, 10:1); IR (ATR) 1738 cm⁻¹; ¹H NMR (CDCl₃) δ 0.13 (s, 9H), 1.64 (s, 3H), 1.99-2.11 (m, 3H), 2.27-2.35 (m, 1H), 3.59 (s, 3H), 7.18-7.23 (m, 1H), 7.28-7.33 (m, 2H), 7.34-7.38 (m, 2H); ¹³C NMR (CDCl₃) δ 2.2 (q), 29.2 (t), 29.8 (q), 40.4 (t), 51.3 (q), 76.7 (s), 125.0 (d), 126.4 (d), 127.8 (d), 147.4 (s), 174.2 (s); HRMS (ESI) calcd for C₁₅H₂₅O₃Si (M + H⁺) 281.1573; found 281.1571.

4.2.9. *Methyl* 4-(4-methoxyphenyl)-4-((trimethylsilyl)oxy)pentanoate (5d): Colorless paste; *Rf* 0.4 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ –0.06 (s, 9H), 1.45 (s, 3H), 1.84-1.92 (m, 3H), 2.08-2.18 (m, 1H), 3.42 (s, 3H), 3.61 (s, 3H), 6.64-6.69 (m, 2H), 7.08-7.13 (m, 2H); ¹³C NMR (CDCl₃) δ 2.2 (q), 29.2 (t), 29.6 (q), 40.5 (t), 51.2 (q), 55.0 (q), 76.4 (s), 113.1 (d), 126.1 (d), 139.5 (s), 158.1 (s), 174.2 (s); HRMS (ESI) calcd for C₁₆H₂₇O₄Si (M + H⁺) 311.1679; found 311.1676.

4.2.10. *Methyl* 4-(4-fluorophenyl)-4-((trimethylsilyl)oxy)pentanoate (5e): Colorless paste; *Rf* 0.5 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ 0.12 (s, 9H), 1.63 (s, 3H), 1.98-2.09 (m, 3H), 2.24-2.35 (m, 1H), 3.60 (s, 3H), 6.95-7.01 (m, 2H), 7.30-7.34 (m, 2H); ¹³C NMR (CDCl₃) δ 2.2 (q), 29.1 (t), 29.8 (q), 40.5 (t), 51.3 (q), 76.5 (s), 114.5 (d, *J*_{CCF}=20.7 Hz), 126.7 (d, *J*_{CCCF}=7.5 Hz), 143.2 (s, *J*_{CCCCF}=3.6 Hz), 161.4 (s, *J*_{CF}=244.7 Hz), 174.1 (s); HRMS (ESI) calcd for C₁₅H₂₄FO₃Si (M + H⁺) 299.1479; found 299.1476.

4.2.11. *Methyl* 4-(*naphthalen-2-yl*)-4-((*trimethylsilyl*)*oxy*)*pentanoate* (5*f*): Colorless paste; *Rf* 0.5 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ 0.15 (s, 9H), 1.74 (s, 3H), 2.01-2.09 (m, 1H), 2.11-2.23 (m, 2H), 2.29-2.39 (m, 1H), 3.55 (s, 3H), 7.42-7.51 (m, 3H), 7.77-7.85 (m, 4H); ¹³C NMR (CDCl₃) δ 2.3 (q), 29.2 (t), 29.6 (q), 40.3 (t), 51.2 (q), 76.9(s), 123.6 (d), 123.8 (d), 125.5 (d), 125.8 (d), 127.3 (d), 127.6 (d), 128.0 (d), 132.2 (s), 133.0 (s), 144.8 (s), 174.1 (s); HRMS (ESI) calcd for C₁₉H₂₈O₃Si (M + H⁺) 331.1729; found 331.1724.

4.2.12. *Methyl* 4-phenyl-4-((trimethylsilyl)oxy)hexanoate (5g): Colorless paste; *Rf* 0.55 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ 0.19 (s, 9H), 0.65 (t, 3H, *J* = 7.4 Hz), 1.85-1.96 (m, 3H), 2.10-2.32 (m, 3H), 3.57 (s, 3H), 7.16-7.20 (m, 1H), 7.27-7.32 (m, 4H); ¹³C NMR (CDCl₃) δ 2.2 (q), 8.1 (q), 28.9 (t), 35.6 (t), 37.7 (t), 51.3 (q), 80.4 (s), 125.6 (d), 126.2 (d), 127.8 (d), 144.9 (s), 174.1 (s); HRMS (ESI) calcd for C₁₆H₂₇O₃Si (M + H⁺) 295.1729; found 295.1726.

4.2.13. *Methyl* 4-phenyl-4-((trimethylsilyl)oxy)heptanoate (5h): Colorless paste; *Rf* 0.55 (hexanes-ethyl acetate, 10:1); IR (ATR) 1738 cm⁻¹; ¹H NMR (CDCl₃) δ 0.19 (s, 9H), 0.79 (t, 3H, *J* = 7.3 Hz), 0.84-0.95 (m, 1H), 1.16-1.28 (m, 1H), 1.75-1.95 (m, 3H), 2.09-2.32 (m, 3H), 3.58 (s, 3H), 7.16-7.21 (m, 1H), 7.27-7.33 (m, 4H); ¹³C NMR (CDCl₃) δ 2.2 (q), 14.0 (q), 16.9 (t), 28.8 (t), 37.9 (t), 45.6 (t), 51.3 (q), 80.0 (s), 125.5 (d), 126.1 (d), 127.8 (d), 145.3 (s), 174.1 (s); HRMS (ESI) calcd for C₁₇H₂₉O₃Si (M + H⁺) 309.1886; found 309.1883.

4.2.14. Methyl 5-methyl-4-phenyl-4-((trimethylsilyl)oxy)hexanoate (5i): Colorless paste; Rf 0.5

(hexanes-ethyl acetate, 10:1); IR (ATR) 1738 cm⁻¹; ¹H NMR (CDCl₃) δ 0.22 (s, 9H), 0.75 (d, 3H, *J* = 6.9 Hz), 0.82 (d, 3H, *J* = 6.6 Hz), 1.91-2.04 (m, 2H), 2.13-2.41 (m, 3H), 3.60 (s, 3H), 7.17-7.21 (m, 1H), 7.27-7.31 (m, 4H); ¹³C NMR (CDCl₃) δ 2.5 (q), 17.3 (q), 17.9 (q), 29.4 (t), 34.4 (t), 39.0 (d), 51.3 (q), 83.3 (s), 126.1 (d), 126.3 (d), 127.4 (d), 143.7 (s), 174.2 (s); HRMS (ESI) calcd for C₁₇H₂₉O₃Si (M + H⁺) 309.1886; found 309.1882.

4.2.15. Methyl 4-phenyl-4-((trimethylsilyl)oxy)butanoate (5j): Colorless paste; Rf 0.55
(hexanes-ethyl acetate, 10:1); IR (ATR) 1738 cm⁻¹; ¹H NMR (CDCl₃) δ -0.14 (s, 9H), 1.76-1.88 (m, 2H), 2.13-2.27 (m, 2H), 3.49 (s, 3H), 4.54 (dd, 1H, J=5.0, 7.3 Hz), 7.05-7.09 (m, 1H), 7.12-7.15 (m, 4H); ¹³C NMR (CDCl₃) δ -0.1 (q), 30.1 (t), 35.3 (t), 51.4 (q), 73.5 (d), 125.7 (d), 127.1 (d), 128.1
(d), 144.5 (s), 174.0 (s); HRMS (ESI) calcd for C₁₄H₂₃O₃Si (M + H⁺) 267.1416; found 267.1414.

4.2.16. *Methyl* 4-(4-methoxyphenyl)-4-((trimethylsilyl)oxy)butanoate (5k): Colorless paste; *Rf* 0.45 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ 1.93-1.99 (m, 2H), 2.30-2.41 (m, 2H), 3.65 (s, 3H), 3.80 (s, 3H), 4.65 (t, 1H, *J*=6.3 Hz), 6.83-6.86 (m, 2H), 7.19-7.23 (m, 2H); ¹³C NMR (CDCl₃) δ -0.1 (q), 30.1 (t), 35.3 (t), 51.3 (q), 55.0 (q), 73.2 (d), 113.4 (d), 126.8 (d), 136.6 (s), 158.6 (s), 173.9 (s); HRMS (ESI) calcd for C₁₅H₂₅O₄Si (M + H⁺) 297.1522; found 297.1520.

4.2.17. *Methyl* 4-(4-fluorophenyl)-4-((trimethylsilyl)oxy)butanoate (51): Colorless paste; *Rf* 0.5 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736 cm⁻¹; ¹H NMR (CDCl₃) δ –0.15 (s, 9H), 1.74-1.83 (m, 2H), 2.12-2.26 (m, 2H), 3.49 (s, 3H), 4.52 (dd, 1H, *J*=5.2, 7.3 Hz), 6.80-6.86 (m, 2H), 7.08-7.12 (m, 2H); ¹³C NMR (CDCl₃) δ –0.1 (q), 30.0 (t), 35.4 (t), 51.5 (q), 72.9 (d), 114.9 (d, *J*_{CCF}=21.3 Hz), 127.3 (d, *J*_{CCCF}=8.4 Hz), 140.4 (s, *J*_{CCCCF}=3.3 Hz), 161.9 (s, *J*_{CF}=245.0 Hz), 173.9 (s); HRMS (ESI) calcd for C₁₄H₂₂FO₃Si (M + H⁺) 285.1322; found 285.1320.

4.2.18. *Methyl* 4-(*benzo*[*d*][1,3]*dioxol*-5-*yl*)-4-((*trimethylsilyl*)*oxy*)*butanoate* (**5***m*): Colorless paste; *Rf* 0.4 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736, 1693 cm⁻¹; ¹H NMR (CDCl₃) δ 0.03 (s, 9H), 1.91-1.96 (m, 2H), 2.29-2.41 (m, 2H), 3.66, (s, 3H), 4.61 (t, 1H, *J*=6.4 Hz), 5.93-5.95 (m, 2H), 6.71-6.75 (m, 2H), 6.82-6.84 (m, 1H); ¹³C NMR (CDCl₃) δ –0.1 (s), 30.0 (t), 35.4 (t), 51.3 (q), 73.3 (d), 100.8 (t), 106.2 (d), 107.7 (d), 118.9 (d), 138.7 (s), 146.5 (s), 147.4 (s), 173.9 (s); HRMS (ESI) calcd for C₁₅H₂₃O₅Si (M + H⁺) 311.1315; found 311.1312.

4.2.19. *Methyl* 4-(*naphthalen-2-yl*)-4-((*trimethylsilyl*)*oxy*)*butanoate* (**5***n*): Colorless paste; *Rf* 0.4 (hexanes-ethyl acetate, 10:1); IR (ATR) 1736, 1697 cm⁻¹; ¹H NMR (CDCl₃) δ 0.04 (s, 9H), 2.00-2.12 (m, 2H), 2.32-2.48 (m, 2H), 3.65 (s, 3H), 4.86-4.90 (m, 1H), 7.41-7.49 (m, 3H), 7.72-7.74 (m, 1H), 7.79-7.83 (m, 3H); ¹³C NMR (CDCl₃) δ 0.0 (q), 30.1 (t), 35.3 (t), 51.4 (q), 73.7 (d), 124.1 (d), 124.4 (d), 125.6 (d), 126.0 (d), 127.6 (d), 127.9 (d), 128.0 (d), 132.9 (s), 133.2 (s), 142.1 (s), 174.0 (s); HRMS (ESI) calcd for C₁₈H₂₅O₃Si (M + H⁺) 317.1573; found 317.1570.

4.2.20. 4,4-Diphenyl-4-((trimethylsilyl)oxy)butanenitrile (8*a*): Colorless paste; *Rf* 0.5 (hexanes-ethyl acetate, 10:1); IR (ATR) 2249 cm⁻¹; ¹H NMR (CDCl₃) δ –0.09 (s, 9H), 2.11-2.16 (m, 2H), 2.67-2.72 (m, 2H), 7.23-7.33 (m, 10H); ¹³C NMR (CDCl₃) δ 1.6 (q), 12.0 (t), 37.3 (t), 79.5 (s), 120.1 (s), 126.7 (d), 127.3 (d), 128.0 (d), 145.2 (s); HRMS (ESI) calcd for C₁₉H₂₄NOSi (M + H⁺) 310.1627; found 310.1625.

4.2.21. 4-Hydroxy-4,4-diphenylbutanenitrile (8*h*): Colorless paste; *Rf* 0.5 (hexanes-ethyl acetate, 10:1); IR (ATR) 2247 cm⁻¹; ¹H NMR (CDCl₃) δ 0.16 (s, 9H), 1.67 (s, 3H), 1.93-2.00 (m, 1H), 2.05-2.12 (m, 2H), 2.28-2.35 (m, 1H), 7.22-7.28 (m, 1H), 7.32-7.35 (m, 4H); ¹³C NMR (CDCl₃) δ 2.2 (q), 12.1 (t), 29.6 (q), 41.3 (t), 76.3 (s), 120.2 (s), 124.9 (d), 126.9 (d), 128.2 (d), 146.1 (s); HRMS (ESI) calcd for C₁₄H₂₂NOSi (M + H⁺) 248.1471; found 248.1469..

