
Synthesis and Antimicrobial Activities of New Polyhalogenated Benzimidazoles

Agnieszka E. Laudy,^a Rosa Moo-Puc,^b Roberto Cedillo-Rivera,^b Zygmunt Kazimierczuk,^c and Andrzej Orzeszko^{c,d}*

^aDepartment of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw 00-007, Poland ^bUnidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad,

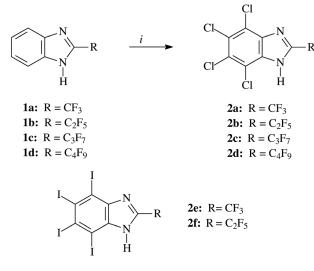
Instituto Mexicano del Seguro Social, Mérida, Yuc., México ^cInstitute of Chemistry, Warsaw University of Life Sciences, Warsaw 02-787, Poland ^dMilitary University of Technology, Warsaw 00-908, Poland ^{*}E-mail: Andrzej_Orzeszko@sggw.pl Received February 5, 2011 DOI 10.1002/jhet.936

Published online 26 October 2012 in Wiley Online Library (wileyonlinelibrary.com).

A series of new polyhalogenated benzimidazoles has been synthesized and their antibacterial and antiprotozoal activity was evaluated. Several of new substituted halogenobenzimidazoles and their 2'-deoxynucleosides showed noteworthy antiprotozoal toxicity particularly against *Giardia lamblia*. The most potent agents against bacteria and fungi were 4,5,6,7-tetrachlorobenzimidazoles with polyfluoroalkyl chain at position 2 of the heterocyclus.

J. Heterocyclic Chem., 49, 1059 (2012).

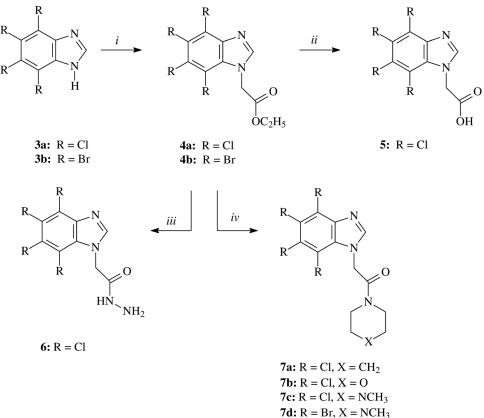
INTRODUCTION

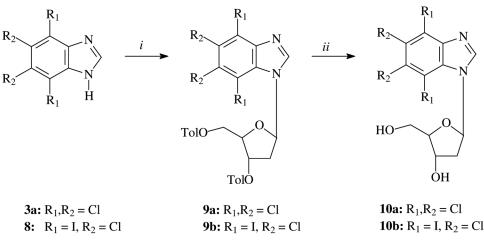

Halogenated benzimidazoles and their derivatives have raised special interest because of their diversified biological activity. For example, tetrabromobenzimidazoles and tetraiodobenzimidazoles are known as very strong inhibitors of antiapoptotic protein kinase CK2 [1–3]. Among antiviral agents, benzimidazole nucleosides and acyclonucleosides have also received much attention. The 5,6dichloro-1-(β-D-ribofuranosyl)-benzimidazole (DRB) and its derivatives (TCRB and BDCRB) were found to show activity against RNA and DNA viruses [4, 5]. Also some benzimidazole L-ribonucleosides, particularly 5,6-dichloro-2-isopropylamino-1-(β-L-ribofuranosyl)-benzimidazole (maribavir) inhibit replication of human cytomegalovirus and have favorable safety profiles in animal species [6]. Benzimidazole system is present in numerous antiparasitic, fungicidal, anthelmintic, and anti-inflammatory drugs [7-9]. Substituted 2-trifluorobenzimidazoles are potent decouplers of oxidative phosphorylation in mitochondria. These compounds also inhibit photosynthesis and therefore exhibit appreciable herbicidal activity [10]. Their antibacterial, antifungal, and antiprotozoal activity has been reported [11–13].

These findings have inspired us to widen the list of halogeno-substituted benzimidazoles and to test the new derivatives against selected Gram-positive and Gram-negative bacteria and protozoa. In addition to previously reported compounds, we have synthesized several new halogenobenzimidazole derivatives as well as two 2'-deoxyribonucleosides. Despite a pilot-study character of our investigation, we were able to indicate the direction which can provide new effective antimicrobial agents of wide activity spectrum. The emergence of resistance to the major classes of antibacterial agents is recognized as a serious health concern. The search for antimicrobial agents with new mode of action will always remain an important task.

