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The oxidative difunctionalization of alkenes is a powerful
strategy for the synthesis of various organic compounds.[1]

Recent studies have demonstrated that palladium-catalyzed
oxidative transformations, such as aminooxygenation,[2] dia-
mination,[3] and dioxygenation[4] of alkenes, can be used
efficiently to achieve bond formations at vicinal positions.
However, palladium-catalyzed oxidative dicarbonation of
alkenes is quite challenging.[5, 6] Oxidative cross-coupling of
arenes and alkenes using palladium catalysts have been
extensively explored.[7] These reactions involve C�H bond
functionalizations to yield the intermediate A, which usually
undergoes b-hydride elimination to afford Heck-type prod-
ucts (Scheme 1). Recently, Zhu and co-workers have reported

an oxidative intramolecular arylacetoxylation of alkenes in
which the C�PdII bond of intermediate A can be oxidized by
PhI(OAc)2 to form a C�O bond.[8a] This discovery presents an
intriguing strategy for the carbonation of alkenes. We
postulated that if an additional C�H bond activation can
take place at the palladium center of intermediate A,[9] the
highly desired dicarbonation of alkenes could be accom-

plished, and would therefore offer a valuable method for
constructing two C�C bonds simultaneously (Scheme 1).

The activation of the C�H bond of acetonitrile has been
well-documented by using stoichiometric amounts of a
transition metal,[10] such as Rh,[9a–d] Ni,[9e] Ru,[9f,g,i] and Fe,[9j]

etc., to yield LnM�CH2CN complexes under various reaction
conditions. However, in general the catalytic C�H function-
alization of acetonitrile by a transition metal is quite rare,[11]

and a strong base is generally required.[12] Herein, we report a
novel palladium-catalyzed oxidative arylalkylation of alkenes,
which involves dual C�H bond cleavage to form two C�C
bonds in the presence of AgF and PhI(OPiv)2. It is worth
noting that the rate-determining Csp3�H bond activation of
CH3CN proceeded in the absence of a strong base, and in the
presence of acidic additives.

As part of our efforts to develop catalytic fluorination of
alkenes, our initial investigation focused on the arylfluorina-
tion of 1a. With the previously reported fluorination con-
ditions involving AgF/PhI(OPiv)2,

[13] the reaction of 1 a only
afforded a small amount of the expected arylfluorination
product 2a (Table 1). Surprisingly, the major product 3a,
having the solvent acetonitrile incorporated, was observed
(Table 1, entry 1). Further optimization of the reaction
conditions exhibited that a bidentate nitrogen-containing
ligand is beneficial to the reaction, and the ligand L4 was
shown to give the best yield (entries 2–6). Notably, no
reaction occurred in the absence of either the palladium
catalyst, AgF, or PhI(OPiv)2 (entries 7, 8, and 10). The
reaction with PhI(OAc)2 also afforded 3a but in low yield
(entry 9). Other oxidants, such as tert-butyl peroxide, oxone,
and benzoquinone, were ineffective (see the Supporting
Information). Additional screening of bases showed that
AgF was unique for this reaction. No desired product 3a was
observed in the presence of other fluoride and nonfluoride
bases, or in the presence of strong bases such as KOtBu and
NaN(SiMe3)2 (entries 11–13). The addition of MgSO4 is
helpful for increasing the yield of 3 a (entry 14). It is
remarkable that the reaction is not influenced by acidic
additives such as CH3CO2H or CF3CO2H (entries 15–16).
Furthermore, there was no effect on this transformation when
2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) was
employed as a radical scavenger (entry 17).

The scope of substrates was investigated as shown in
Schemes 2 and 3. The effect of the protecting group on the
nitrogen atom was firstly probed. For the substrates bearing
an alkyl or aryl group on N, the reactions proceeded smoothly
to provide products 3a and 3b in excellent yields. In contrast,
the substrates with an electron-withdrawing group on N did
not yield the desired products 3c and 3d. The position of the
substituents on the aryl ring has no significant influence on

Scheme 1. Palladium-catalyzed functionalization of alkenes initiated by
C�H bond cleavage.
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the efficiency. The substrates bearing electron-withdrawing or
electron-donating group always afforded the desired products
3e–3t in good to excellent yields. Notably, both halides and
ester groups, which are sensitive to strong base, were tolerated
and furnished the corresponding products 3 l–3o, 3p, and 3q
with excellent yields. The substrates bearing meta substitents
exhibited very good reactivity but poor regioselectivity (3r).
The substrates having two substituents on the aryl ring are still
good for this transformation (3s–3u). Finally, when the
benzene ring of the substrates was changed to naphthalene,
the reactions successfully provided the arylalkylation prod-
ucts 3v–3 w. Importantly, the pyridine group was also
compatible with these oxidative reaction conditions (3x).

