

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 343 (2008) 1585-1593

Sialylation reactions with 5-*N*,7-*O*-carbonyl-protected sialyl donors: unusual stereoselectivity with nitrile solvent assistance

Hidenori Tanaka,^a Hiromune Ando,^{b,*} Hideharu Ishihara^a and Mamoru Koketsu^{b,*}

^aDepartment of Chemistry, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan ^bDivision of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

> Received 8 February 2008; received in revised form 19 April 2008; accepted 4 May 2008 Available online 8 May 2008

Abstract—A 5-*N*,7-*O*-carbonyl-protected sialyl donor was synthesized, and, unexpectedly, this donor showed β -selectivity ($\alpha/\beta = 1/2.4-1/20$) on coupling with sugar acceptors in acetonitrile upon treatment with various promoter systems. For the coupling reaction in dichloromethane, a modified Ellervik's method (IBr and AgClO₄·H₂O) was highly effective in activating the 5-*N*,7-*O*-carbonyl donor, providing moderate α -selectivity ($\alpha/\beta = \sim 1.8/1$). © 2008 Elsevier Ltd. All rights reserved.

Keywords: Sialylation; N,O-Carbonyl-protected sialyl donor; Nitrile solvent effect; Stereoselectivity

1. Introduction

Sialic acids are one of the biologically important sugar residues of oligosaccharides and typically occupy the distal end of glycan chains through an α -glycosic linkage to other sugar residues such as galactose, glucose, and galactosamine. The arrangement of sialic acids at the outermost positions of glycoconjugates enables their participation in carbohydrate-protein interactions that mediate various essential biological processes such as cell differentiation, cell adhesion, cellular immune response, fertilization, oncogenesis, and viral infection. It is well known that the difficulty in synthesizing α sialosides has been a central issue in carbohydrate chemistry. This difficulty is attributable to the inherent structural disadvantages of sialic acid, namely the presence of the C-2 ketal carbon adjacent to the carboxyl group and the C-3 methylene carbon. The various methods developed to overcome these disadvantages can be classified into nitrile solvent assistance-dependent and nitrile solvent assistance-independent sialylations.¹ The former

method utilizes nitrile solvents as a stereodirecting method to generate α -sialosides predominantly,² while the latter utilizes sialyl glycosyl donors equipped with α -directing functionality at C-3³ or C-1.⁴

Since reporting that an N-Troc-protected sialyl donor exhibits high reactivity during glycosylation with the assistance of a nitrile solvent,⁵ we have focused our attention on the effect of the C-5 modification of the sialyl donor on α -selective sialylation. Similarly, several reports have been published on C-5-modified sialyl donors such as N-trifluoroacetyl,⁶ N,N-diacetyl,⁷ 5-azido,⁸ N-phthaloyl,⁹ and 4-0,5-N-oxazolidinone sialyl donors.¹⁰ Very recently, Crich's group was the first to report the synthesis of the 5-N,7-O-oxazinanone sialyl donor and its application in glycosylation reactions. Their report demonstrated that the 5-N,7-O-oxazinanone group served as a powerful disarming and β-directing element for the coupling reaction of the sialyl donor.¹¹ As part of our continuous investigation on the fine tuning of the reactivity of sialyl donors, we have also turned our attention to the effect of cyclic carbonate within the sialyl donor on the glycosylation reaction. Herein, we report the results of the glycosylations using a homolog of Crich's 5-N,7-O-oxazinanone sialyl donor.

^{*} Corresponding authors. Tel./fax: +81 58 293 3189; e-mail: hando@ gifu-u.ac.jp

^{0008-6215/\$ -} see front matter 0 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2008.05.005

2. Results and discussion

2.1. Synthesis of sialyl donor

We have designed a phenylthioglycoside of 4,8,9-tri-O-acetyl-5-N,7-O-oxazinanone sialic acid (6) as a novel glycosyl donor to compare its donor properties with those of the corresponding 4-0,5-N-oxazolidinone derivatives reported by the De Meo^{10b} and Crich groups.^{10c} For the synthesis of 6, we exploited the N-Boc-protected sialoside 2 as a precursor of the oxazinanone, following a reported method for synthesizing cvclic carbamates.¹² The synthesis of 6 started from the reported phenylthioglycoside of N-acetyl sialic acid derivative 1^{13} (Scheme 1). Thus, the Boc group was introduced at the C-5 nitrogen by the treatment of 1 with Boc₂O and 4-dimethylaminopyridine in pyridine, and all acetyl groups were removed by Zemplen's method to afford N-Boc-protected sialoside 2 in 75% yield over the two steps. Unfortunately, the treatment of 2 with sodium hydride failed to selectively furnish the 5-N.7-O-oxazinanone structure, producing several byproducts together with unreacted 2. Therefore, 2 was treated with 2,2-dimethoxypropane and (\pm) -10-camphorsulfonic acid in acetonitrile to protect C-8 and C-9 hydroxyl groups as an isopropylidene acetal. The product, 3, was again treated with 10 equiv of sodium hydride in tetrahydrofuran at $0 \rightarrow 40$ °C to produce the 5-N,7-O-oxazinanone derivative 4 in 88% yield. We have characterized 5,7-oxazinanone moiety within 4 by comparing the ¹H nuclear magnetic resonance (NMR) spectra of **3** and **4**. The spectra showed that the signal for C-7 in **3** was at 3.22 ppm while that in **4** was shifted downfield to 4.60 ppm. Interestingly, the ring-closing reaction exclusively afforded a six-membered ring; however, the reason underlying this process remains unclear. After the acid hydrolysis of acetonide moiety, the resulting hydroxyls were protected with acetyl groups using the conventional method to give **6** in 71% yield over the two steps