RESULTS AND DISCUSSION

The synthesis of several newly modified benzimidazoles carrying chloro- and bromo-substituents on the benzene part of heterocyclus as well as other substituents on C-2 and N-1 position constituted the chemical part of this


Scheme 1. Reagents and conditions: (i) HCl/HNO3 (aqua regia).


study. Additionally, two 2'-deoxyribo-nucleosides of 4,5,6,7-tetrachloro- and 5,6-dichloro-4,7-diiodobenzimidazoles (**10a,b**) were obtained according to "sodium salt procedure" [14] (Schemes 1–3).

Benzimidazole ring system endures even hard reaction conditions. The full chlorination of benzimidazole in the benzene part of molecule was achieved by action of "aqua regia" [15] or in the case of 2-trifluorobenzimidazole by action of chlorine at elevated temperature [16]. We have applied successfully the first procedure for chlorination of 2-perfluoroalkylbenzimidazoles 1a-d with good or moderate yields to obtain respective products 2a-d (Scheme 1). Additionally, the two previously obtained 4,5,6,7-tetraiodo-2-perfluoroalkyl benzimidazoles 2e and 2f were subjected to antimicrobial testing [3]. 4,5,6,7-Tetrachlorobenzimidazole 3a was substituted in position N-1 with ethyl bromoacetate to give the respective ester 4a. This ester was transformed to acid 5 by alkaline hydrolysis. The hydrazide 6 and amides derived from piperidine, morpholine, and methylpiperazine 7a-c were obtained by reaction of 4a with hydrazine or prolonged heating with piperidine, morpholine, or N-methylpiperazine, respectively. A similar procedure was adapted for a tetrabromoester 4b in the synthesis of its metylpiperazinyl amide 7d (Scheme 2). Because of the moderate biological activity of 7d, we gave up the synthesis of other similarly modified tetrabromobenzimidazoles. Compounds 3b and 4b used here as starting materials for further synthesis and biological investigations have been described previously [3, 17]. Additionally, the synthesis of two 2'-deoxyribonucleosides 10a and 10b by condensation of sodium salts of 4,5,6,7-tetrachlorobenzimidazole 3a and 5,6-

Scheme 2. Reagents and conditions: (i) BrCH₂COOEt, K₂CO₃, acetone, reflux; (ii) NaOH/ETOH; (iii) hydrazine/EtOH; (vi) NH(CH₂)₄X, reflux.

Scheme 3. Reagents and conditions: (i) 2-deoxy-3,5-bis-O-(4-methylbenzoyl)-β-D-*erythro*-pentafuranosyl chloride, NaH, CH₃CN, stirring; (ii) MeONa/MeOH.

dichloro-4,7-diiodobenzimidazole **8** with 3,5-di-*O*-(*p*-toluoyl)- α -D-ribofuranosyl chloride was carried out. This stereoselective reaction provides almost exclusively β -anomers. Removal of *p*-toluoyl groups from **9a** and **9b** was realized by treating of blocked nucleosides with methanolic sodium methoxylate (Scheme 3).

The halogenated benzimidazoles were screened for their antiprotozoal activity against *Enthamoeba histolytica*, *Trichomonas vaginalis*, and *Giardia lamblia* (Table 1). The results revealed that some of tested compounds are endowed with an appreciable antiprotozoal activity. The most potent agents against *E. histolytica* were **2a**, **7a**, and

7c. Tetrachlorobenzimidazoles with longer polyfluoroalkyl chain **2b–d** showed the best toxicity toward *T. vaginalis*, whereas its 2-trifluoromethyl analogue (**2a**) has distinctly lower IC₅₀ value. Four compounds: amides **7a** and **7b** and deoxynucleosides **10a** and **10b** exhibited very potent antigiardial activity, comparable but higher than control compounds: albendazole and metronidazole. In all tests, tetraiodinated (**2e** and **2f**) or tetrabrominated benzimid-azole derivatives (**7d**) were less toxic than their tetrachloro congeners (see also results in [13]).

The majority of the halogenobenzimidazoles investigated here were active against Gram-positive bacteria (Table 2).