Substrates with various olefins were additionally exam-
ined. For substrates without a substituent at the a position
(R3 = H) of the olefin, the reaction did not afford the desired
product 4a (Scheme 3). Analogous to substrate 1a, substrates
with ethyl, methoxymethyl, acetoxymethyl, and imide groups
at the a position generated the corresponding products 4b–4e
in excellent yields. Substrates with an aryl group at the
a position also afforded products 4 f and 4g in moderate to
good yields. In contrast, substrates with a phenyl group at the
b position undergoes arylation with opposite regioselectivity
to afford the six-membered product 5h in 77 % yield, but with
low diastereoselectivity. Finally, a series of nitriles were also

tested. As shown in Scheme 3, a significant steric effect was
observed, and the reactivity of the nitrile decreased as
follows: CH3CN>EtCN> nPrCN> iPrCN. The reactions of
propionitrile and n-butyronitrile furnished the products 4 i
and 4j in 83% and 54% respectively; the lower yield of 4k
was delivered with methoxyacetonitrile, and no reaction
occurred in the solvent of isobutyronitrile (4 l). Except for
acetonitrile, these reactions were carried out at 110 8C.

The formation of 3 and 4 indicates that a dual C�H bond
functionalization of both aniline and acetonitrile was involved
in this reaction. To probe the mechanism of the C�H bond
cleavage, a mixture of the substrates 1a and [D5]-1 a (1:1) was
subjected to the standard reaction conditions to determine
the intermolecular isotope effect, and substrate [D1]-1a was
used to probe the intramolecular isotope effect. Neither intra-
nor intermolecular kinetic isotopic effects were observed [kH/
kD = 1.0, Eqs. (1) and (2)].[14] The absence of an intramolec-
ular isotope effect suggests that the reaction involves an
electrophilic aromatic substitution process.[15] Interestingly,
when the reaction of 1a was conducted in a 1:1 mixture of
CH3CN/CD3CN as the solvent, a large primary isotope effect
(kH/kD = 3.5) was obtained [Eq. (3)]. A similar KIE value
(2.8) was also observed in the individual reaction in CH3CN

Table 1: Screening of reaction conditions.[a]

Entry [O] Additive L Yield (3a [%])

1[c] PhI(OPiv)2 AgF – 56
2 PhI(OPiv)2 AgF bpy 61
3 PhI(OPiv)2 AgF L1 65
4 PhI(OPiv)2 AgF L2 76
5 PhI(OPiv)2 AgF L3 79
6 PhI(OPiv)2 AgF L4 92
7[d] PhI(OPiv)2 AgF L4 0
8 – AgF L4 0
9 PhI(OAc)2 AgF L4 38
10 PhI(OPiv)2 – L4 0
11 PhI(OPiv)2 KF or CsF L4 0
12 PhI(OPiv)2 KOtBu or NaN(SiMe3)2 L4 0
13 PhI(OPiv)2 CsCO3 or Ag2CO3 L4 0
14[e] PhI(OPiv)2 AgF L4 71
15 PhI(OPiv)2 AgF/AcOH[f] L4 89
16 PhI(OPiv)2 AgF/TFAOH[f] L4 84
17 PhI(OPiv)2 AgF/TEMPO[g] L4 88

[a] Reaction conditions: 1a (0.1 mmol), [Pd] (5 mol%), Ligand
(7.5 mol%), AgF (0.4 mmol), PhI(OPiv)2 (0.11 mmol), MgSO4 (20 mg,
0.17 mmol) in 1.0 mL of CH3CN at 80 8C for 12 h. [b] Yield as determined
by GC using tetradecane as an internal standard. [c] Product 2a (8 %
yield). [d] Without palladium catalyst. [e] Without MgSO4. [f ] 2 equiv
HOAc or TFAOH were used as additive. [g] TEMPO (1 equiv) was used
as additive. bpy = bipyridine, L = ligand, Piv =pivaoyl, TFA = trifluoro-
acetic acid.