4.2.22. Ethyl 2-(2-Phenyl-2-((trimethylsilyl)oxy)cyclobutyl)acetate (**11a**): Diastereomeric mixture (80:20); colorless paste; *Rf* 0.3, 0.25 (hexanes-ethyl acetate, 20:1); ¹H NMR (CDCl₃) δ –0.10 (s, 7.2H), –0.01 (s, 1.8H), 1.18 (t, 0.6H, *J*=7.0 Hz), 1.24 (t, 2.4H, *J*=7.0 Hz), 1.64-3.16 (m, 7H), 4.02 (q, 0.4H, *J*=7.0 Hz), 4.11 (q, 1.6H, *J*=7.0 Hz), 7.21-7.48 (m, 5H); ¹³C NMR (CDCl₃) δ 1.3 (q), 14.1 (q), 19.9 (t), 32.2 (t), 35.3 (t), 45.1 (d), 59.9 (t), 78.6 (s), 125.6 (d), 126.8 (d), 128.0 (d), 146.4 (s), 173.2 (s); HRMS (ESI) calcd for C₁₇H₂₇O₃Si (M + H⁺) 307.1729; found 307.1726.

4.2.23. *Ethyl* 2-(2-*Phenyl*-2-((*trimethylsilyl*)*oxy*)*cyclopentyl*)*acetate* (**11b**): Diastereomeric mixture (50:50); colorless paste: *Rf* 0.3 (hexanes-ethyl acetate, 20:1); ¹H NMR (CDCl₃) δ –0.07 (s, 4.5H), 0.09 (s, 4.5H), 1.19 (t, 1.5H, *J*=7.0 Hz), 1.20 (t, 1.5H, *J*=7.0 Hz), 1.28-2.65 (m, 9H), 4.00 (q, 1H, *J*=7.0 Hz), 4.04 (q, 1H, *J*=7.0 Hz), 7.20-7.42 (m, 5H); ¹³C NMR (CDCl₃) δ 1.6 (q), 1.7 (q), 14.0 (q), 21.0 (t), 21.5 (t), 28.2 (t), 29.6 (t), 33.3 (t), 35.8 (t), 36.7 (t), 39.3 (t), 48.9 (d), 50.7 (d), 59.7 (t), 59.8 (t), 86.3 (s), 86.7 (s), 125.4 (d), 126.3 (d), 126.7 (d), 126.9 (d), 127.6 (d), 127.7 (d), 144.0 (s), 145.5 (s), 172.8 (s), 173.5 (s); HRMS (ESI) calcd for C₁₈H₂₉O₃Si (M + H⁺) 321.1886; found 321.1883.

4.2.24. Ethyl 2-(2-phenyl-2-((trimethylsilyl)oxy)cyclohexyl)acetate (**11c**): Diastereomeric mixture (50:50); colorless paste; *Rf* 0.3 (hexanes-ethyl acetate, 20:1); ¹H NMR (CDCl₃) δ –0.15 (s, 4.5H), 0.16 (s, 4.5H), 1.15 (t, 1.5H, *J*=7.0 Hz), 1.16 (t, 1.5H, *J*=7.0 Hz), 1.37-2.20 (m, 10.5H), 2.51-2.64 (m, 0.5H), 3.92-4.00 (m, 2H), 7.18-7.43 (m, 5H); ¹³C NMR (CDCl₃) δ 1.8 (q), 2.6 (q), 13.96 (q), 14.00 (q), 19.7 (t), 21.6 (t), 22.1 (t), 25.0 (t), 25.3 (t), 27.7 (t), 30.9 (t), 34.0 (t), 35.5 (t), 38.3 (t), 42.9 (d), 44.8 (d), 59.7 (q), 59.8 (q), 77.1 (s), 80.2 (s), 125.7 (d), 126.1 (d), 126.3 (d), 127.0 (d), 127.6 (d), 127.9 (d), 146.4 (s), 147.0 (s), 172.7 (s), 173.5 (s); HRMS (ESI) calcd for C₁₉H₃₁O₃Si (M + H⁺) 335.5390; found 335.5386.

4.3. Typical Procedure of Desilylation of 3a-z with TBAF in THF

To a solution of **3a** (86 mg, 0.25 mmol) in THF (5 mL) was added 1 M TBAF in THF (0.25 mL, 0.25 mmol) at 25 °C and the mixture was stirred for 15 min. After addition of AcOH (15 mg, 0.25 mmol), the solvent was removed *in vacuo*. The residue was purified by column chromatography on silica gel (hexanes-EtOAc) to give **4a** (78 mg) in 95% yield. Compounds **4a**,^{3c,8a} **4b**,¹² **4c**,^{8a,12} **4h**,^{6,8a} **4n**,⁶ **4q**,⁶ **4t**,⁶ **6a**,^{3c,8a} **6b**,¹³ **6c**,^{3c,8a} **6d**,^{8a} **6e**,¹⁴ **6g**,^{8a} **6h**,^{8a} **6j**,^{3c,8e} **6k**,^{8e} **6l**,^{8e} **6m**,¹⁵ **6n**,^{8e} **9h**,^{3b,8a} **12b**,¹⁶ and **12c**¹⁷ were known.

4.3.1. 3',4',10,11-Tetrahydro-5'H-spiro[dibenzo[a,d][7]annulene-5,2'-furan]-5'-one (4d): White solid; *Rf* 0.4 (hexanes-ethyl acetate, 5:1); mp 148-149 °C; IR (ATR) 1761 cm⁻¹; ¹H NMR (CDCl₃) δ 2.57 (t, 2H, *J*=8.2 Hz), 2.92 (t, 2H, *J*=8.2 Hz), 2.99-3.08 (m, 2H), 3.47-3.55 (m, 2H), 7.15-7.24 (m, 6H), 7.59-7.63 (m, 2H); ¹³C NMR (CDCl₃) δ 27.7 (t), 32.4 (t), 38.6 (t), 88.5 (s), 123.6 (d), 126.1 (d),

127.8 (d), 130.8 (d), 136.6 (s), 141.1 (s), 176.1 (s). Anal. Calcd for C₁₈H₁₆O₂: C, 81.79; H, 6.10. Found: C, 81.75; H, 6.12.

4.3.2. 3',4'-Dihydro-5'H-spiro[dibenzo[a,d][7]annulene-5,2'-furan]-5'-one (**4e**): White solid; *Rf* 0.45 (hexanes-ethyl acetate, 5:1); mp 134-136 °C; IR (ATR) 1765 cm⁻¹; ¹H NMR (CDCl₃) δ 2.34 (t, 2H, *J*=8.0 Hz), 2.49 (t, 2H, *J*=8.0 Hz), 7.06 (s, 2H), 7.29-7.34 (m, 2H), 7.37-7.43 (m, 4H), 7.75-7.80 (m, 2H); ¹³C NMR (CDCl₃) δ 27.5 (t), 32.2 (t), 87.3 (s), 122.5 (d), 127.1 (d), 128.6 (d), 129.3 (d), 131.3 (d), 131.5 (s), 139.8 (s), 175.9 (s). Anal. Calcd for C₁₈H₁₄O₂: C, 82.42; H, 5.38. Found: C, 82.39; H, 5.39.

4.3.3. 3',4'-Dihydro-5'H-spiro[fluorene-9,2'-furan]-5'-one (4f): Colorless paste; Rf 0.3 (hexanes-ethyl acetate, 5:1); IR (ATR) 1767 cm⁻¹; ¹H NMR (CDCl₃) δ 2.69 (t, 2H, J=8.5 Hz), 3.07 (t, 2H, J=8.5 Hz), 7.31-7.35 (m, 2H), 7.40-7.44 (m, 2H), 7.45-7.48 (m, 2H), 7.63-7.66 (m, 2H); ¹³C NMR (CDCl₃) δ 29.5 (t), 33.0 (t), 90.5 (s), 120.2 (d), 123.3 (d), 128.3 (d), 130.0 (d), 139.5 (s), 145.1 (s), 177.0 (s); HRMS (ESI) calcd for C₁₆H₁₃O₂ (M + H⁺) 237.0916; found 237.0915.

4.3.4. 3,4-Dihydro-5H-spiro[furan-2,9'-xanthen]-5-one (**4**g): White solid; *Rf* 0.3 (hexanes-ethyl acetate, 5:1); mp 110-112 °C; IR (ATR) 1757 cm⁻¹; ¹H NMR (CDCl₃) δ 2.58 (t, 2H, *J*=8.3 Hz), 2.95 (t, 2H, *J*=8.3 Hz), 7.18-7.26 (m, 4H), 7.36-7.43 (m, 2H), 7.43-7.49 (m, 2H); ¹³C NMR (CDCl₃) δ 28.8 (t), 40.8 (t), 79.8 (s), 116.8 (d), 123.8 (d), 125.0 (d), 129.6 (d), 149.6 (s), 176.4 (s). Anal. Calcd for C₁₆H₁₂O₃: C, 76.18; H, 4.79. Found: C, 76.13; H, 4.82.

4.3.5. 5,5-Bis(4-methoxyphenyl)-4-methyldihydrofuran-2(3H)-one (4i): White solid; *Rf* 0.2 (hexanes-ethyl acetate, 5:1); mp 109-111 °C; IR (ATR) 1771, 1753 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90 (d, 3H, *J*=7.0 Hz), 2.31 (dd, 1H, *J*=5.6, 17.2 Hz), 2.71 (dd, 1H, *J*=7.5, 17.2 Hz), 3.31-3.39 (m, 1H), 3.78 (s, 3H), 3.80 (s, 3H), 6.80-6.85 (m, 2H), 6.86-6.90 (m, 2H), 7.10-7.14 (m, 2H), 7.37-7.42 (m, 2H); ¹³C NMR (CDCl₃) δ 16.9 (q), 37.3 (t), 37.9 (d), 54.9 (q), 55.0 (q), 91.9 (s), 113.2 (d), 113.6 (d), 126.8 (d), 127.3 (d), 132.8 (s), 134.9 (s), 158.5 (s), 159.0 (s), 175.7 (s). Anal. Calcd for C₁₉H₂₀O₄: C, 73.06; H, 6.45. Found: C, 73.01; H, 6.47.

4.3.6 5,5-Bis(4-fluorophenyl)-4-methyldihydrofuran-2(3H)-one (4j): Colorless paste; *Rf* 0.25 (hexanes-ethyl acetate, 5:1); IR (ATR) 1782 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90 (d, 3H, *J*=6.9 Hz), 2.33 (dd, 1H, *J*=4.6, 17.2 Hz), 2.72 (dd, 1H, *J*=7.5, 17.2 Hz), 3.33-3.41 (m, 1H), 6.98-7.09 (m, 4H), 7.17-7.22 (m, 2H), 7.44-7.49 (m, 2H); ¹³C NMR (CDCl₃) δ 17.0 (q), 37.3 (t), 38.0 (d), 91.3 (s), 115.1 (d, *J*_{CCF}=21.3 Hz), 115.5 (d, *J*_{CCF}=21.6 Hz), 127.3 (d, *J*_{CCCF}=7.8 Hz), 128.0 (d, *J*_{CCCF}=8.4 Hz), 136.1 (s, *J*_{CCCCF}=3.6 Hz), 138.4 (s, *J*_{CCCCF}=3.6 Hz), 161.9 (s, *J*_{CF}=247.1 Hz), 162.3 (s, *J*_{CF}=248.0 Hz), 175.2 (s); HRMS (ESI) calcd for C₁₇H₁₅F₂O₂ (M + H⁺) 289.1040; found 289.1037.

4.3.7. 3'-Methyl-3',4',10,11-tetrahydro-5'H-spiro[dibenzo[a,d][7]annulene-5,2'-furan]-5'-one (**4k**): White solid; *Rf* 0.35 (hexanes-ethyl acetate, 5:1); mp 163-165 °C; IR (ATR) 1761 cm⁻¹; ¹H NMR (CDCl₃) δ 0.87 (d, 3H, *J*=7.3 Hz), 2.22 (d, 1H, *J*=17.2 Hz), 2.74 (dd, 1H, *J*=7.6, 17.2 Hz), 2.90-2.98 (m, 1H), 3.06-3.14 (m, 1H), 3.26-3.34 (m, 1H), 3.41-3.54 (m, 2H), 7.09-7.23 (m, 6H), 7.45-7.49 (m, 1H), 7.71-7.75 (m, 1H); ¹³C NMR (CDCl₃) δ 17.6 (q), 32.2 (t), 32.4 (t), 36.4 (t), 40.6 (d), 91.7 (s), 123.6 (d), 125.2 (d), 126.0 (d), 126.3 (d), 127.9 (d), 130.1 (d), 131.6 (d), 136.2 (s), 136.5 (s), 138.5 (s), 140.4 (s), 176.2 (s). Anal. Calcd for C₁₉H₁₈O₂: C, 81.99; H, 6.52. Found: C, 81.92; H, 6.50.

4.3.8. 3'-Methyl-3',4'-dihydro-5'H-spiro[dibenzo[a,d][7]annulene-5,2'-furan]-5'-one (**4**l): White solid; *Rf* 0.5 (hexanes-ethyl acetate, 5:1); mp 137-138 °C; IR (ATR) 1780, 1763, 1684 cm⁻¹; ¹H NMR (CDCl₃) δ 0.54 (d, 3H, *J*=7.4 Hz), 2.06 (d, 2H, *J*=17.2 Hz), 2.43 (dd, 1H, *J*=8.0, 17.2 Hz), 2.99-3.07 (m, 1H), 7.04 (d, 1H, *J*=12.0 Hz), 7.07 (d, 1H, *J*=12.0 Hz), 7.28-7.44 (m, 6H), 7.65-7.70 (m, 1H), 7.83-7.88 (m, 1H); ¹³C NMR (CDCl₃) δ 17.6 (q), 34.8 (d), 36.1 (t), 90.5 (s), 122.9 (d), 123.9 (d), 127.1 (d), 127.2 (d), 128.5 (d), 128.7 (d), 128.8 (d), 129.3 (d), 131.2 (d), 131.3 (d), 131.8 (s), 131.9 (s), 136.6 (s), 139.7 (s), 176.0 (s). Anal. Calcd for C₁₉H₁₈O₂: C, 82.58; H, 5.84. Found: C, 82.54; H, 5.87

4.3.9. 3-Methyl-3,4-dihydro-5H-spiro[furan-2,9'-xanthen]-5-one (**4m**): Colorless paste; *Rf* 0.3 (hexanes-ethyl acetate, 5:1); IR (ATR) 1775, 1751, 1655 cm⁻¹; ¹H NMR (CDCl₃) δ 0.63 (d, 3H, *J*=6.9 Hz), 2.54 (dd, 1H, *J*=11.6, 17.0 Hz), 2.62-2.71 (m, 1H), 2.80 (dd, 1H, *J*=8.0, 17.0 Hz),

7.16-7.29 (m, 5H), 7.34-7.43 (m, 2H), 7.55-7.59 (m, 1H); 13 C NMR (CDCl₃) δ 13.8 (q), 35.8 (t), 47.1 (d), 83.2 (s), 116.4 (d), 116.9 (d), 120.0 (s), 123.5 (d), 124.0 (s), 124.1 (d), 125.1 (d), 125.2 (d), 129.4 (d), 129.7 (d), 150.2 (s), 150.8 (s), 176.4 (s); HRMS (ESI) calcd for C₁₇H₁₅O₃ (M + H⁺) 267.1021; found 267.1019.