	Enthamo	eba histolytica	Tricho	monas vaginalis	Gia	rdia lamblia
Compound tested	IC ₅₀ [μg/ml]	95% Confidence limits	IC ₅₀ [µg/ml]	95% Confidence limits	IC ₅₀ [µg/ml]	95% Confidence limits
2a	0.29	0.289-0.292	5.35	5.33-5.38	8.6	8.62-8.77
2b	2.43	2.42-2.44	0.37	0.375-0.378	n.a	
2c	5.05	5.03-5.08	0.40	0.402-0.405	11.5	11.4-11.7
2d	1.90	1.89-1.91	0.22	0.218-0.225	21.3	20.4-22.3
2e	2.60	2.58-2.61	17	16.7-17.4	8.25	8.20-8.31
2f	151	149-152	149	143-156	4.92	4.89-4.95
3a	1.655	1.648-1.662	0.75	0.745-0.754	0.027	0.026-0.028
5	2.279	2.265-2.292	117.8	114.7-121.3	0.188	0.189-0.186
6	3.07	3.05-3.09	5.33	5.28-5.39	13.06	12.94-13.18
7a	1.208	1.203-1.214	19.62	19.34-19.91	0.007	0.0069-0.0071
7b	1.449	1.441-1.457	134.8	130.4-139.5	0.002	0.0018-0.0021
7c	0.18	0.178-0.180	1.72	170-173	9.16	9.06-9.27
7d	0.48	0.478-0.483	20.8	20.5-20.8	46.5	45.7-47.4
10a	1.124	1.119-1.129	0.993	0.989-0.997	0.004	0.0039-0.0041
10b	1.643	1.633-1.653	0.678	0.674-0.0.682	0.029	0.029-0.030
Albendazole	15.0	10.0-20.0	0.422	0.419-0.425	0.010	0.008-0.012
Metronidazole	0.060	0.029-0.103	0.037	0.037-0.037	0.210	0.150-0.270

 Table 1

 In vitro susceptibility of Enthamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia to novel polyhalogenobenzimidazoles.

n.a, no activity.

IC₅₀, the concentration required to inhibit growth by 50%.

Particularly, tetrachlorobenzimidazoles **2a–d** exhibited big diameters of growth inhibition areas and low MIC values against *Staphylococcus* and *Bacillus* species. The moderate activity toward Gram-negative bacteria and fungi were observed only for aforementioned compounds **2a–d** (Table 3). The other of compounds described here showed no detectable antifungal and antibacterial activity toward Gram-negative rods.

In conclusion, our results suggest that new derivatives of polyhalogenated benzimidazoles are promising group of antimicrobial and antiprotozoal agents. However, further synthetic and biological investigations are needed to establish their structure-activity relationship (SAR).

EXPERIMENTAL

Melting points were determined on a Gallenkamp Melting Point Apparatus, Mod. MFB 595030G, in open capillary tubes. The ¹H-NMR spectra were recorded on a Bruker AMX instrument (400 MHz ¹H frequency) at 25°C. Chemical shifts are reported in ppm from internal tetramethylsilane standard are given in δ -units. The solvent used for NMR spectra was DMSO- d_6 . The UV spectra were determined on Techcomp UV8500 spectrophotometer. Elemental analyses were performed at the Faculty of Chemistry, Warsaw Technical University.

4,5,6,7-Tetrachloro-2-trifluoromethyl-1*H***-benzimidazole (2a).** Adopting the procedure described in [15], a mixture of hydrochloric acid (120 mL) and nitric acid (50 mL) containing 2-trifluoromethylbenzimidazole (1a) (650 mg, 3.5 mmol) was stirred and heated for 8 h at 60°C. Next, the reaction mixture was refluxed for additional 20 h. The precipitate formed after cooling was collected and crystallized from ethanol to give white needles (720 mg, 63%) of mp 274–276°C; lit. mp 273°C [16].

4,5,6,7-Tetrachloro-2-pentafluoroethyl-1*H***-benzimidazole** (**2b**). Analogously as described above from 2-pentafluoroethyl-1*H*-benzimidazole (**1b**). Yield: 865 mg, (66%), mp. 242–245° C; ¹H-NMR (DMSO-*d*₆): δ 15.3 (bs, 1H); uv (MeOH): λ (ϵ) 227 (21,800), 276 (9400), 293 (5900), 305 (4900) nm. *Anal.* Calcd. for C₉HCl₄F₅N₂ (373.93): C, 28.91; H, 0.27; N, 7.49. Found: C, 29.02; H, 0.35; N, 7.36.