2.2. Glycosylation reactions

To evaluate the properties of the sialyl donor, 6(1.0 equiv) was reacted with the known glucosyl acceptor 7 (1.0 equiv) in the presence of various glycosylation promoters for the thiosialoside donors (Table 1). Initially, glycosylation by the NIS (1.5 equiv)–TfOH (0.3 equiv) promoter system¹⁴ at -40 °C in MeCN was explored. However, the reaction showed β -selectivity, producing a 1:3.3 mixture of the α/β -isomers of **8** in 89% yield (entry 1). On the other hand, the use of CH₂Cl₂ and toluene slightly improved the α -selectivity, giving an anomeric mixture in 70% ($\alpha:\beta = 1.1:1$) and 18% ($\alpha:\beta = 1.6:1$) vields, respectively (entries 2 and 3). The anomeric configuration of a sialyl linkage in 8 was assigned by NMR spectroscopy (¹H, ¹³C), and heteronuclear multiple bond coherence (HMBC) by comparison with the literature.¹⁵ In addition, the H-3eq of α - and β -isomers resonated at 2.75 and 2.57 ppm, respectively ($\alpha > \beta$); for

DMP = 2,2-Dimethoxypropane CSA = (±)-10-Camphorsulfonic acid lsp = lsopropylidene

Scheme 1. Synthesis of 5-N,7-O-carbonyl sialyl donor 6.

H-4, the signals were assigned as 4.64 and 5.05 ppm, respectively ($\alpha < \beta$). Furthermore, the $J_{7,8}$ coupling constant of α -isomer (7.3 Hz) was greater than that of the β -isomer (3.4 Hz), which is in agreement with the reported empirical rules.¹⁶ Although we have examined glycosylations in other solvents such as dimethylformamide and THF, a glycosylated product was not produced (entries 4 and 5). Furthermore, the use of TMSOTf (0.3 equiv) or Cu(OTf)₂ (1.1 equiv) as an acid partner showed no distinct enhancement of α -selectivity (18%, $\alpha:\beta = 1.4:1$;

41%, $\alpha:\beta = 1.2:1$, entries 6 and 7). Similar results were obtained when glycosylation was promoted by PhSeOTf.¹⁷ In MeCN-CH₂Cl₂, the PhSeOTf-promoted glycosylation produced the β-sialoside preferentially (38%, $\alpha:\beta = 1:2.4$, entry 8). Conversely, in CH₂Cl₂, the production of the α -sialoside was slightly predominant (46%, $\alpha:\beta = 1.4:1$, entry 9). On the other hand, van Boom's activation¹⁸ (Ph₂SO, TTBP, Tf₂O) provided β -selective glycosylations when carried out both in MeCN and in CH₂Cl₂ (entries 10 and 11). In all the above-mentioned glycosylations, the mole quantity of the recovered sialyl donor 6 was almost consistent with that of the recovered acceptor 7. The β selectivity of glycosidation of 6 in MeCN is in agreement with the previous results of the 5-N,7-O-oxazinanone sialyl donor reported by Crich and coworkers.¹¹ In the above-mentioned cases of entries 3-11, the low yields of glycosylated products were attributed to the incomplete activation of 6.

Finally, as a result of broad screening of promoter systems for sialylation, a modified Ellervik's system¹⁹ (2.0 equiv of IBr and 3.0 equiv of AgClO₄·H₂O) was proven to be highly effective in promoting the glycosidation of 6. The modified system could complete the glycosylation of 7 with 6 in CH_2Cl_2 at -94 °C within 30 min to give a mixture of α : β -isomers of **8** (α : $\beta = 1.2:1$) in 70% yield. In contrast, the reaction using the original promotor system (IBr and AgOTf) took 95 h to complete at temperatures between -40 °C and room temperature, producing a 1:1 α : β -mixture in 56% yield (entries 12 and 13). In EtCN, β-sialoside production was again predominant and afforded a 1:20 mixture in 21% yield (entry 14). With the modified promoter system, temperature had a small effect on α -selectivity; at -60 °C, the reaction produced a 1.3:1 mixture of 8 in 58% yield (entry 15). In addition, the corresponding 2,3-en derivative of 6 was obtained as the major by-product, which was not obtained in entries 1–11.