4.3.10. 4'-Methyl-3',4',10,11-tetrahydro-5'H-spiro[dibenzo[a,d][7]annulene-5,2'-furan]-5'-one (4o):
White solid; *Rf* 0.5 (hexanes-ethyl acetate, 5:1); mp 155 °C; IR (ATR) 1769 cm⁻¹; ¹H NMR (CDCl₃) δ 1.24 (d, 3H, *J*=7.5 Hz), 2.39 (t, 1H, *J*=12.0 Hz), 2.63-2.73 (m, 1H), 2.92-3.01 (m, 1H), 3.05-3.14 (m, 1H), 3.35 (dd, 1H, *J*=9.2, 12.0 Hz), 3.45-3.59 (m, 2H), 7.12-7.24 (m, 1H), 7.49-7.53 (m, 1H), 7.69-7.73 (m, 1H); ¹³C NMR (CDCl₃) δ 14.8 (q), 32.4 (t), 32.7 (t), 34.2 (d), 47.1 (t), 86.4 (s), 123.7 (d), 124.0 (d), 126.2 (d), 126.6 (d), 127.9 (d), 128.1 (d), 130.5 (d), 131.4 (d), 136.6 (s), 136.8 (s), 140.3 (s), 142.6 (s), 178.9 (s). Anal. Calcd for C₁₉H₁₈O₂: C, 81.99; H, 6.52. Found: C, 81.96; H, 6.54.

4.3.11. 4-Methyl-3,4-dihydro-5H-spiro[furan-2,9'-xanthen]-5-one (4p): Colorless paste; *Rf* 0.4 (hexanes-ethyl acetate, 5:1); IR (ATR) 1765, 1722 cm⁻¹; ¹H NMR (CDCl₃) δ 1.40 (d, 3H, *J*=7.3 Hz), 2.18 (dd, 1H, *J*=9.5, 13.3 Hz), 2.74 (dd, 1H, *J*=9.5, 13.3 Hz), 3.11-3.20 (m, 1H), 7.16-7.24 (m, 4H), 7.34-7.40 (m, 3H), 7.49-7.51 (m, 1H); ¹³C NMR (CDCl₃) δ 15.7 (q), 34.7 (d), 49.4 (t), 77.6 (s), 116.5 (d), 117.0 (d), 123.7 (d), 123.8 (s), 124.0 (d), 124.5 (d), 124.7 (s), 125.2 (d), 129.4 (d), 129.5 (d), 149.7 (s), 150.0 (s), 179.2 (s); HRMS (ESI) calcd for C₁₇H₁₅O₃ (M + H⁺) 267.1021; found 267.1019.

4.3.12. 5,5-Bis(4-methoxyphenyl)-4-phenyldihydrofuran-2(3H)-one (4r): Colorless paste; Rf 0.2 (hexanes-ethyl acetate, 5:1); IR (ATR) 1771, 1730 cm⁻¹; ¹H NMR (CDCl₃) δ 2.81 (dd, 1H, J=5.7, 17.2 Hz), 2.96 (dd, 1H, J=8.0, 17.2 Hz), 3.68 (s, 3H), 3.80 (s, 3H), 4.43 (dd, 1H, J=5.7, 8.0 Hz), 6.57-6.62 (m, 2H), 6.85-6.93 (m, 6H), 7.11-7.15 (m, 3H), 7.49-7.53 (m, 2H); ¹³C NMR (CDCl₃) δ 37.1 (t), 51.0 (d), 55.1 (q), 55.3 (q), 92.8 (s), 112.9 (d), 113.8 (d), 127.3 (d), 127.6 (d), 127.7 (d), 128.3 (d), 128.6 (d), 132.1 (s), 135.2 (s), 138.1 (s), 158.5 (s), 159.2 (s), 175.9 (s); HRMS (ESI)

- 24 -

calcd for $C_{24}H_{23}O_4$ (M + H⁺) 375.1596; found 375.1594.

4.3.13. 5,5-Bis(4-fluorophenyl)-4-phenyldihydrofuran-2(3H)-one (4s): White solid; Rf 0.4 (hexanes-ethyl acetate, 5:1); mp 124-125 °C; IR (ATR) 1769, 1738 cm⁻¹; ¹H NMR (CDCl₃) δ 2.82 (dd, 1H, J=4.8, 17.2 Hz), 2.99 (dd, 1H, J=8.0, 17.2 Hz), 4.43 (dd, 1H, J=4.8, 8.0 Hz), 6.73-6.80 (m, 2H), 6.88-6.99 (m, 4H), 7.06-7.17 (m, 5H), 7.56-7.62 (m, 2H); ¹³C NMR (CDCl₃) δ 37.0 (t), 50.8 (d), 92.0 (s), 114.6 (d, J_{CCF}=21.6 Hz), 115.6 (d, J_{CCF}=21.6 Hz), 127.5 (d), 127.97 (d, J_{CCCF}=8.4 Hz), 127.98 (d, J_{CCCF}=8.4 Hz), 128.36 (d), 128.43 (d), 135.6 (d, J_{CCCCF}=2.4 Hz), 137.9 (s), 138.6 (s, J_{CCCCF}=3.6 Hz), 161.6 (s, J_{CF}=247.1 Hz), 162.3 (s, J_{CF}=248.3 Hz), 175.2 (s). Anal. Calcd for C₂₂H₁₆F₂O₂: C, 75.42; H, 4.60. Found: C, 75.36; H, 4.65.

4.3.14. 3'-Phenyl-3',4'-dihydro-5'H-spiro[dibenzo[a,d][7]annulene-5,2'-furan]-5'-one (4u): Colorless paste; *Rf* 0.45 (hexanes-ethyl acetate, 5:1); IR (ATR) 1775 cm⁻¹; ¹H NMR (CDCl₃) δ 2.46 (d, 1H, *J*=17.8 Hz), 2.79 (dd, 1H, *J*=8.6, 17.8 Hz), 4.07 (d, 1H, *J*=8.6 Hz), 6.90 (d, 1H, *J*=12.0 Hz), 6.92-7.05 (m, 7H), 7.14 (d, 1H, *J*=12.0 Hz), 7.19-7.24 (m, 1H), 7.33-7.37 (m, 1H), 7.42-7.47 (m, 2H), 7.74-7.79 (m, 2H); ¹³C NMR (CDCl₃) δ 36.4 (t), 46.9 (d), 91.5 (s), 122.9 (d), 123.9 (d), 126.6 (d), 126.8 (d), 127.2 (d), 127.4 (d), 127.8 (d), 128.3 (d), 128.5 (d), 128.9 (d), 129.5 (d), 130.3 (d), 131.6 (s), 131.8 (s), 133.0 (s), 136.5 (s), 140.0 (s), 140.4 (s), 176.3 (s); HRMS (ESI) calcd for C₂₄H₁₉O₂ (M + H⁺) 339.1385; found 339.1383.

4.3.15. 3-Phenyl-3,4-dihydro-5H-spiro[furan-2,9'-xanthen]-5-one (4v): White solid; Rf 0.45 (hexanes-ethyl acetate, 5:1); mp 166-167 °C; IR (ATR) 1798, 1771, 1734 cm⁻¹; ¹H NMR (CDCl₃) δ 2.99 (dd, 1H, J=8.2, 17.7 Hz), 3.24 (dd, 1H, J=12.3, 17.7 Hz), 3.79 (dd, 1H, J=8.2, 12.3 Hz), 6.40-6.46 (m, 2H), 6.81-6.86 (m, 1H), 6.95-7.02 (m, 2H), 7.05-7.16 (m, 3H), 7.20-7.41 (m, 4H), 7.67-7.72 (m, 1H); ¹³C NMR (CDCl₃) δ 33.4 (t), 58.0 (d), 83.6 (s), 116.2 (d), 116.5 (d), 119.9 (s), 123.1 (d), 123.5 (s), 124.1 (d), 124.5 (d), 124.7 (d), 127.5 (d), 127.8 (d), 127.9 (d), 129.5 (d), 129.6 (d), 133.5 (s), 150.3 (s), 150.7 (s), 175.7 (s). Anal. Calcd for C₂₂H₁₆O₃: C, 80.47; H, 4.91. Found: C, 80.46; H, 4.94.

4.3.16. 4-(4-Methoxyphenyl)-5,5-diphenyldihydrofuran-2(3H)-one (**4**w): White solid; *Rf* 0.3 (hexanes-ethyl acetate, 5:1); mp 131-132 °C; IR (ATR) 1786, 1769 cm⁻¹; ¹H NMR (CDCl₃) δ 2.76 (dd, 1H, *J*=5.4, 17.3 Hz), 2.96 (dd, 1H, *J*=8.0, 17.3 Hz), 3.72 (s, 3H), 4.44 (dd, 1H, *J*=5.4, 8.0 Hz), 6.64-6.68 (m, 2H), 6.81-6.85 (m, 2H), 7.02-7.13 (m, 5H), 7.30-7.34 (m, 1H), 7.36-7.41 (m, 2H), 7.61-7.65 (m, 2H); ¹³C NMR (CDCl₃) δ 37.4 (t), 50.2 (d), 55.0 (q), 92.8 (s), 113.6 (d), 126.0 (d), 126.2 (d), 127.1 (d), 127.6 (d), 128.0 (d), 128.5 (d), 129.5 (d), 130.1 (s), 139.8 (s), 143.1 (s), 158.5 (s), 175.8 (s). Anal. Calcd for C₂₃H₂₀O₃: C, 80.21; H, 5.85. Found: C, 80.26; H, 5.82.

4.3.17. 4-(4-Fluorophenyl)-5,5-diphenyldihydrofuran-2(3H)-one (4x): White solid; *Rf* 0.35 (hexanes-ethyl acetate, 5:1); mp 154-156 °C; IR (ATR) 1771 cm⁻¹; ¹H NMR (CDCl₃) δ 2.75 (dd, 1H, *J*=4.5, 17.5 Hz), 2.99 (dd, 1H, *J*=8.0, 17.5 Hz), 4.48 (dd, 1H, *J*=4.5, 8.0 Hz), 6.77-6.84 (m, 2H), 6.87-6.93 (m, 2H), 7.01-7.12 (m, 5H), 7.30-7.35 (m, 1H), 7.37-7.42 (m, 2H), 7.60-7.65 (m, 2H); ¹³C NMR (CDCl₃) δ 37.5 (t), 50.1 (d), 92.8 (s), 115.2 (d, *J*_{CCF}=21.6 Hz), 126.0 (d), 126.1 (d), 127.3 (d), 127.8 (d), 128.2 (d), 128.7 (d), 130.0 (d, *J*_{CCCF}=8.4 Hz), 134.3 (s, *J*_{CCCCF}=3.6 Hz), 139.8 (s), 142.8 (s), 161.8 (s, *J*_{CF}=247.1 Hz), 175.5 (s). Anal. Calcd for C₂₂H₁₇FO₂: C, 79.50; H, 5.16. Found: C, 79.55; H, 5.17.

4.3.18. 4-(*Benzo[d]*[1,3]*dioxol-5-yl*)-5,5-*diphenyldihydrofuran-2(3H)-one* (**4**y): White solid; *Rf* 0.25 (hexanes-ethyl acetate, 5:1); mp 198-200 °C; IR (ATR) 1763 cm⁻¹; ¹H NMR (CDCl₃) δ 2.72 (dd, 1H, *J*=5.0, 17.5 Hz), 2.95 (dd, 1H, *J*=8.0, 17.5 Hz), 4.41 (dd, 1H, *J*=5.0, 8.0 Hz), 5.85-5.87 (m, 2H), 6.34 (d, 1H, *J*=1.7 Hz), 6.48 (dd, 1H, *J*=1.7, 8.0 Hz), 6.59 (d, 1H, *J*=8.0 Hz), 7.07-7.15 (m, 5H), 7.29-7.34 (m, 1H), 7.36-7.41 (m, 2H), 7.60-7.63 (m, 2H); ¹³C NMR (CDCl₃) δ 37.5 (t), 50.7 (d), 92.8 (d), 101.0 (t), 107.9 (d), 108.6 (d), 122.0 (d), 125.9 (d), 126.2 (d), 127.2 (d), 127.7 (d), 128.1 (d), 128.6 (d), 132.1 (s), 139.8 (s), 143.1 (s), 146.6 (s), 147.5 (s), 175.6 (s). Anal. Calcd for C₂₃H₁₈O₄: C, 77.08; H, 5.06. Found: C, 77.02; H, 5.06.