4,5,6,7-Tetrachloro-2-heptafluoropropyl-1*H*-benzimidazole (2c). As described for **2a** from 2-heptafluoropropyl-1*H*-benzimidazole. Yield: 1.05 g, (71%), mp 262–264°C; ¹H-NMR (DMSO- d_6): δ 15.05 (bs, 1H); uv (MeOH): λ (ε) 225 (23,400), 277 (9700), 293 (7000), 304 (5100) nm. *Anal.* Calcd. for C₁₀HCl₄F₇N₂ (423.93): C, 28.33; H, 0.24; N, 6.61. Found: C, 28.22; H, 0.34; N, 6.48.

4,5,6,7-Tetrachloro-2-nonafluorobutyl-1*H*-benzimidazole (2d). As described for **2a** from 2-nonafluorobutyl-1*H*-benzimidazole. Yield: 1.16 g, (70%), mp 226–228°C; ¹H-NMR (DMSO- d_6): δ 14.8 (bs, 1H), uv (MeOH): λ (ϵ) 227 (25,200), 277 (9800), 293 (7100), 304 (5300) nm. *Anal.* Calcd. for C₁₁HCl₄F₉N₂ (473.94): C, 27.88; H, 0.21; H, 5.91. Found: C, 27.76; H, 0.30; N, 5.78.

(4,5,6,7-Tetrachlorobenzimidazol-1-yl)acetic acid ethyl ester (4a). To the mixture of 4,5,6,7-tetrachlorobenzimidazole (3) (3.84 g, 15 mmol) and finely powdered K_2CO_3 (5.8 g, 42 mmol) in acetone (100 mL), bromoacetic acid ethyl ester (4.0 g, 24 mmol) was added. The mixture was stirred and refluxed for 2 h. The solid was filtered off and the filter cake was washed twice with

		Activity	of selected pol-	Activity of selected polyhalogenobenzimidazoles against Gram-positive bacteria.	idazoles against	Gram-po	ositive ba	icteria.						
				Dia	Diameter of growth inhibition area, mm; (MIC $\left[\mu g/mL\right])$	ı inhibiti	on area,	mm; (M	IC [µg/m	[T])				
Bacterium		2a	2b	2c	2d	2e	2f	S	5 6	7c	7d	10a	10b	Nf
Staphylococcus aureus	ATCC 6538P	45 (1.56)	45 (1.56)	40 (<0.8)	40 (<0.8)	19	25	17	15	11	-	17	16	24 (25)
Staphylococcus aureus	NTCC 4163	49 (1.56)	45 (1.56)	42 (<0.8)	38 (<0.8)	21	29	15	14	13	1	16	14	23 (25)
Enterococcus faecalis	ATCC 29212	16 (400)	26 (200)	18 (100)	16 (25)	-	14	-	-	-	-	Ĵ	11	22 (12.5)
Enterococcus hirae	ATCC 10541	17 (400)	19 (200)	(-) (100)	12 (25)	-	-	-	-	-	-	12	12	19 (25)
Bacillus subtilis	ATCC 6633	49 (3.125)	50 (<0.8)	45 (< 0.8)	45 (<0.8)	26	35	14	11	12	1	11	12	28 (12.5)
Bacillus stearothermophilus	ATCC 7953	49 (3.125)	49 (<0.8)	45 (<0.8)	45 (<0.8)	24	32	15	12	11	-	13	12	27 (12.5)