On the basis of these results, we chose the modified Ellervik's system for subsequent coupling reactions with a series of acceptors (Table 2). The anomeric configurations of glycosides were determined using the HMBC technique. The sialylation of the C-6 primary hydroxyl of 1,2:3,4-diacetone-galactose 9 afforded the corresponding disaccharide 14 in 83% yield as a 1:1 mixture of stereoisomers (entry 1). Analogously, along with the 4,6-dihydroxy galactoside derivative 10, the $(2\rightarrow 6)$ -sialylated

product **15** was obtained as a 1:1 mixture (entry 2). In the case of the coupling with secondary hydroxyl groups, the stereoselectivity varied depending on the structure of the acceptors. Thus, **6** was glycosylated with 2-adamantanol with the optimum α -selectivity to produce a 1.8:1 mixture of α : β sialoside **16** in 38% yield (entry 3). A similar result was obtained in the case of sialylation with the galactosyl acceptor **12** containing a free 3,4-diol; a mixture of α : β -isomers of the (2 \rightarrow 3)-linked disaccharide **17** in a ratio of 1.8:1 was produced in 35% yield (entry 4). Conversely, the 2,4,6-tribenzylated analog **13** was sialylated nonstereoselectively (entry 5).

2.3. Conclusions

We have synthesized the 5-N,7-O-carbonyl sialyl donor 6 and described a regioselective ring-closing reaction. The fused 5-N,7-O-oxazolidinone ring within this sialyl donor exerted a negative effect on nitrile solvent-assisted α -selective sialylation. In non-participative solvents such as CH₂Cl₂, the modified Ellervik's system (IBr and Ag-ClO₄·H₂O) was proven to be highly effective in promoting the glycosidation of **6**. However, good α -selectivity could not be achieved.

3. Experimental

3.1. General procedures

¹H and ¹³C NMR spectra were taken by Varian Unity INOVA 400, 500, Jeol ECX 400P, and ECA 500, 600. Chemical shifts are expressed in ppm (δ) relative to the signal of either CHCl₃ or Me₄Si, adjusted to 7.26 or 0.00 ppm, respectively. MALDI-TOF MS spectra were recorded in positive ion mode on a Brucker Autoflex with the use of α -cyano-4-hydroxy-cinnamic acid (CHCA) as a matrix. Molecular sieves were purchased from Wako Chemicals Inc. and dried at 300 °C for 2 h in muffle furnace prior to use. Reaction solvents were dried over molecular sieves and used without purification. TLC analysis was performed on Merck TLC (Silica Gel 60F₂₅₄ on glass plate). Silica Gel 60N (spherical, neutral) manufactured by Kanto Chemical Co. Inc. was used for flash column chromatography. The quantity of silica gel was usually estimated as 100- to 150-fold weight of sample to be charged. Solvent systems in chromatography are specified in v/v. Evaporation and condensation were carried out in vacuo.

3.2. Methyl (phenyl 5-*tert*-butoxycarbonylamino-3,5dideoxy-2-thio-D-*glycero-α*-D-*galacto*-2-nonulopyranosid)onate (2)

A mixture of methyl (phenyl 5-acetamido-3,5-dideoxy-2-thio-D-glycero- α -D-galacto-2-nonulopyranosid)onate 1