4.3.19. 4-(*Naphthalen-2-yl*)-5,5-*diphenyldihydrofuran-2*(3*H*)-one (4z): White solid; *Rf* 0.35 (hexanes-ethyl acetate, 5:1); mp 213-215 °C; IR (ATR) 1767 cm⁻¹; ¹H NMR (CDCl₃) δ 2.88 (dd, 1H,

J=5.2, 17.6 Hz), 3.06 (dd, 1H, *J*=8.2, 17.6 Hz), 4.66 (dd, 1H, *J*=5.2, 8.2 Hz), 6.92-6.96 (m, 1H), 7.00-7.05 (m, 3H), 7.07-7.12 (m, 2H), 7.31-7.36 (m, 1H), 7.38-7.46 (m, 4H), 7.49 (brs, 1H), 7.56 (d, 1H, *J*=8.6 Hz), 7.67-7.73 (m, 4H); ¹³C NMR (CDCl₃) δ 37.5 (t), 51.2 (d), 92.8 (s), 125.97 (d), 126.01 (d), 126.1 (d), 126.16 (d), 126.21 (d), 127.2 (d), 127.4 (d), 127.6 (d), 127.9 (d), 128.1 (d), 128.6 (d), 132.3 (s), 132.9 (s), 135.9 (s), 139.8 (s), 143.2 (s), 175.5 (s). Anal. Calcd for C₂₆H₂₀O₂: C, 85.69; H, 5.53. Found: C, 85.73; H, 5.57.

4.3.20. 5-Methyl-5-(naphthalen-2-yl)dihydrofuran-2(3H)-one (**6***f*): Colorless paste; *Rf* 0.25 (hexanes-ethyl acetate, 5:1); IR (ATR) 1761 cm⁻¹; ¹H NMR (CDCl₃) δ 1.81 (s, 3H), 2.44-2.71 (m, 4H), 7.41-7.53 (m, 3H), 7.81-7.88 (m, 4H); ¹³C NMR (CDCl₃) δ 28.6 (t), 28.9 (q), 35.6 (t), 86.7 (s), 122.2 (d), 122.3 (d), 126.0 (d), 126.3 (d), 127.3 (d), 127.9 (d), 128.3 (d), 132.3 (s), 132.6 (s), 141.2 (s), 176.3 (S); HRMS (ESI) calcd for C₁₅H₁₅O₂ (M + H⁺) 227.1072; found 227.1069.

4.3.21. 5-Isopropyl-5-phenyldihydrofuran-2(3H)-one (6i): Colorless paste; *Rf* 0.2 (hexanes-ethyl acetate, 10:1); IR (ATR) 1765 cm⁻¹; ¹H NMR (CDCl₃) δ 0.86 (d, 3H *J*=6.9 Hz), 0.92 (d, 3H *J*=6.9 Hz), 2.11-2.19 (m, 1H), 2.36-2.44 (m, 1H), 2.48-2.58 (m, 3H), 7.27-7.38 (m, 5H); ¹³C NMR (CDCl₃) δ 16.7 (q), 17.1 (q), 28.7 (t), 31.8 (t), 37.9 (d), 91.8 (s), 125.4 (d), 127.2 (d), 127.8 (d), 141.3 (s), 176.4 (S); HRMS (ESI) calcd for C₁₃H₁₇O₂ (M + H⁺) 205.2729; found 205.2727.

4.3.22. 4-Hydroxy-4,4-diphenylbutanenitrile (**9***a*): Colorless paste; *Rf* 0.3 (hexanes-ethyl acetate, 5:1); IR (ATR) 3447, 2249 cm⁻¹; ¹H NMR (CDCl₃) δ 2.12 (s, 1H), 2.29-2.34 (m, 2H), 2.65-2.71 (m, 2H), 7.26-7.31 (m, 2H), 7.32-7.39 (m, 8H); ¹³C NMR (CDCl₃) δ 12.1 (t), 37.6 (t), 77.4 (s), 120.4 (s), 125.9 (d), 127.5 (d), 128.5 (d), 145.2 (s); HRMS (ESI) calcd for C₁₆H₁₆NO (M + H⁺) 238.1232; found 238.1230.

4.3.23. $(1R^*, 5R^*)$ -1-Phenyl-2-oxabicyclo[3.2.0]heptan-3-one (12a): Colorless paste; *Rf* 0.3 (hexanes-ethyl acetate, 5:1); IR (ATR) 1771 cm⁻¹; ¹H NMR (CDCl₃) δ 1.86-1.96 (m, 1H), 2.35-2.44 (m, 1H), 2.56-2.65 (m, 2H), 2.67-2.75 (m, 1H), 2.81 (dd, 1H, *J*=8.6, 18.3 Hz), 3.25-3.31 (m, 1H), 7.30-7.42 (m, 5H); ¹³C NMR (CDCl₃) δ 21.8 (t), 33.4 (t), 36.2 (t), 40.2 (d), 90.4 (s), 124.5 (d),

- 27 -

128.0 (d), 128.5 (d), 140.6 (s), 177.3 (s); HRMS (ESI) calcd for $C_{12}H_{13}O_2$ (M + H⁺) 189.0916; found 189.0915.

4.3.24. Ethyl 2-(($1R^{*},2S^{*}$)-2-hydroxy-2-phenylcyclobutyl)acetate (**13a**): Colorless paste; *Rf* 0.2 (hexanes-ethyl acetate, 5:1); IR (ATR) 3426, 1730, 1713 cm⁻¹; ¹H NMR (CDCl₃) δ 1.16 (t, 3H, *J*=7.2 Hz), 1.44-1.53 (m, 1H), 1.88-2.01 (m, 2H), 2.08-2.18 (m, 1H), 2.31-2.41 (m, 1H), 2.63-2.71 (m, 1H), 2.94-3.06 (m, 2H), 3.97-4.07 (m, 2H), 7.25-7.47 (m, 5H); ¹³C NMR (CDCl₃) δ 14.1 (q), 19.2 (t), 34.4 (t), 36.0 (t), 45.0 (d), 60.3 (t), 78.1 (s), 125.6 (d), 127.2 (d), 128.2 (d), 142.3 (s), 173.1 (s); HRMS (ESI) calcd for C₁₄H₁₉O₃ (M + H⁺) 235.1334 found 235.1332.

4.3.25. *Ethyl* 2-(($1R^{*},2S^{*}$)-2-hydroxy-2-phenylcyclopentyl)acetate (**13b**): Colorless paste; *Rf* 0.25 (hexanes-ethyl acetate, 5:1); IR (ATR) 3460, 1730, 1713 cm⁻¹; ¹H NMR (CDCl₃) δ 1.16 (t, 3H, *J*=7.3 Hz), 1.44-1.54 (m, 1H), 1.82-2.15 (m, 6H), 2.28-2.37 (m, 1H), 2.56-2.66 (m, 1H), 3.12 (brs, 1H), 4.00 (q, 2H, *J*=7.3 Hz), 7.22-7.27 (m, 1H), 7.30-7.40 (m, 4H); ¹³C NMR (CDCl₃) δ 14.0 (q), 21.9 (t), 30.9 (t), 36.6 (t), 39.8 (t), 48.2 (d), 60.4 (t), 84.1 (s), 126.0 (d), 126.8 (d), 127.9 (d), 144.8 (s), 173.7 (s); HRMS (ESI) calcd for C₁₅H₂₁O₃ (M + H⁺) 249.1491; found 249.1489.

4.3.26. Ethyl 2-(($1R^{*},2S^{*}$)-2-hydroxy-2-phenylcyclohexyl)acetate (13c): Colorless paste; *Rf* 0.3 (hexanes-ethyl acetate, 5:1); IR (ATR) 3495, 1730, 1717 cm⁻¹; ¹H NMR (CDCl₃) δ 1.15 (t, 3H, *J*=7.3 Hz), 1.42-1.59 (m, 3H), 1.66-1.91 (m, 5H), 2.04-2.19 (m, 2H), 2.23 (dd, 1H, *J*=10.5, 15.5 Hz), 2.46-2.53 (m, 1H), 3.92-3.99 (m, 2H), 7.23-7.28 (m, 1H), 7.30-7.37 (m, 2H), 7.45-7.51 (m, 2H); ¹³C NMR (CDCl₃) δ 14.1 (q), 20.1 (t), 21.4 (t), 25.7 (t), 32.5 (t), 34.8 (t), 41.7 (d), 60.2 (t), 74.5 (s), 125.7 (d), 127.2 (d), 128.2 (d), 146.8 (s), 172.9 (s); HRMS (ESI) calcd for C₁₆H₂₃O₃ (M + H⁺) 263.1647; found 263.1646.

4.3.27. *Ethyl* (*E*)-9-hydroxy-9-phenylnon-2-enoate (*iii*): Colorless paste; *Rf* 0.25 (hexanes-ethyl acetate, 5:1); IR (ATR) 1717, 1699, 1651 cm⁻¹; ¹H NMR (CDCl₃) δ 1.24-1.49 (m, 6H), 1.28 (t, 3H, *J*=7.2 Hz), 1.66-1.74 (m, 1H), 1.76-1.85 (m, 1H), 2.14-2.20 (m, 2H), 4.18 (q, 2H, J=7.2Hz), 4.66 (dd, 1H, *J*=5.8, 7.5 Hz), 5.77-5.81 (m, 1H), 6.94 (dt, 1H, *J*=6.9, 15.5 Hz), 7.25-7.30 (m, 1H),

- 28 -

7.32-7.38 (m, 4H); ¹³C NMR (CDCl₃) δ 14.2 (q), 25.5 (t), 27.8 (t), 28.9 (t), 32.0 (t), 38.8 (t), 60.1 (t), 74.4 (d), 121.2 (d), 125.8 (d), 127.4 (d), 128.4 (d), 144.8 (s), 149.3 (d), 166.8 (s); HRMS (ESI) calcd for C₁₇H₂₅O₃ (M + H⁺) 277.1804; found 277.1803.

4.3.28. Ethyl (E)-9-oxo-9-(4-(trimethylsilyl)phenyl)non-2-enoate (iv): Colorless paste; Rf 0.6 (hexanes-ethyl acetate, 5:1); IR (ATR) 1717, 1684, 1653 cm⁻¹; ¹H NMR (CDCl₃) δ –0.29 (s, 9H), 1.29 (t, 3H, *J*=7.2 Hz), 1.38-1.46 (m, 2H), 1.48-1.56 (m, 2H), 1.71-1.79 (m, 2H), 2.19-2.25 (m, 2H), 2.96 (t, 2H, *J*=7.3 Hz), 4.18 (q, 2H, *J*=7.2Hz), 5.81 (d, 1H, *J*=15.6 Hz), 6.92-6.99 (m, 1H), 7.60-7.64 (m, 2H), 7.89-7.92 (m, 2H); ¹³C NMR (CDCl₃) δ –1.4 (q), 14.2 (q), 24.0 (t), 27.8 (t), 28.8 (t), 31.9 (t), 38.3 (t), 60.1 (t), 121.4 (d), 126.9 (d), 133.5 (d), 137.0 (s), 146.9 (s), 149.0 (d), 166.6 (s), 200.4 (s); HRMS (ESI) calcd for C₂₀H₃₀O₃Si (M + H⁺) 347.2042; found 347.2038.

4.4. Typical procedure of electroreductive coupling of 14 with 2a

A 0.3 M solution of Et₄NOTs in DMF (15 mL) was placed in the cathodic chamber of a divided cell (40 mL beaker, 3 cm diameter, 6 cm height) equipped with a platinum cathode (5 X 5 cm²), a platinum anode (2 X 1 cm²), and a ceramic cylindrical diaphragm (1.5 cm diameter). A 0.3 M solution of Et₄NOTs in DMF (4 mL) was placed in the anodic chamber (inside the diaphragm). Aldimine **14a** (211 mg, 1.0 mmol), methyl acrylate (**2a**) (0.45 mL, 5.0 mmol), TMSCl (0.64 mL, 5.0 mmol), and TEA (0.70 mL, 5.0 mmol) were added to the cathodic chamber. After 300 C (3 *F*/mol for **14a**) of electricity was passed at a constant current of 200 mA at 25 °C under nitrogen atmosphere, the catholyte was poured into water (50 mL) and the aqueous solution was extracted with ether (20 mL X 3). After removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel (hexanes-EtOAc) to give **15a** (188 mg) in 63% yield. Compounds **15a**,⁷ **19a**,⁷ and **19c**⁷ were known.

4.4.1. *Methyl* 4-(4-chlorophenyl)-4-((4-methoxyphenyl)amino)butanoate (**15b**): Colorless paste; *Rf* 0.3 (hexane-ethyl acetate, 5:1); IR (neat) 3383, 1732, 1688 cm⁻¹; ¹H NMR (CDCl₃) δ 2.02-2.15 (m, 2H), 2.37-2.44 (m, 2H), 3.67 (s, 3H), 3.69 (s, 3H), 4.28 (t, 1H, *J*=6.9 Hz), 6.42-6.46 (m, 2H), 6.66-6.70 (m, 2H), 7.25-7.30 (m, 4H); ¹³C NMR (CDCl₃) δ 30.6 (t), 33.0 (t), 51.4 (q), 55.4 (q), 57.6

(d), 114.4 (d), 114.5 (d), 127.6 (d), 128.5 (d), 132.4 (s), 140.9 (s), 141.9 (s), 151.8 (s), 173.6 (s); HRMS (ESI) calcd for $C_{18}H_{21}CINO_3$ (M + H⁺) 334.1210; found 334.1207.