Fable

September 2012

		Diamete	Diameter of growth inl	hibition area	inhibition area, mm; (MIC [µg/mL])	[hg/mL])		Dian	leter of growth	inhibition a	Diameter of growth inhibition area, mm; (MIC [µg/mL])	[[hg/mL]]
Bacterium		2a	2b	2c	2d	Nfa	Yeast strain	2a	2b	2c	2d	Fluconazol ^b
Escherichia coli	ATCC 25922	16 (200)	15 (200)	(-) (200)	(-) (200)	24 (6.25)	Candida albicans ATCC 90028	12 (100)	(-) (>400)	(-) (>400)	(-) (>400)	43 (2)
Escherichia coli	NCTC 8196	17 (200)	16 (200)	(100)	(-) (100)	24 (6.25)	Candida parapsilosis ATCC 22019	(-) (50)	(-) (50)	(-) (>400)	(-) (>400)	32 (2)
Klebsiella pneumoniae	ATCC 13883	12 (400)	12 (400)	(-) (400)	(-) (>400)	23 (25)	Candida tropicalis IBA 171	25 (12.5)	18 (25)	(-) (>400)	(-) (>400)	39 (0.38)
Proteus vulgaris	NCTC 4635	34 (12.5)	35 (25)	15 (50)	(-) (200)	17 (100)	Candida krusei IBA 161	20 (50)	15 (50)	(-) (>400)	(-) (>400)	16 (>256)
Pseudomonas aeruginosa	NCTC 6749	13 (200)	11 (200)	(-) (200)	(-) (200)	(-) (>400)	Candida quillermondii IBA 155	33 (<3.125)	28 (<3.125)	15 (<3.125)	12 (<3.125)	40 (0.75)
Pseudomonas aeruginosa	ATCC 27853	12 (400)	12 (400) 10 (>400)	(-) (400)	(-) (>400)	(-) (>400)	Saccharomyces cerevisiae IBA 198	14 (50)	25 (25)	(-) (>400)	(-) (>400)	12 (>256)
Stenotrophomonas maltonhilia	ATCC 13637	18 (200)	18 (100)	(100)	(-) (50)	(-) (-)	I	I	I		Ì	I
Burkholderia cenacia	ATCC 25416	25 (100)	21 (100)	11 (50)	(-) (50)	(-) (-)	I	I	I	I	I	Ι
Acinetobacter baumannii	ATCC 19606	20 (200)	17 (200)	(-) (200)	(-) (>400)	14 (200)	I	I	I	I	I	I
Bordetella bronchoseptica	ATCC 4617	28 (50)	25 (50)	19 (25)	12 (25)	(-) (>400)	I	I	I	I	I	I
^a Nf, nitrofurantoin, reference compound. 300 µg per disk (Mast Diadnostics, UK). ^b Fluctuation, reference compound, filter paper disks used for disk-diffusion method contained 25 µg of fluconazole per disk, whereas Etest gradient strips (AB Biodisk) were used for the determination of	ompound, ? und, filter p	300 µg per d	isk (Mast Diad sed for disk-di	Inostics, UK ffusion metl). hod containe	d 25 µg of fluc	conazole per disk, when	eas Etest gra	dient strips (A	A Biodisk)	vere used for t	he determi

Table 3

Activity of selected benzimidazoles against Gram-negative bacteria and fungi.

Journal of Heterocyclic Chemistry

acetone (2 × 40 mL). The filtrate was evaporated to dryness, and the residue crystallized from ethanol to give white needles. Yield: 4.2 g, (81%), mp 167–168°C; ¹H-NMR (DMSO-*d*₆): δ 1.21 (t, *J* = 7.1 Hz, 3H), 4.20 (q, *J* = 7.1 Hz, 2H), 5.46 (s, 2H), 8.47 (s, 1H). *Anal.* Calcd. for C₁₁H₈Cl₄N₂O₂ (342.01): C, 38.63; H 2.36; N, 8.19. Found: C, 38.51; H, 2.39; N, 8.08.

(4,5,6,7-Tetrachlorobenzimidazol-1-yl)acetic acid (5). The mixture containing 4a (680 mg, 2 mmol), ethanol (15mL), water (10 mL) and NaOH (240 mg, 6 mmol) was stirred at room temp. for 3 h. The suspension became clear after this time. Next, the mixture was brought to reflux for 10 min. The solution was acidified to pH 2–3 with diluted aqueous HCl and left to crystallization. The amorphous white powder was obtained. Yield: 610 mg (97 %), mp 303–306°C (from ethanolwater); ¹H-NMR (DMSO-*d*₆): δ 5.35 (s, 1H), 8.47 (s, 1H), 13.5 (s, 1H). uv (MeOH): λ (ε) nm. *Anal.* Calcd. for C₉H₄Cl₄N₂O₂ (313.96): C, 34.43; H 1.28; N, 8.92. Found: C, 34.50; H, 1.37; N, 8.81.