Scheme 2. Palladium-catalyzed oxidative arylalkylation of alkenes. Reac-
tions were conducted at 0.2 mmol scale. Yields are those of the
isolated product. [a] The ratio of 3r and 3r’ was determined by
1H NMR spectroscopy. Bn = benzyl, Ts = 4-toluenesulfonyl.
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and CD3CN. Furthermore, no significant substituent effect on
the reaction rate was observed in the competition experi-
ments [Eq. (4)]. These results suggest that a Csp3�H bond
activation of acetonitrile contributed to the rate-determining
step.

The detailed mechanism of the oxidative arylalkylation of
alkenes is not clear to us at the moment. Preliminary studies

indicate that the C�C bond formation might be derived from
a PdIV intermediate: 1) the reaction occurred in the presence
of PhI(OPiv)2, but no reaction occurs with other oxidants,
such as BQ or O2. 2) The desired product 3a was not obtained
and starting material 1 a was recovered from the stoichio-
metric reaction in the absence of an oxidant. 3) The good
compatibility of halide (Br for 3n, I for 3o) also suggests that
the Pd0/II cycle is less likely.

Compared to acetonitrile, no reaction takes place in
noncoodinating protonic solvents, such as EtOAc and
MeNO2.

[16] This observation indicates that the coordination
of acetonitrile with AgF or the palladium complex may be
crucial for the C�H bond activation of acetonitrile.[10] Addi-
tionally, the reaction occurs in the presence of AgF, and is
quite sensitive to the amount of AgF.[17] Such observations
suggest that AgF plays a key role in activating Csp3�H bond of
acetonitrile.[18]

On the basis of the above analysis, a possible catalytic
cycle is shown in Scheme 4. The reaction is initiated by
coordination of the olefin to PdII, with subsequent nucleo-
philic attack of the tethered arene to give the palladium
complex C.[19] Then the Csp3�H bond activation of CH3CN
takes place in the presence of PhI(OPiv)2 and AgF, thus
generating the PdIV complex D that undergoes reductive
elimination to afford the product 3a.[20, 21]

In conclusion, we have discovered a novel palladium-
catalyzed oxidative arylalkylation of alkenes, in which dual
C�H bond activation of both aniline and acetonitrile are
involved. The addition of PhI(OPiv)2 and AgF are the key for
this transformation, and AgF plays a roles to promote the
Csp3�H bond cleavage in acetonitrile. The reactions afford a
variety of nitrile-bearing indolinones in excellent yields.
Additional studies on the mechanism and synthetic applica-
tion are in progress.

Scheme 4. The proposed mechanism for this oxidative arylalkylation of
alkenes.

Scheme 3. Palladium-catalyzed oxidative arylalkylation of alkenes. Reac-
tions were conducted at 0.2 mmol scale. Yields are those of the
isolated products. [a] The ratio in parentheses is the diasteroselectivity
of the reaction as determined by 1H NMR spectroscopy. [b] The
reaction was conducted at 110 8C. PhthNH= Phthalimide.
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Experimental Section
General procedure: In a TFE sealed dry glass tube, Pd(OAc)2

(2.2 mg, 0.01 mmol), AgF (102 mg, 0.8 mmol), PhI(O2CtBu)2

(90 mg, 0.22 mmol), 2,2’-bipyrimidine (2.4 mg, 0.015 mmol), MgSO4

(40 mg, 0.34 mmol), and alkene 1a (0.2 mmol) were dissolved in dry
CH3CN (2.0 mL). The mixture was stirred at 80 8C for 24 h. Then
ethyl acetate was added and the mixture was filtered through a plug of
celite. After removal of the solvent under vacuum, the residue was
purified by column chromatography on silica gel with a gradient
eluant of petroleum ether and ethyl acetate to afford the product 3a
(39 mg, 90% yield).
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