4.4.2. *Methyl* 4-(4-methoxyphenyl)-4-((4-methoxyphenyl)amino)butanoate (**15***c*): Colorless paste; *Rf* 0.25 (hexane-ethyl acetate, 5:1); IR (neat) 3385, 1734, 1684 cm⁻¹; ¹H NMR (CDCl₃) δ 2.00-2.18 (m, 2H), 2.38 (t, 2H, *J*=7.3H_Z), 3.66 (s, 3H), 3.69 (s, 3H), 3.78 (s, 3H), 4.25 (t, 1H, *J*=6.9 Hz), 6.45-6.49 (m, 2H), 6.66-6.70 (m, 2H), 6.83-6.86 (m, 2H), 7.21-7.25 (m, 2H); ¹³C NMR (CDCl₃) δ 30.8 (t), 33.1 (t), 51.4 (q), 55.0 (q), 55.5 (q), 57.6 (d), 114.4 (d), 114.5 (d), 127.3 (d), 130.1 (d), 135.1 (s), 141.3 (s), 151.7 (s), 158.5 (s), 173.8 (s); HRMS (ESI) calcd for C₁₉H₂₄NO₄ (M + H⁺) 330.1705; found 330.1703.

4.4.3 Methyl 4-(2-methoxyphenyl)-4-((4-methoxyphenyl)amino)butanoate (15d): Colorless paste; *Rf* 0.3 (hexane-ethyl acetate, 5:1); IR (neat) 3385, 1734, 1686 cm⁻¹; ¹H NMR (CDCl₃) δ 2.06-2.21 (m, 2H), 2.33-2.48 (m, 2H), 3.64 (s, 3H), 3.68 (s, 3H), 3.87 (s, 3H), 4.65 (t, 1H, *J*=6.9 Hz), 6.48-6.53 (m, 2H), 6.65-6.69 (m, 2H), 6.85-6.89 (m, 2H), 7.16-7.21 (m, 1H), 7.22-7.25 (m, 1H); ¹³C NMR (CDCl₃) δ 31.1 (t), 31.2 (t), 51.3 (q), 53.1 (d), 55.1 (q), 55.4 (q), 110.3 (d), 114.4 (d), 114.5 (d), 120.6 (d), 127.1 (d), 127.8 (d), 130.6 (s), 141.5 (s), 151.6 (s), 156.8 (s), 174.0 (s); HRMS (ESI) calcd for C₁₉H₂₄NO₄ (M + H⁺) 330,1705; found 330.1703.

4.4.4. Methyl 4-(4-fluorophenyl)-4-((4-methoxyphenyl)amino)butanoate (**15e**): Colorless paste; *Rf* 0.3 (hexane-ethyl acetate, 5:1); IR (neat) 3371, 1736, 1686 cm⁻¹; ¹H NMR (CDCl₃) δ 2.01-2.16 (m, 2H), 2.37-2.43 (m, 2H), 3.67 (s, 3H), 3.69 (s, 3H), 4.29 (t, 1H, *J*=6.9 Hz), 6.42-6.47 (m, 2H), 6.66-6.70 (m, 2H), 6.97-7.02 (m, 2H), 7.27-7.31 (m, 2H); ¹³C NMR (CDCl₃) δ 30.7 (t), 33.2 (t), 51.5 (q), 55.5 (q), 57.6 (d), 114.5 (d), 114.6 (d), 115.3 (d, *J*_{CCF}=21.1 Hz), 127.8 (d, *J*_{CCCF}=8.6 Hz), 139.0 (s, *J*_{CCCCF}=2.9 Hz), 141.1 (s), 151.9 (s), 161.7 (s, *J*_{CF}=243.8 Hz), 173.7 (s); HRMS (ESI) calcd for C₁₈H₂₁FNO₃ (M + H⁺) 318.1505; found 318.1502.

4.4.5. *Methyl* 4-(4-cyanophenyl)-4-((4-methoxyphenyl)amino)butanoate (**15f**): Colorless paste; *Rf* 0.4 (hexane-ethyl acetate, 2:1); IR (neat) 3374, 2226, 1728 cm⁻¹; ¹H NMR (CDCl₃) δ 2.07-2.12 (m, 2H), 2.39-2.51 (m, 2H), 3.68 (s, 3H), 3.69 (s, 3H), 4.37 (t, 1H, *J*=6.7 Hz), 6.38-6.42 (m, 2H),

6.66-6.70 (m, 2H), 7.45-7.48 (m, 2H), 7.60-7.63 (m, 2H); ¹³C NMR (CDCl₃) δ 30.6 (t), 32.8 (t), 51.6 (q), 55.5 (q), 58.0 (d), 110.7 (s), 114.3 (d), 114.6 (s), 118.7 (s), 127.1 (d), 132.4 (d), 140.9 (s), 140.5 (s), 149.3 (s), 152.0 (d), 173.5 (s); HRMS (ESI) calcd for C₁₉H₂₁N₂O₃ (M + H⁺) 325.1552; found 325.1550.

4.4.6. *Methyl* 4-((4-methoxyphenyl)amino)-4-(naphthalen-1-yl)butanoate (**15g**): White solid; *Rf* 0.35 (hexane-ethyl acetate, 5:1); mp 96-98 °C; IR (neat) 3408, 1734, 1686 cm⁻¹; ¹H NMR (CDCl₃) δ 2.10-2.20 (m, 1H), 2.32-2.41 (m, 1H), 2.45-2.66 (m, 2H), 3.66 (s, 3H), 3.67 (s, 3H), 5.16-5.22 (m, 1H), 6.41-6.50 (m, 2H), 6.61-6.67 (m, 2H), 7.40 (t, 1H, *J*=7.8 Hz), 7.49-7.53 (m, 1H), 7.55-7.61 (m, 3H), 7.75 (d, 1H, *J*=8.3Hz), 7.90 (d, 1H, *J*=8.3Hz), 8.22 (d, 1H, *J*=8.3Hz); ¹³C NMR (CDCl₃) δ 30.8 (t), 32.0 (t), 51.4 (q), 53.6 (d), 55.4 (q), 114.1 (d), 114.6 (d), 122.3 (d), 122.7 (d), 125.3 (d), 125.5 (d), 126.0 (d), 127.4 (d), 129.0 (d), 130.8 (s), 133.9 (s), 138.4 (s), 141.1 (s), 151.6 (s), 173.9 (s). Anal. Calcd for C₂₂H₂₃NO₃: C, 75.62; H, 6.63; N, 4.01. Found: C, 75.58; H, 6.62; N, 3.91.

4.4.7. *Methyl* 4-((4-methoxyphenyl)amino)-4-(naphthalen-2-yl)butanoate (**15h**): White solid; *Rf* 0.25 (hexane-ethyl acetate, 2:1); mp 121-123 °C; IR (ATR) 3352, 1724 cm⁻¹; ¹H NMR (CDCl₃) δ 2.13-2.16 (m, 2H), 2.44 (t, 2H, *J*=7.3 Hz), 3.65 (s, 3H), 3.66 (s, 3.H), 4.08 (brs, 1H), 4.46 (t, 1H, *J*=6.8 Hz), 6.49-6.53 (m, 2H), 6.64-6.68 (m, 2H), 7.41-7.48 (m, 3H), 7.76-7.83 (m, 4H); ¹³C NMR (CDCl₃) δ 30.8 (t), 33.0 (t), 51.4 (q), 55.4 (q), 58.4 (d), 114.5 (d), 114.6 (d), 124.4 (d), 125.1 (d), 125.4 (d), 125.9 (d), 127.5 (d), 127.6 (d), 128.4 (d), 132.6 (s), 133.2 (s), 140.7 (s), 141.3 (s), 151.8 (s), 173.8 (s). Anal. Calcd for C₂₂H₂₃NO₃: C, 75.62; H, 6.63; N, 4.01. Found: C, 75.56; H, 6.66; N, 3.94.

4.4.8. Methyl 4-(3,4-dimethoxyphenyl)-4-((4-methoxyphenyl)amino)butanoate (15i): Pale yellow paste; *Rf* 0.3 (hexane-ethyl acetate, 2:1); IR (neat) 1728 cm⁻¹; ¹H NMR (CDCl₃) δ 2.02-2.10 (m, 1H), 2.11-2.19 (m, 1H), 2.39 (t, 2H, *J*=7.2 Hz), 3.66 (s, 3H), 3.69 (s, 3H), 3.74 (brs, 1H), 3.85 (s, 3H), 3.86 (s, 3H), 4.23 (t, 1H, *J*=6.8 Hz), 6.47-6.51 (m, 2H), 6.67-6.71 (m, 2H), 6.79-6.82 (m, 1H), 6.84-6.88 (m, 2H); ¹³C NMR (CDCl₃) δ 30.8 (t), 33.1 (t), 51.5 (q), 55.5 (q), 55.6 (q), 58.2 (d), 109.3 (d), 111.0 (d), 114.47 (d), 114.52 (d), 118.3 (d), 135.7 (s), 141.3 (s), 147.8 (s), 149.0 (s), 151.8 (s),

173.8 (s); HRMS (ESI) calcd for $C_{20}H_{26}NO_5$ (M + H⁺) 360.1811; found 360.1808.

4.4.9. *Methyl* 4-((4-methoxyphenyl)amino)-4-(pyridin-3-yl)butanoate (**15***j*): Pale yellow paste; *Rf* 0.35 (hexane-ethyl acetate, 1:2); ¹H NMR (CDCl₃) δ 2.06-2.20 (m, 2H), 2.45 (t, 2H, *J*=7.0 Hz), 3.67 (s, 3H), 3.69 (s, 3H), 3.99 (brs, 1H), 4.37 (t, 1H, *J*=7.0 Hz), 6.43-6.47 (m, 2H), 6.66-6.70 (m, 2H), 7.24 (dd, 1H, *J*=4.7, 8.0 Hz), 7.64-7.67 (m, 1H), 8.48-8.50 (m, 1H), 8.60 (d, 1H, *J*=1.9 Hz); ¹³C NMR (CDCl₃) δ 30.8 (t), 33.0 (t), 51.8 (q), 55.6 (q), 56.3 (d), 114.6 (d), 114.8 (d), 123.6 (d), 133.9 (d), 138.7 (s), 140.7 (s), 148.6 (d), 148.7 (d), 152.2 (s), 173.7 (s); HRMS (ESI) calcd for C₁₇H₂₁N₂O₃ (M + H⁺) 301.1552; found 301.1550.

4.4.10. 4-(4-Chlorophenyl)-4-((4-methoxyphenyl)amino)butanenitrile (**19b**): Pale yellow paste; *Rf* 0.55 (hexane-ethyl acetate, 2:1); IR (neat) 3366, 2245 cm⁻¹; ¹H NMR (CDCl₃) δ 2.14-2.29 (m, 2H), 2.45-2.52 (m, 1H), 2.58-2.65 (m, 1H), 3.82 (s, 3H), 4.53 (t, 1H, *J*=7.1 Hz), 6.60-6.64 (m, 2H), 6.81-6.84 (m, 2H), 7.36-7.40 (m, 2H), 7.42-7.45 (m, 2H); ¹³C NMR (CDCl₃) δ 14.2 (t), 33.3 (t), 55.4 (q), 56.8 (d), 114.6 (d), 114.9 (d), 119.3 (s), 127.5 (d), 128.8 (d), 132.9 (s), 140.2 (s), 140.5 (s), 152.2 (s); HRMS (ESI) calcd for C₁₇H₁₈ClN₂O (M + H⁺) 301.1108; found 301.1105.

4.4.11. 4-(2-Methoxyphenyl)-4-((4-methoxyphenyl)amino)butanenitrile (**19d**): Pale yellow paste; *Rf* 0.55 (hexane-ethyl acetate, 2:1); IR (neat) 3368, 2245 cm⁻¹; ¹H NMR (CDCl₃) δ 2.09-2.19 (m, 2H), 2.39-2.50 (m, 2H), 3.69 (s, 3H), 3.89 (s, 3H), 4.68 (t, 1H, *J*=6.9 Hz), 6.53-6.57 (m, 2H), 6.67-6.71 (m, 2H), 6.87-6.91 (m, 2H), 7.19-7.24 (m, 2H); ¹³C NMR (CDCl₃) δ 14.4 (t), 31.6 (t), 53.3 (d), 55.1 (q), 55.4 (q), 110.5 (d), 114.5 (d), 114.8 (d), 119.7 (s), 120.6 (d), 127.2 (d), 128.3 (d), 129.2 (s), 140.9 (s), 152.0 (s), 156.8 (s); HRMS (ESI) calcd for C₁₈H₂₁N₂O₂ (M + H⁺) 297.1603; found 297.1601.

4.4.12. 4-(4-Fluorophenyl)-4-((4-methoxyphenyl)amino)butanenitrile (**19e**): Pale yellow paste; *Rf* 0.5 (hexane-ethyl acetate, 2:1); IR (neat) 3368, 2245 cm⁻¹; ¹H NMR (CDCl₃) δ 2.03-2.19 (m, 2H), 2.31-2.39 (m, 1H), 2.44-2.51 (m, 1H), 3.70 (s, 3H), 4.41 (t, 1H, *J*=6.9 Hz), 6.50-6.54 (m, 2H), 6.69-6.72 (m, 2H), 7.00-7.05 (m, 2H), 7.27-7.32 (m, 2H); ¹³C NMR (CDCl₃) δ 14.3 (t), 33.5 (t), 55.5 (q), 56.9 (d), 114.6 (d), 115.0 (d), 115.7 (d, *J*_{CCF}=21.7 Hz), 119.3 (s), 127.8 (d, *J*_{CCCF}=7.7 Hz),

- 32 -

137.6 (s), 140.3 (s), 152.3 (s), 162.0 (s, J_{CF} =245.9 Hz); HRMS (ESI) calcd for C₁₇H₁₈FN₂O (M + H⁺) 285.1403; found 285.1400.