(4,5,6,7-Tetrachlorobenzimidazol-1-yl)acetic acid hydrazide (6). To the solution of 4a (1.02 g, 3 mmol) in ethanol (30 mL) hydrazine monohydrate (98%, 1.2 g, 24 mmol) was added. The mixture was stirred and refluxed for 3h. Next, the water (15 mL) was added and the mixture was left to crystallization. The white precipitate was formed. Yield: 870 mg, (88%), mp > 300°C (with decomp.). For analysis, a small amount of (6) was crystallized from ethanol. ¹H-NMR (DMSO-*d*₆): δ 4.35 (bs, 2H), 5.18 (s, 2H), 8.45 (s, 1H), 9.42 (s, 1H). uv (MeOH): λ (ε) 230 (16,600), 264 (8900), 271 (9900), 290 (sh, 3300), 300 (3100) nm. *Anal.* Calcd. for C₉H₆Cl₄N₄O (327.99): C, 32.96; H, 1.84; N, 17.08. Found: C, 32.85; H, 1.84; N, 17.08.

1-(Piperidyn-1-yl)-2-(4,5,6,7-tetrachlorobenzimidazol-1-yl) etanone (7a). The mixture of **4a** (340 mg, 1 mmol) and piperidine (510 mg, 6 mmol) was stirred and refluxed for 36 h. Next, the mixture was evaporated to oil. The residue was crystallized twice from toluene-ethanol. Yield: 295 mg, (77%), mp 240–242°C; ¹H-NMR (DMSO-*d*₆): δ 1.09 (t, J = 5.3 Hz, 4H) and 2.87 (q, J = 7.2 Hz, 4H), 4.94 (s, 2H), 8.38 (s, 1H). uv (MeOH): λ (ε) 227 (22,700), 273 (8900), 301 (3400) nm. *Anal.* Calcd. for C₁₄H₁₃Cl₄N₃O (381.09): C, 44.12; H, 3.44; N, 11.03. Found: C, 44.21; H, 3.54; N, 10.91.

1-(Morpholin-4-yl)-2-(4,5,6,7-tetrachlorobenzimidazol-1-yl)etanone (7b). Analogously as for **7a**. Yield: 195 mg, (51%), mp 221–223°C; ¹H-NMR (DMSO-*d*₆): δ 2.95 (t, J = 4.8 Hz, 4H), 3.68 (t, J = 4.8 Hz, 4H), 4.93 (s, 2H), 8.40 (s, H C); uv (MeOH): λ (ε) 226 (23,400), 272 (8800), 300 (3300) nm. *Anal.* Calcd. for C₁₃H₁₁Cl₄N₃O₂ (383.06): C, 40.76; H, 2.89; N, 10.97. Found: C, 40.67; H, 2.99; N, 10.85.

1-(4-Methylpiperazin-1-yl)-2-(4,5,6,7-tetrachlorobenzimidazol-1-yl)-etanone (7c). The mixture of ester **4a** (380 mg, 1.1 mmol) and *N*-methylpiperazine (1.2 g, 12 mmol) in methoxyethanol (20 mL) was stirred and heated at 110°C (bath temp.) for 2 days. The solvent was removed and the brown residue was chromatographed on silica gel column (2.5 × 8 cm) with CHCl₃ (100 mL), CHCl₃-MeOH (8:2, v/v) (100 mL) and CHCl₃-MeOH-Et₃N (80:18:2, v/v/ v). The product containing fractions were evaporated and the residue crystallized from toluene-EtOH to give white cottonlike powder. Yield: 230 mg, (53%), mp 229–232°C; ¹H-NMR (DMSO-*d*₆): δ 2.18 (s, 3H), 2.42 (t, *J* = 5.8 Hz, 4H), 2.94 (t, *J* = 5.0 Hz, 4H), 4.89 (s, 2H), 8.37 (s, 1H). uv (MeOH): λ (ε) 228 (24,000), 272 (8900), 301 (3300). *Anal.* Calcd. for C₁₄H₁₄Cl₄N₄O (396.11): C, 42.45; H, 3.56; N, 14.14. Found: C, 42.56, H, 3.63, N, 14.06.

1-(4-Methylpiperazin-1-yl)-2-(4,5,6,7-tetrabromobenzimidazol-1-yl)-etanone (7d). As described above for **7c** from **4b** [2] and *N*methylpiperazine. Yield: 315 mg (50%), mp 219–221°C; ¹H-NMR (DMSO-*d*₆): δ 2.18 (s, 3H), 2.41 (t, *J* = 5.1 Hz, 4H), 2.93 (t, *J* = 5.2 Hz, 4H), 4.90 (s, 2H), 8.35 (s, 1H). uv (MeOH): λ (ε) 230 (35,000), 750 (sh, 9400) 275 (9600), 302.5 (3600). *Anal.* Calcd. for C₁₄H₁₄Br₄N₄O (573.91): C, 29.30; H, 2.46; N, 9.76. Found: C, 29.36, H, 2.54, N, 9.64.

1-[2-Deoxy-3,5-di-O-(4-methylbenzoyl)-β-D-erythropentafuranosyl]-4,5,6,7-tetrachloro-benzimidazole (9a). To the suspension of 3a (1.02 g, 4 mmol) in dry acetonitrile (70 mL), sodium hydride (200 mg, 5 mmol, 60% in oil) was added portionwise. The mixture was stirred and refluxed for 10 min. After cooling 2-deoxy-3,5-bis-O-(4-methylbenzoyl)-β-D-erythropentafuranosyl chloride [18] (1.55 g, 4 mmol) was added in portions. The mixture was stirred for 20 min at r.t. Next, methylene chloride (70 mL) was added and the mixture filtered through Cellite. The solvents were evaporated and the residue was chromatographed on silica gel column $(2.5 \times 12 \text{ cm})$ with toluene-acetone (95:5, v/v) as eluent. The product containing fractions were evaporated and the residue crystallized from methanol to give white needles. Yield: 1.09 g, (45%), mp 191–192°C; ¹H-NMR (DMSO-*d*₆): δ 2.37 (s, 3H), 2.40 (s, 3H), 2.96 (m, 1H), 3.07 (m, 1H), 4.52 (m, 2H), 4.58 (m, 1H), 5.72 (m, 1H), 7.01 (t, J = 6.4Hz, 1H), 7.30-8.0 (4d, arom. H, 8H), 8.82 (s, 1H). Anal. Calcd. for C28H22Cl4N2O5 (608.31): C, 55.29; H, 3.65; N, 4.61. Found: C, 55.25; H, 3.60; N, 4.52.

1-[2-Deoxy-3,5-di-*O*-(**4-methylbenzoyl**)-**β**-*D*-*erythro***pentafuranosyl**]-**5,6-dichloro-4,7-diiodobenzimidazole** (**9b**). As described for **9a** from **8** [3] instead of **3a**. Yield: 1.64 mg (52%), mp 194–196°C; ¹H-NMR (DMSO-*d*₆): δ 2.37 (s, 3H), 2.40 (s, 3H), 2.96 (m, 1H), 3.09(m, 1H), 4.56 (m, 2H), 4.60 (m, 1H), 5.70 (m, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.30–8.0 (4d, arom.H, 8H), 8.81 (s, 1H). *Anal*. Calcd. for C₂₈H₂₂Cl₄I₂N₂O₅ (791.21): C, 42.51; H, 2.80; N, 3.54. Found: C, 42,43; H, 2.86; N, 3.45.

1-(2-Deoxy-β-D-*erythro***-pentafuranosyl)-4,5,6,7-tetrachlorobenzimidazole (10a).** The mixture of **9a** (1.6 g, 2.63 mmol) and methanolic sodium methanolate (50 mL, 0.1*M*) was stirred and refluxed for 15 min. Methanol was evaporated and the residue purified by flash chromatography on silica gel (2.5 × 10 cm) using chloroform as eluent. The product containing fractions were evaporated and the residue crystallized from methanol water to give colorless needles. Yield: 685 mg, (70%), mp 141–144°C; ¹H-NMR (DMSO-*d*₆): δ 2.46 (m, 1H), 2.58 (m, 1H), 3.65 (2m, 2H), 3.89 (q, *J* = 3.9 Hz, 1H), 4.47 (m, 1H), 5.04 (t, *J* = 5.2 Hz, 1H), 5.36 (d, *J* = 4.5 Hz, 1H), 6.85 (t, *J* = 5.9 Hz, 1H), 8.88 (s, 1H). uv (MeOH): λ (ε) 225 (22,400). 270 (9200), 298 (3100). *Anal.* Calcd. for C₁₂H₁₀Cl₄N₂O₃ (372.04): C, 38.74; H, 2.71; N, 7.53. Found: C, 38.66; H, 2.77; N, 7.47.