4.4.13. 4-(3-Cyano-1-((4-methoxyphenyl)amino)propyl)benzonitrile (**19f**): Pale yellow paste; *Rf* 0.3 (hexane-ethyl acetate, 2:1); IR (neat) 3368, 2228 cm⁻¹; ¹H NMR (CDCl₃) δ 2.08-2.15 (m, 2H), 2.39-2.46 (m, 1H), 2.52-2.59 (m, 1H), 3.69 (s, 3H), 4.50 (t, 1H, *J*=7.0 Hz), 6.46-6.50 (m, 2H), 6.68-6.72 (m, 2H), 7.44-7.47 (m, 2H), 7.62-7.65 (m, 2H); ¹³C NMR (CDCl₃) δ 14.4 (t), 33.2 (t), 55.5 (q), 57.2 (d), 111.2 (s), 114.7 (d), 114.9 (d), 118.5 (s), 119.0 (s), 127.0 (d), 132.6 (d), 139.8 (s), 147.9 (s), 152.4 (s); HRMS (ESI) calcd for C₁₈H₁₈N₃O (M + H⁺) 292.1450; found 292.1447.

4.4.14. 4-((4-Methoxyphenyl)amino)-4-(naphthalen-1-yl)butanenitrile (**19**g): Pale yellow paste; *Rf* 0.5 (hexane-ethyl acetate, 2:1); IR (neat) 3366, 2245 cm⁻¹; ¹H NMR (CDCl₃) δ 2.10-2.18 (m, 1H), 2.35-2.43 (m, 1H), 2.45-2.52 (m, 1H), 2.60-2.67 (m, 1H), 3.67 (s, 3H), 3.93 (brs, 1H), 5.29 (dd, 1H, *J*=4.7, 8.4 Hz), 6.50-6.54 (m, 2H), 6.66-6.69 (m, 2H), 7.41 (dd, 1H, *J*=7.4, 8.0 Hz), 7.51-7.56 (m, 2H), 7.59-7.63 (m, 1H), 7.78 (d, 1H, *J*=8.2 Hz), 7.90-7.94 (m, 1H), 8.17 (d, 1H, *J*=8.5 Hz); ¹³C NMR (CDCl₃) δ 14.3 (t), 32.6 (t), 52.8 (d), 55.3 (q), 114.4 (d), 114.5 (d), 119.6 (s), 121.8 (d), 122.6 (d), 125.4 (d), 125.5 (d), 126.4 (d), 127.8 (d), 129.0 (d), 130.5 (s), 133.8 (s), 137.0 (s), 140.5 (s), 151.9 (s); HRMS (ESI) calcd for C₂₁H₂₁N₂O (M + H⁺) 317.1654; found 317.1652.

4.4.15. 4-((4-Methoxyphenyl)amino)-4-(naphthalen-2-yl)butanenitrile (**19h**): White solid; *Rf* 0.55 (hexane-ethyl acetate, 2:1); mp 117-118 °C; IR (ATR) 3360, 2249 cm⁻¹; ¹H NMR (CDCl₃) δ 2.14-2.29 (m, 2H), 2.33-2.41 (m, 1H), 2.46-2.53 (m, 1H), 3.68 (s, 3H), 3.85 (brs, 1H), 4.59 (t, 1H, *J*=7.0 Hz), 6.56-6.60 (m, 2H), 6.67-6.71 (m, 2H), 7.42-7.51 (m, 3H), 7.78-7.79 (m, 1H), 7.80-7.86 (m, 3H); ¹³C NMR (CDCl₃) δ 14.2 (t), 33.2 (t), 55.4 (d), 57.6 (q), 114.6 (d), 114.9 (d), 119.4 (s), 123.8 (d), 125.2 (d), 125.8 (d), 126.2 (d), 127.5 (d), 127.6 (d), 128.7 (d), 132.7 (s), 133.1 (s), 139.2 (s), 140.6 (s), 152.1 (s). Anal. Calcd for C₂₁H₂₀N₂O: C, 79.72; H, 6.37; N, 8.85. Found: C, 79.75; H, 6.41; N, 8.80.

4.5. Typical procedure of cyclization of 15 to 16

To a solution of 15a (75 mg, 0.25 mmol) in THF (5 mL) was added NaH (0.25 mL, 0.25 mmol)

at 25 °C. The mixture was refluxed for 30 min and then cooled to room temperature. After the solvent was removed *in vacuo*, the residue was purified by column chromatography on silica gel (hexanes-EtOAc) to give **16a** in 85% yield. Compounds **16a**⁷ and **16c**⁷ were known.

4.5.1. 5-(4-Chlorophenyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (**16b**): White solid; *Rf* 0.15 (hexane-ethyl acetate, 2:1); mp 123-125 °C; IR (neat) 1678 cm⁻¹; ¹H NMR (CDCl₃) δ 1.90-2.01 (m, 1H), 2.56-2.80 (s, 3H), 3.71 (s, 3H), 5.15 (dd, 1H, *J*=5.5, 6.4 Hz), 6.74-6.80 (m, 2H), 7.12-7.17 (m, 2H), 7.22-7.28 (m, 4H); ¹³C NMR (CDCl₃) δ 28.8 (t), 30.8 (t), 55.1 (q), 63.5 (d), 113.8 (d), 124.1 (d), 127.4 (d), 128.9 (d), 130.6 (s), 133.3 (s), 139.8 (s), 156.8 (s), 174.4 (s). Anal. Calcd for C₁₇H₁₆ClNO₂: C, 67.66; H, 5.34; N, 4.64. Found: C, 67.73; H, 5.37; N, 4.58.

4.5.2. 5-(2-Methoxyphenyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (16d): White solid; *Rf* 0.25 (hexane-ethyl acetate, 5:1); mp 104-106 °C; IR (neat) 1697 cm⁻¹; ¹H NMR (CDCl₃) δ 1.91-2.00 (m, 1H), 2.52-2.75 (m, 3H), 3.73 (s, 3H), 3.88 (s, 3H), 5.53-5.57 (m, 1H), 6.76-6.80 (m, 2H), 6.82-6.91 (m, 2H), 7.03-7.07 (m, 1H), 7.19-7.24 (m, 1H), 7.34-7.39 (m, 2H); ¹³C NMR (CDCl₃) δ 27.0 (t), 31.1 (t), 55.2 (q), 55.3 (q), 58.8 (d), 110.6 (d), 113.8 (d), 120.6 (d), 123.3 (d), 126.4 (d), 128.6 (d), 128.9 (s), 131.5 (s), 156.4 (s), 174.9 (s). Anal. Calcd for C₁₈H₁₉NO₃: C, 72.71; H, 6.44; N, 4.71. Found: C, 72.74; H, 6.45; N, 4.61.

4.5.3. 5-(4-Fluorophenyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (**16e**): White solid; *Rf* 0.15 (hexane-ethyl acetate, 2:1); mp 105-106 °C; IR (neat) 1686 cm⁻¹; ¹H NMR (CDCl₃) δ 1.93-2.01 (m, 1H), 2.57-2.67 (m, 2H), 2.68-2.79 (m, 1H), 3.72 (s, 3H), 5.16 (dd, 1H, *J*=5.0, 7.9 Hz), 6.76-6.80 (m, 2H), 6.95-7.01 (m, 2H), 7.15-7.20 (m, 2H), 7.21-7.25 (m, 2H); ¹³C NMR (CDCl₃) δ 29.0 (t), 30.9 (t), 55.2 (q), 63.6 (d), 113.9 (d), 115.8 (d, *J*_{CCF}=21.1 Hz), 124.3 (d), 127.8 (d, *J*_{CCCF}=8.6 Hz), 130.8 (s), 137.1 (s, *J*_{CCCCF}=3.8 Hz), 156.9 (s), 162.1 (s, *J*_{CF}=246.6 Hz), 174.5 (s). Anal. Calcd for C₁₇H₁₆FNO₂: C, 71.56; H, 5.65; N, 4.91. Found: C, 71.55; H, 5.60; N, 4.79.

4.5.4. 4-(1-(4-Methoxyphenyl)-5-oxopyrrolidin-2-yl)benzonitrile (**16f**): Pale yellow paste; *Rf* 0.3 (hexane-ethyl acetate, 1:2); IR (neat) 2228, 1686 cm⁻¹; ¹H NMR (CDCl₃) δ 1.93-1.99 (m, 1H), 2.61-2.76 (s, 3H), 3.73 (s, 3H), 5.25 (dd, 1H, *J*=5.3, 7.8 Hz), 6.76-6.80 (m, 2H), 7.21-7.25 (m, 2H),

7.32-7.35 (m, 2H), 7.58-7.61 (m, 2H); ¹³C NMR (CDCl₃) δ 28.6 (t), 30.7 (t), 55.2 (q), 63.6 (d), 111.6 (s), 114.0 (d), 118.3 (s), 123.9 (d), 126.8 (d), 130.4 (s), 132.7 (d), 146.8 (s), 156.9 (s), 174.3 (s); HRMS (ESI) calcd for C₁₈H₁₇N₂O₂ (M + H⁺) 293.1290; found 293.1288.

4.5.5. 1-(4-Methoxyphenyl)-5-(naphthalen-1-yl)pyrrolidin-2-one (**16g**): Pale yellow paste; *Rf* 0.25 (hexane-ethyl acetate, 2:1); IR (neat) 1693 cm⁻¹; ¹H NMR (CDCl₃) δ 1.98-2.18 (m, 1H), 2.54-2.83 (m, 3H), 3.69 (s, 3H), 5.98 (brs, 1H), 6.72-6.76 (m, 2H), 7.29 (d, 1H, *J*=7.3Hz), 7.36 (t, 1H, *J*=7.3Hz), 7.40-7.50 (m, 2H), 7.51-7.63 (m, 2H), 7.76 (d, 1 H, *J*=8.3Hz), 7.91 (d, 1 H, *J*=8.3Hz), 8.03 (d, 1 H, *J*=8.3Hz); ¹³C NMR (CDCl₃) δ 27.2 (t), 30.8 (t), 54.8 (q), 60.0 (d), 113.5 (d), 122.0 (d), 125.1 (d), 125.6 (d), 126.2 (d), 127.8 (d), 128.9 (d), 129.7 (s), 131.5 (s), 133.9 (s), 135.5 (s), 156.0 (s), 174.4 (s); HRMS (ESI) calcd for C₂₁H₂₀NO₂ (M + H⁺) 318.1494; found 318.1492.

4.5.6. 1-(4-Methoxyphenyl)-5-(naphthalen-2-yl)pyrrolidin-2-one (**16h**): White solid; *Rf* 0.35 (hexane-ethyl acetate, 1:1); mp 143-144 °C; IR (ATR) 1695, 1684, 1672 cm⁻¹; ¹H NMR (CDCl₃) δ 2.03-2.12 (m, 1H), 2.61-2.73 (m, 2H), 2.77-2.86 (m, 1H), 3.68 (s, 3H), 5.33 (dd, 1H, *J*=4.9, 7.6 Hz), 6.71-6.77 (m, 2H), 7.29-7.37 (m, 3H), 7.43-7.49 (m, 2H), 7.64 (s, 1H), 7.73-7.83 (m, 3H); ¹³C NMR (CDCl₃) δ 28.7 (t), 30.9 (t), 55.1 (q), 64.3 (d), 113.8 (d), 123.6 (d), 124.0 (d), 125.0 (d), 126.0 (d), 126.3 (d), 127.5 (d), 128.9 (d), 131.0 (s), 132.7 (s), 133.0 (s), 138.6 (s), 156.6 (s), 174.6 (s). Anal. Calcd for C₂₁H₁₉NO₂: C, 79.47; H, 6.03; N, 4.41. Found: C, 79.43; H, 6.09; N, 4.29.

4.5.7. 5-(3,4-Dimethoxyphenyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (**16i**): Colorless paste; *Rf* 0.3 (hexane-ethyl acetate, 1:2); IR (neat) 1686 cm⁻¹; ¹H NMR (CDCl₃) δ 1.96-2.04 (m, 1H), 2.55-2.65 (m, 2H), 2.69-2.79 (m, 1H), 3.72 (s, 3H), 3.81 (s, 3H), 3.82 (s, 3H), 5.11 (dd, 1H, *J*=5.0, 7.7 Hz), 6.69 (brs, 1H), 6.72-6.80 (m, 4H), 7.23-7.28 (m, 2H); ¹³C NMR (CDCl₃) δ 29.1 (t), 31.0 (t), 55.2 (q), 55.7 (q), 55.8 (q), 64.1 (d), 108.9 (d), 111.1 (d), 113.8 (d), 118.5 (d), 124.3 (d), 131.0 (s), 133.7 (s), 148.4 (s), 149.3 (s), 156.8 (s), 174.6 (s); HRMS (ESI) calcd for C₁₉H₂₂NO₄ (M + H⁺) 328.1549; found 328.1546.

4.5.8. 1-(4-Methoxyphenyl)-5-(pyridin-3-yl)pyrrolidin-2-one (**16***j*): Pale yellow solid; *Rf* 0.3 ethyl acetate-ethanol, 10:1); mp 73-75 °C; IR (neat) 1701, 1678 cm⁻¹; ¹H NMR (CDCl₃) δ 1.96-2.05 (m,

1H), 2.62-2.81 (m, 3H), 3.72 (s, 3H), 5.23 (t, 1H, J=6.2 Hz), 6.76-6.80 (m, 2H), 7.20-7.26 (m, 3H), 7.50-7.54 (m, 1H), 8.48-8.50 (m, 1H), 8.52 (d, 1H, J=1.9 Hz); ¹³C NMR (CDCl₃) δ 28.8 (t), 30.9 (t), 55.3 (q), 61.9 (d), 114.1 (d), 123.8 (d), 124.5 (d), 130.3 (s), 133.7 (d), 136.8 (s), 148.2 (d), 149.2 (d), 157.1 (s), 174.4 (s). Anal. Calcd for C₁₆H₁₆N₂O₂: C, 71.62; H, 6.01; N, 10.44. Found: C, 71.65; H, 6.03; N, 10.38.

4.6. Typical procedure of oxidation of 16 to 17

To a solution of **16a** (53 mg, 0.2 mmol) in CH₃CN (5 mL) was added an aqueous solution (3 mL) of CAN (241 mg, 0.44 mmol) at 5 °C. After being stirred for 30 min at this temperature, the mixture was diluted with H₂O (20 mL) and extracted with ethyl acetate (20 mL x 3). After the solvent was removed *in vacuo*, the residue was purified by column chromatography on silica gel (hexanes-EtOAc) to give **17a** in 85% yield. Compounds **17a**,¹⁸ **17b**,¹⁸ **17c**,¹⁸ **17d**,¹⁹ **17e**,¹⁹ and **17j**²⁰ were known.

4.6.1. 4-(5-Oxopyrrolidin-2-yl)benzonitrile (**17***f*): White solid; *Rf* 0.5 ethyl acetate-ethanol, 10:1); white solid; mp 166-167 °C; IR (neat) 3161, 2232, 1686, 1655 cm⁻¹; ¹H NMR (CDCl₃) δ 1.90-1.99 (m, 1H), 2.40-2.53 (m, 2H), 2.61-2.69 (m, 1H), 4.82 (t, 1H, *J*=7.3 Hz), 6.04 (brs, 1H), 7.41-7.45 (m, 2H), 7.66-7.70 (m, 2H); ¹³C NMR (CDCl₃) δ 30.1 (t), 30.8 (t), 57.7 (d), 111.7 (s), 118.4 (s), 126.3 (d), 132.7 (d), 147.9 (s), 179.0 (s). Anal. Calcd for C₁₁H₁₀N₂O: C, 70.95; H, 5.41; N, 15.04. Found: C, 71.01; H, 5.45; N, 14.94.

4.6.2. 5-(*Naphthalen-1-yl)pyrrolidin-2-one* (**17***g*): White solid; *Rf* 0.25 (hexane-ethyl acetate, 1:2); mp 149-151 °C; IR (neat) 3177, 1690 cm⁻¹; ¹H NMR (CDCl₃) δ 2.03-2.11 (m, 1H), 2.40-2.51 (m, 2H), 2.79-2.87 (m, 1H), 5.55 (dd, 1H, *J*=5.5, 7.8 Hz), 6.31 (brs, 1H), 7.47 (t, 1H, *J*=7.3Hz), 7.51-7.58 (m, 3H), 7.81 (d, 1H, *J*=7.8 Hz), 7.89-7.92 (m, 1H), 7.95 (d, 1H, *J*=8.3Hz); ¹³C NMR (CDCl₃) δ 29.65 (t), 29.72 (t), 54.4 (d), 121.1 (d), 122.4 (d), 125.4 (d), 125.7 (d), 126.2 (d), 127.9 (d), 128.9 (s), 129.9 (s), 133.8 (s), 138.1 (s), 179.2 (s). Anal. Calcd for C₁₄H₁₃NO: C, 79.59; H, 6.20; N, 6.63. Found: C, 79.56; H, 6.22; N, 6.57.

4.6.3. 5-(Naphthalen-2-yl)pyrrolidin-2-one (17h): White solid; Rf 0.3 (hexane-ethyl acetate, 1:2);

mp 183-184 °C; IR (ATR) 3179, 1686 cm⁻¹; ¹H NMR (CDCl₃) δ 2.03-2.12 (m, 1H), 2.43-2.58 (m, 2H), 2.62-2.70 (m, 1H), 4.93 (t, 1H, *J*=7.2 Hz), 5.97 (brs, 1H), 7.39-7.43 (m, 1H), 7.47-7.54 (m, 2H), 7.74 (s, 1H), 7.81-7.89 (m, 3H); ¹³C NMR (CDCl₃) δ 30.2 (t), 31.0 (t), 58.1 (d), 123.6 (d), 124.2 (d), 126.1 (d), 126.5 (d), 127.7 (d), 127.8 (d), 128.9 (d), 132.9 (s), 133.2 (s), 139.8 (s), 178.6 (s). Anal. Calcd for C₁₄H₁₃NO: C, 79.59; H, 6.20; N, 6.63. Found: C, 79.61; H, 6.24; N, 6.55.

4.6.4. 5-(3,4-Dimethoxyphenyl)pyrrolidin-2-one (**17i**): Colorless paste; *Rf* 0.15 (hexane-ethyl acetate, 1:5); ¹H NMR (CDCl₃) δ 1.92-2.00 (m, 1H), 2.37-2.58 (m, 3H), 3.87 (s, 3H), 3.88 (s, 3H), 4.70 (t, 1H, *J*=7.3 Hz), 6.45 (brs, 1H), 6.80 (s, 1H), 6.84 (s, 2H); ¹³C NMR (CDCl₃) δ 30.4 (t), 31.4 (t), 55.9 (q), 56.0 (q), 57.9 (d), 108.5 (d), 111.2 (d), 117.8 (d), 134.8 (s), 148.6 (s), 149.3 (s), 178.5 (s); HRMS (ESI) calcd for C₁₂H₁₅NO₃ (M + H⁺) 222.1130; found 222.1128.

4.7. Typical procedure of transformation of 15 to 18

To a solution of **15a** (75 mg, 0.25 mmol) in CH₃CN (5 mL) was added an aqueous solution (3 mL) of CAN (302 mg, 0.55 mmol) at 5 °C. The mixture was stirred for 30 min at this temperature and then neutralized with sat. NaHCO₃ aq. To the mixture were added Na₂S₂O₃/5H₂O (62 mg, 0.25 mmol), (Boc)₂O (164 mg. 0.75 mmol), and NaHCO₃ (63 mg, 0.75 mmol). After being stirred for 1 h at 25 °C, the mixture was extracted with ethyl acetate (20 mL x 3). After the solvent was removed *in vacuo*, the residue was purified by column chromatography on silica gel (hexanes-EtOAc) to give **18a** in 70% yield. Compounds **18f**²¹ and **20a**⁷ were known.

4.7.1. *Methyl* 4-((*tert-butoxycarbonyl*)*amino*)-4-*phenylbutanoate* (**18a**): White solid; *Rf* 0.3 (hexane-ethyl acetate, 5:1); mp 81-82 °C; IR (ATR) 3385, 1732, 1684 cm⁻¹; ¹H NMR (CDCl₃) δ 1.41 (brs, 9H), 2.00-2.16 (m, 2H), 2.28-2.43 (m, 2H), 3.66 (s, 3H), 4.60-4.70 (m, 1H), 4.91 (brs, 1H), 7.24-7.29 (m, 3H), 7.32-7.36 (m, 2H); ¹³C NMR (CDCl₃) δ 28.1 (q), 30.8 (t), 31.5 (t), 51.4 (q), 54.2 (d), 79.1 (s), 126.1 (d), 127.1 (d), 128.4 (d), 142.0 (s), 155.1 (s), 173.5 (s). Anal. Calcd for C₁₆H₂₃NO₄: C, 65.51; H, 7.90; N, 4.77. Found: C, 65.56; H, 7.90; N, 4.65.

4.7.2. *Methyl* 4-((*tert-butoxycarbonyl*)*amino*)-4-(4-*chlorophenyl*)*butanoate* (**18b**): White solid; *Rf* 0.3 (hexane-ethyl acetate, 5:1); mp 110-112 °C; IR (ATR) 3389, 1730, 1684 cm⁻¹; ¹H NMR (CDCl₃)

δ 1.41 (brs, 9H), 1.96-2.12 (m, 2H), 2.29-2.42 (m, 2H), 3.67 (s, 3H), 4.56-4.69 (m, 1H), 4.93 (brs, 1H), 7.19-7.23 (m, 2H), 7.29-7.32 (m, 2H); ¹³C NMR (CDCl₃) δ 28.3 (q), 30.7 (t), 31.3 (t), 51.6 (q), 53.7 (d), 79.4 (s), 127.5 (d), 128.6 (d), 132.8 (s), 140.8 (s), 155.1 (s), 173.5 (s). Anal. Calcd for C₁₆H₂₂ClNO₄: C, 58.63; H, 6.76; N, 4.27. Found: C, 58.65; H, 6.77; N, 4.20.

4.7.3. *Methyl 4-((tert-butoxycarbonyl)amino)-4-(4-methoxyphenyl)butanoate (18c)*: White solid; *Rf* 0.3 (hexane-ethyl acetate, 5:1); mp 94-95 °C; IR (ATR) 3374, 1732, 1682 cm⁻¹; ¹H NMR (CDCl₃) δ 1.41 (brs, 9H), 1.97-2.17 (m, 2H), 2.26-2.41 (m, 2H), 3.65 (s, 3H), 3.79 (s, 3H), 4.53-4.65 (m, 1H), 4.84 (brs, 1H), 6.85-6.88 (m, 2H), 7.17-7.22 (m, 2H); ¹³C NMR (CDCl₃) δ 28.3 (q), 31.0 (t), 31.7 (t), 51.7 (q), 53.9 (d), 55.3 (q), 79.4 (s), 114.0 (d), 127.4 (d), 134.1 (s), 155.20 (s), 158.8 (s), 173.7 (s). Anal. Calcd for C₁₇H₂₅NO₅: C, 63.14; H, 7.79; N, 4.33. Found: C, 63.12; H, 7.83; N, 4.29.

4.7.4. *Methyl* 4-((*tert-butoxycarbonyl*)*amino*)-4-(2-*methoxyphenyl*)*butanoate* (**18***d*): Colorless Paste; *Rf* 0.3 (hexane-ethyl acetate, 5:1); IR (ATR) 3368, 1732, 1688, 1678 cm⁻¹; ¹H NMR (CDCl₃) δ 1.41 (brs, 9H), 1.97-2.17 (m, 2H), 2.26-2.41 (m, 2H), 3.65 (s, 3H), 3.79 (s, 3H), 4.53-4.65 (m, 1H), 4.84 (brs, 1H), 6.85-6.88 (m, 2H), 7.17-7.22 (m, 2H); ¹³C NMR (CDCl₃) δ 28.3 (q), 31.0 (t), 31.7 (t), 51.7 (q), 53.9 (d), 55.3 (q), 79.4 (s), 114.0 (d), 127.4 (d), 134.1 (s), 155.20 (s), 158.8 (s), 173.7 (s); HRMS (ESI) calcd for C₁₇H₂₆NO₅ (M + H⁺) 324.1811; found 324.1809.

4.7.5. *Methyl* 4-((*tert-butoxycarbonyl*)*amino*)-4-(4-fluorophenyl)*butanoate* (**18***e*): Colorless Paste; *Rf* 0.3 (hexane-ethyl acetate, 5:1); IR (ATR) 3379, 1732, 1682 cm⁻¹; ¹H NMR (CDCl₃) δ 1.41 (brs, 9H), 1.96-2.15 (m, 2H), 2.27-2.43 (m, 2H), 3.66 (s, 3H), 4.58-4.69 (m, 1H), 5.12 (brs, 1H), 6.98-7.04 (m, 2H), 7.22-7.27 (m, 2H); ¹³C NMR (CDCl₃) δ 28.2 (q), 30.8 (t), 31.5 (t), 51.6 (q), 53.7 (d), 79.5 (s), 115.4 (d, *J*_{CCF}=21.6 Hz), 127.8 (d, *J*_{CCCF}=8.1 Hz), 138.0 (s), 155.1 (s), 161.9 (s, *J*_{CF}=245.0 Hz), 173.6 (s); HRMS (ESI) calcd for C₁₆H₂₃FNO₄ (M + H⁺) 312.1611; found 312.1608 4.7.6. *Methyl* 4-((*tert-butoxycarbonyl*)*amino*)-4-(*naphthalen-1-yl*)*butanoate* (**18***g*): White solid; *Rf* 0.25 (hexane-ethyl acetate, 5:1); mp 128-130 °C; IR (ATR) 3331, 1730, 1684 cm⁻¹; ¹H NMR (CDCl₃) δ 1.43 (brs, 9H), 2.17-2.38 (m, 2H), 2.42-2.54 (m, 2H), 3.68 (s, 3H), 5.01 (brs, 1H), 5.49-5.57 (m, 1H), 7.45-7.47 (m, 2H), 7.48-7.52 (m, 1H), 7.53-7.57 (m, 1H), 7.76-7.80 (m, 1H), 7.87 (d, 1H, J=8.0Hz), 8.17 (d, 1H, J=8.4 Hz); ¹³C NMR (CDCl₃) δ 28.2 (q), 30.9 (t), 33.4 (t), 49.8 (d), 51.5 (q), 79.3 (s), 122.4 (d), 123.0 (d), 125.1 (d), 125.6 (d), 126.3 (d), 127.9 (d), 128.7 (d), 130.8 (s), 133.8 (s), 137.9 (s), 155.2 (s), 173.6 (s). Anal. Calcd for C₂₀H₂₅NO₄: C, 69.95; H, 7.34; N, 4.08. Found: C, 69.95; H, 7.39; N, 4.05.