1-(2-Deoxy-β-D-*erythro***-pentafuranosyl)-5,6-dichloro-4,7diiodobenzimidazole (10b).** As described for **10a** from **9b**. Yield: 695 mg, (68%), mp 200°C; ¹H-NMR (DMSO-*d*₆): δ 2.46 (m, 1H), 2.55 (m, 1H), 3.60 (2m, 2H), 3.89 (q, J = 3.8Hz, 1H), 4.37 (q, J = 4.7 Hz, 1H), 5.07 (bs, 1H), 5.37 (bs, 1H), 7.23 (t, J = 6.1 Hz, 1H), 8.87 (s, 1H). uv (MeOH): λ (ε) 230 (27,000), 279 (14,000), 305 (sh, 6100). *Anal.* Calcd. for C₁₂H₁₀Cl₂I₂N₂O₃ (554.94): C, 25.97; H, 1.82; N, 5.05. Found: C, 25.85; H, 1.91; N, 4.95.

Experimental for antiprotozoal and antibacterial studies. Experimental details concerning antiprotozoal and antimicrobial studies were described in literature [13, 19]. September 2012

Acknowledgments. This study was supported by the Ministry of Science and Higher Education grant No. N209371439.

REFERENCES AND NOTES

[1] Pagano, M. A.; Andrzejewska, M.; Ruzzene, M.; Sarno, S.; Cesaro, L.; Bain, J.; Elliott, M.; Meggio, F.; Kazimierczuk, Z.; Pinna, L. A. J Med Chem 2005, 7, 3049.

[2] Pagano, M. A.; Bain, J.; Kazimierczuk, Z.; Sarno, S.; Ruzzene, M.; DiMaira, G.; Elliott, M.; Orzeszko, A.; Cozza, G.; Meggio, F.; Pinna, L. A. Biochem J 2008, 415, 353.

[3] Gianoncelli, A.; Cozza, G.; Orzeszko, A.; Meggio, F.; Kazimierczuk, Z.; Pinna, L. A. Bioorg Med Chem 2009, 17, 7281.

[4] Tamm, I. J Exp Med 1960, 111, 339.

[5] Chang, J.; Nie, X.; Gudima, S.; Taylor, J. J Virol 2006, 80, 3205.

[6] Biron, K. K.; Harvey, R. J.; Chamberlain, S. C.; Good, S. S.; Smith, A. A., III; Davies, M. G.; Talarico, C. L.; Miller, W. H.; Ferris,

R. R.; Dornsife, E.; Stanat, S. C.; Drach, J. C.; Townsend, L. B.; Koszalka, G. W. Antimicrob Agents Chemother 2002, 46, 2365.

[7] He, Y.; Wu, B.; Yang, J.; Robinson, D.; Risen, L.; Ranken, R.; Blyn, L.; Sheng, S.; Swayze, E. E. Bioorg Med Chem Lett 2003, 13, 3253. [8] Sharma, S.; Gangal, S.; Rauf, A. Eur J Med Chem 2009, 44, 1751.

[9] Schmidt, J. Paras Res 1998, 84, 362.

[10] Burton, D. E.; Lambie, A. J.; Ludgate, J. C.; Newbold, A.; Percival, A.; Sangers, D. T. Nature (London) 1965, 208, 1166.

[11] Stefańska, J. Z.; Gralewska, R.; Starościak, B. J.; Kazimierczuk, Z. Pharmazie 1999, 54, 879.

[12] Navarette-Vazquez, G.; Cedillo, R.; Hernandez-Campos, A.; Yepez, L.; Hernandez-Luis, F.; Valdez, J.; Morale, R.; Cortes, R.;

Hernandez, M.; Cedillo, R. Bioorg Med Chem Lett 2001, 11, 187.

[13] Andrzejewska, M.; Yepez-Mulia, L.; Cedillo-Rivera, R.; Tapia, A.; Vilpo, L.; Vilpo, J.; Kazimierczuk, Z. Eur J Med Chem 2002, 37, 973.

[14] Kazimierczuk, Z.; Cottam, H. B.; Revankar, G. R.; Robins, R. K. J Am Chem Soc 1984, 106, 6379.

[15] Burton, D. E.; Lambie, A. J.; Lane, D. W. J.; Newbold, G. T.; Percival, A. J Chem Soc C 1968, 1268.

[16] Büchel, K-H. Zeit Naturforsch 1970, 25B, 934.

[17] Baczynski, K.; Niementowski, S. Chem Zentralbl 1902, 73, 940.

[18] Hoffer, M. Chem Ber 1960, 93, 2777.

[19] Kazimierczuk, Z.; Chalimoniuk, M.; Laudy, A. E.; Moo-Puc, R.; Cedillo-Rivera, R.; Starościak, B. J.; Chrapusta, S. J. Arch Pharm Res 2010, 33, 821.