4.7.7. *Methyl* 4-((*tert-butoxycarbonyl*)*amino*)-4-(*naphthalen-2-yl*)*butanoate* (**18h**): White solid; *Rf* 0.25 (hexane-ethyl acetate, 5:1); mp 122-123 °C; IR (ATR) 3377, 1730, 1716, 1686 cm⁻¹; ¹H NMR (CDCl₃) δ 1.42 (brs, 9H), 2.11-2.25 (m, 2H), 2.31-2.46 (m, 2H), 3.65 (s, 3H), 4.75-4.88 (m, 1H), 5.01 (brs, 1H), 7.37-7.42 (m, 1H), 7.44-7.50 (m, 2H), 7.72 (brs, 1H), 7.79-7.85 (m, 3H); ¹³C NMR (CDCl₃) δ 28.2 (q), 30.9 (t), 31.4 (t), 51.5 (q), 54.3 (d), 79.3 (s), 124.3 (d), 124.9 (d), 125.6 (d), 126.0 (d), 127.4 (d), 127.7 (d), 128.4 (d), 132.6 (s), 133.1 (s), 139.4 (s), 155.2 (s), 173.5 (s). Anal. Calcd for C₂₀H₂₅NO₄: C, 69.95; H, 7.34; N, 4.08. Found: C, 69.89; H, 7.35; N, 3.98.

4.7.8. *tert-Butyl* (3-cyano-1-(4-chlorophenyl)propyl)carbamate (**20b**): White solid; *Rf* 0.5 (hexane-ethyl acetate, 2:1); mp 130-132 °C; IR (ATR) 3385, 2243, 1688, 1678 cm⁻¹; ¹H NMR (CDCl₃) δ 1.42 (brs, 9H), 2.01-2.24 (m, 2H), 2.30-2.41 (m, 2H), 4.63-4.74 (m, 1H), 4.81 (d, 1H, *J*=8.0 Hz), 7.20-7.23 (m, 2H), 7.33-7.36 (m, 2H); ¹³C NMR (CDCl₃) δ 14.4 (t), 28.2 (q), 32.0 (t), 53.4 (d), 80.1 (s), 118.9 (s), 127.6 (d), 129.0 (d), 133.6 (s), 139.2 (s), 155.1 (s). Anal. Calcd for C₁₅H₁₉ClN₂O₂: C, 61.12; H, 6.50; N, 9.50. Found: C, 61.18; H, 6.54; N, 9.37.

4.7.9. *tert-Butyl* (3-cyano-1-(4-methoxyphenyl)propyl)carbamate (**20c**): White solid; *Rf* 0.4 (hexane-ethyl acetate, 2:1); mp 133-134 °C; IR (ATR) 3387, 2247, 1682 cm⁻¹; ¹H NMR (CDCl₃) δ 1.43 (brs, 9H), 2.01-2.11 (m, 1H), 2.16-2.27 (m, 1H), 2.27-2.35 (m, 2H), 3.81 (s, 3H), 4.58-4.67 (m, 1H), 4.75 (brs, 1H), 6.88-6.91 (m, 2H), 7.17-7.21 (m, 2H); ¹³C NMR (CDCl₃) δ 14.4 (t), 28.2 (q), 32.2 (t), 53.5 (d), 55.2 (q), 79.9 (s), 114.3 (d), 119.2 (s), 127.5 (d), 132.4 (s), 155.2 (s), 159.2 (s). Anal. Calcd for C₁₆H₂₂N₂O₃: C, 66.18; H, 7.64; N, 9.65. Found: C, 66.26; H, 7.66; N, 9.53.

4.7.10. *tert-Butyl* (3-cyano-1-(2-methoxyphenyl)propyl)carbamate (**20d**): White solid; *Rf* 0.5 (hexane-ethyl acetate, 2:1); mp 125-126 °C; IR (ATR) 3377, 2247, 1682 cm⁻¹; ¹H NMR (CDCl₃) δ 1.43 (brs, 9H), 2.05-2.40 (m, 4H), 3.88 (s, 3H), 4.77-4.84 (m, 1H), 5.52 (d, 1H, *J*=8.9 Hz),

6.89-6.96 (m, 2H), 7.15-7.19 (m, 1H), 7.26-7.31 (m, 1H); ¹³C NMR (CDCl₃) δ 14.6 (t), 28.2 (q), 31.3 (t), 52.7 (d), 55.3 (q), 79.6 (s), 110.0 (d), 119.5 (s), 121.0 (d), 127.8 (s), 128.7 (d), 129.1 (d), 155.3 (s), 156.9 (s). Anal. Calcd for C₁₆H₂₂N₂O₃: C, 66.18; H, 7.64; N, 9.65. Found: C, 66.20; H, 7.65; N, 9.57.

4.7.11. *tert-Butyl* (3-cyano-1-(4-fluorophenyl)propyl)carbamate (**20e**): White solid; *Rf* 0.45 (hexane-ethyl acetate, 2:1); mp 124-125 °C; IR (ATR) 3379, 2247, 1680 cm⁻¹; ¹H NMR (CDCl₃) δ 1.42 (brs, 9H), 2.02-2.26 (m, 2H), 2.32-2.39 (m, 2H), 4.63-4.73 (m, 1H), 4.80 (brs, 1H), 7.04-7.09 (m, 2H), 7.23-7.28 (m, 2H); ¹³C NMR (CDCl₃) δ 14.4 (t), 28.2 (q), 32.2 (t), 53.4 (d), 80.1 (s), 115.8 (d, *J*_{CCCF}=22.8 Hz), 119.0 (s), 127.9 (d, *J*_{CCCF}=7.2 Hz), 136.4 (s), 155.1 (s), 162.2 (s, *J*_{CF}=247.1 Hz). Anal. Calcd for C₁₅H₁₉FN₂O₂: C, 64.73; H, 6.88; N, 10.07. Found: C, 64.77; H, 6.92; N, 9.98.

4.7.12. *tert-Butyl* (3-cyano-1-(4-cyanophenyl)propyl)carbamate (**20f**): Pale yellow paste; *Rf* 0.3 (hexane-ethyl acetate, 2:1); IR (ATR) 3348. 2230, 1686 cm⁻¹; ¹H NMR (CDCl₃) δ 1.44 (brs, 9H), 2.03-2.20 (m, 2H), 2.36-2.50 (m, 2H), 4.71-4.84 (m, 1H), 5.14 (brs, 1H), 7.40-7.45 (m, 2H), 7.65-7.70 (m, 2H); ¹³C NMR (CDCl₃) δ 14.4 (t), 28.1 (q), 31.8 (t), 53.7 (d), 80.4 (s), 111.7 (s), 118.4 (s), 118.7 (d), 126.9 (d), 132.7 (d), 146.3 (s), 155.0 (s); HRMS (ESI) calcd for C₁₆H₂₀N₃O₂ (M + H⁺) 286.1556; found 286.1553.

4.7.13. tert-Butyl (3-cyano-1-(naphthalen-1-yl)propyl)carbamate (20g): White solid; *Rf* 0.5 (hexane-ethyl acetate, 2:1); mp 147-149 °C; IR (ATR) 3381, 2251, 1680 cm⁻¹; ¹H NMR (CDCl₃) δ 1.44 (brs, 9H), 2.33-2.41 (m, 2H), 2.46-2.53 (m, 2H), 4.91 (brs, 1H), 5.54 (d, 1H, *J*=7.4 Hz), 7.41-7.45 (m, 1H), 7.47 (t, 1H, *J*=7.8 Hz), 7.51-7.55 (m, 1H), 7.56-7.60 (m, 1H), 7.83 (d, 1H, *J*= 8.0 Hz), 7.90 (d, 1H, *J*=7.8 Hz), 8.11 (d, 1H, *J*=8.4 Hz); ¹³C NMR (CDCl₃) δ 14.4 (t), 28.0 (q), 31.7 (t), 49.5 (d), 79.2 (s), 119.3 (s), 122.6 (d), 125.1 (s), 125.8 (d), 126.5 (d), 128.4 (d), 128.8 (d), 130.5 (s), 133.7 (s), 136.5 (s), 155.3 (s). Anal. Calcd for C₁₉H₂₂N₂O₂: C, 73.52; H, 7.14; N, 9.03. Found: C, 73.59; H, 7.21; N, 8.94.

4.7.14. *tert-Butyl* (3-cyano-1-(naphthalen-2-yl)propyl)carbamate (**20h**): White solid; *Rf* 0.5 (hexane-ethyl acetate, 2:1); mp 138-139 °C; IR (ATR) 3391, 2249, 1684 cm⁻¹; ¹H NMR (CDCl₃) δ

1.43 (brs, 9H), 2.15-2.41 (m, 4H), 4.81-4.93 (m, 1H), 4.93 (brs, 1H), 7.36-7.40 (m, 1H), 7.48-7.54 (m, 2H), 7.73 (brs, 1H), 7.81-7.89 (m, 3H); ¹³C NMR (CDCl₃) δ 14.3 (t), 28.2 (q), 32.0 (t), 54.1 (d), 79.9 (s), 119.1 (s), 123.9 (d), 125.2 (s), 126.1 (d), 126.4 (d), 127.5 (d), 127.8 (d), 128.9 (d), 132.8 (s), 133.1 (s), 137.7 (s), 155.2 (s). Anal. Calcd for C₁₉H₂₂N₂O₂: C, 73.52; H, 7.14; N, 9.03. Found: C, 73.56; H, 7.19; N, 8.97.

CERTER MARINE

References and notes

- (1) Shono, T.; Ohmizu, H.; Kawakami, S.; Sugiyama, H. Tetrahedron Lett. 1980, 21, 5029.
- (2) (a) Shono, T.; Hamaguchi, H.; Nishiguchi, I.; Sasaki, M.; Miyamoto, T.; Miyamoto, M.; Fujita, S. *Chem. Lett.* 1981, 1217. (b) Corey, E. J.; Pyne, S. G. *Tetrahedron Lett.* 1983, 24, 2821.
- (3) (a) Otsubo, K.; Inanaga, J.; Yamaguchi, M. *Tetrahedron Lett.* 1986, 24, 5763. (b) Fukuzawa, S.; Nakanishi, A.; Fujinami, T.; Sakai, S. *Chem. Commun.* 1986, 624. (c) Fukuzawa, S.; Nakanishi, A.; Fujinami, T.; Sakai, S. *J. Chem. Soc. Perkin 1* 1988, 1669. (d) Molander, G. A.; Kenny, C. *Tetrahedron Lett.* 1987, 28, 4367.
- (4) For a recent review on the reductive coupling with SmI₂, see: Szostak, M.; Fazakerley, N. J.;
 Parmar, D.; Procter, D. J. *Chem. Rev.* 2014, *114*, 5959.
- (5) Little, D.; Fox, D. P.; Hijfte, L. V.; Dannecher, R.; Sowell, G.; Wolin, R. L.; Moëns, L.; Baizer, M. M. J. Org. Chem. 1988, 53, 2287.
- (6) Shono, T.; Kise, N.; Kunimi, N.; Nomura, R. Chem. Lett. 1991, 2191.
- (7) Yeh, C.-H.; Korivi, R. P.; Cheng, C.-H. Angew. Chem. Int. Ed. 2008, 47, 4892.
- (8) Recent reports for the synthesis of γ-butyrolactones and lactams, see: (a) Ha, T. M.; Chatalova-Sazepin, C.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55, 9249. (b) Moriyama, K.; Sugiue, T.; Nishinohara, C.; Togo, H. J. Org. Chem. 2015, 80, 9132. (c) Lioyd, M. G.; D'Acunto, M.; Taylor, R. J.K.; Unsworth, W. P. Tetrahedron 2015, 71, 7107. (d) Tsunoi, S.; Maruoka, Y.; Suzuki, I.; Shibata, I. Org. Lett. 2015, 17, 4010. (e) Su, Y.; Tu, Y.-Q.; Gu, P. Org. Lett. 2014, 16, 4204.
- (9) (a) Kise, N.; Agui, S.; Morimoto, D.; Ueda, N. J. Org. Chem. 2005, 70, 9407. (b) Kise, N.; Shiozawa, Y.; Ueda, N. Tetrahedron 2007, 63, 5415. (c) Kise, N.; Sueyoshi, A.; Takeuchi, S.; Sakurai, T. Org. Lett. 2013, 15, 2746. (d) Kise, N.; Hamada, Y.; Sakurai, T. Org. Lett. 2014, 16, 3348. (e) Kise, N.; Miyamoto, H.; Hamada, Y.; Sakurai, T. Tetrahedron Lett. 2015, 56, 4599. (f) Kise, H.; Hamada, Y.; Sakurai, T. J. Org. Chem. 2016, 81, 5101.
- (10) Kise, N.; Morimoto, S. Tetrahedron 2008, 64, 1763.

- (11) Xie, J.-H.; Guo, L.-C.; Yang, X.-H.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2012, 14, 4758.
- (12) Huang, J.-T.; Su, T.-L.; Watanabe, K. A. J. Org. Chem. 1991, 56, 4811.
- (13) Fang, J.-M.; Hong, B.-C.; Liao, L.-F. J. Org. Chem. 1987, 52, 855.
- (14) Reddy, M. S.; Kumar, Y. K.; Thirnpath, N. Org. Lett. 2012, 14, 824.
- (15) (a) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Lett. 2013, 15, 4838. (b) Liang, T.; Zhang, W.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 16024.
- (16) Tarantino, K. T.; Liu, P.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 10022.
- (17) Jeffs, P. W.; Molina, G.; Case, M. M.; Cortese, N. A. J. Org. Chem. 1982, 47, 3871.
- (18) Guijarro, D.; Pablo, Óscar, P.; Yus, M. J. Org. Chem. 2013, 78, 3647.
- (19) Armanino, N.; Carreiea, E. M. J. Am. Chem. Soc. 2013, 135, 6814.
- (20) Ivanov, K. L.; Villemson, E. V.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V.; Melnikov, M. Y. *Chem. Eur. J.* 2015, *21*, 4975.
- (21) Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 1832.