	COOMe	∽OH	Dromotor	COOM	COOMe §	
	0 SPh	+ BnO -		NI BnO	$\sim 10^{\circ}$	
	H OAc OAc	BnO/OMe	Solvent	H OAc Bn	O BnO Me	
	ÓAc 6	7		ÓAc 8	Olvie	
	(1.0 eq)	(1.0 eq)		0		
Entry	Promoter	Solvent	Temp (°C)	Time	Yield (%)	α : β^{a}
1	NIS (1.5 equiv) TfOH (0.3 equiv)	CH ₃ CN	-40	4 h	89	1:3.3
2	NIS (1.5 equiv) TfOH (0.3 equiv)	CH ₂ Cl ₂	-40	4 h	70	1.1:1
3	NIS (1.5 equiv)	Toluene	-40	98 h	18	1.6:1
4	NIS (1.5 equiv)	DMF	-40 to rt	24 h	0	_
5	TfOH (0.3 equiv) NIS (1.5 equiv) TfOH (0.3 equiv)	THF	-40 to rt	24 h	0	—
6	NIS (1.5 equiv) TMSOTF (0.3 equiv)	CH ₂ Cl ₂	-40 to rt	36 h	18	1.4:1
7	$\frac{1}{1} \frac{1}{1} \frac{1}$	CH ₂ Cl ₂	-40 to rt	36 h	41	1.2:1
8	PhSeBr (3.0 equiv) AgOTf (3.0 equiv)	$CH_3CN-CH_2Cl_2$ (1:2)	-80 to rt	24 h	38	1:2.4
9	PhSeBr (3.0 equiv) AgOTf (3.0 equiv)	CH ₂ Cl ₂	-80 to rt	24 h	46	1.4:1
10	Ph ₂ SO (3.0 equiv) Tf ₂ O (1.1 equiv)	CH ₂ Cl ₂	-80 to rt	24 h	38	1:4.5
11	Ph ₂ SO (3.0 equiv) Tf ₂ O (1.1 equiv) TTPP (2.0 equiv)	CH ₃ CN–CH ₂ Cl ₂ (1:3)	-80 to rt	24 h	35	1:3.4
12	IBr (2.0 equiv) AgOTf (3.0 equiv)	CH_2Cl_2	-40 to rt	95 h	56	1.1:1
13	$IBr (2.0 equiv)$ $AgClQ_{12}H_{2}Q (3.0 equiv)$	CH ₂ Cl ₂	-94	30 min	70	1.2:1
14	$\frac{1}{120} \frac{1}{120} \frac{1}$	EtCN	-94 to rt	20 h	21	1:20
15	$\frac{\text{AgCiO}_4 \cdot \text{H}_2\text{O}}{\text{IBr} (2.0 \text{ equiv})}$ $\frac{\text{AgCiO}_4 \cdot \text{H}_2\text{O} (3.0 \text{ equiv})}{\text{AgCiO}_4 \cdot \text{H}_2\text{O} (3.0 \text{ equiv})}$	CH ₂ Cl ₂	-60	30 min	58	1.3:1

Table 1. Glycosidations of sialyl donor 6 with glucosyl acceptor 7 under various conditions

^a Determined by ¹H NMR analysis of the α : β mixture.

(27.4 g, 48.1 mmol), Boc₂O (55.2 mL, 228 mmol), DMAP (588 mg, 4.81 mmol), and NEt₃ (4.9 mL, 35.2 mmol) in THF (200 mL) was heated at reflux for 17.5 h under an Ar atmosphere. The progress of the reaction was monitored by TLC (CHCl₃-MeOH 10:1). After cooling to rt, the reaction mixture was concentrated, extracted with EtOAc, washed with 2 M HCl, satd aq NaHCO₃, and brine, dried over Na₂SO₄, and concentrated. The residue was purified via chromatography on a short column of silica gel (EtOAc-hexane $1:3 \rightarrow 3:2$) to give a crude syrup, which was then exposed to high vacuum for 12 h. The dried syrup was dissolved in MeOH (200 mL), and 25% NaOMe in MeOH (1.04 g, 4.81 mmol) was added at rt under an Ar atmosphere. After stirring for 11 h, the mixture was acidified with Dowex (H⁺) and filtered. The filtrate was concentrated and the residue obtained was dissolved in a minimum quantity of MeOH, and precipitated with Et₂O to afford **2** as an amorphous mass (17.2 g, 75%): [α]_D +82.0 (*c* 0.3, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.56–7.34 (m, 5H, Ph), 4.86 (1H, NH), 3.80 (m, 2H), 3.63–3.47 (m, 7H), 3.34 (m, 1H), 2.84 (dd, 1H, $J_{3eq,4} = 4.6$, Hz, $J_{gem} = 12.9$ Hz, H-3eq), 1.85 (dd, 1H, $J_{3ex,4} = 11.0$ Hz, H-3ax), 1.43 (s, 9H, –C(CH₃)₃); ¹³C NMR (100 MHz, CD₃OD) δ 171.0, 159.5, 137.8, 131.1, 130.1, 129.8, 87.8, 80.9, 77.8, 73.0, 70.2, 68.9, 64.5, 54.3, 53.3, 41.8, 28.7; MALDI-TOFMS *m*/*z* calcd for [C₂₁H₃₁NO₈S+K]⁺: 496.14. Found: 496.14.

3.3. Methyl (phenyl 5-*tert*-butoxycarbonylamino-8,9-isopropylidene-3,5-dideoxy-2-thio-D-*glycero*-α-D-*galacto*-2nonulopyranosid)onate (3)

To a solution of compound **2** (4.70 g, 9.93 mmol) in MeCN (100 mL) were added DMP (1.41 mL, 11.5

Table 2. Glycosidations of sialyl donor 6 with various acceptors

		HO 9~13 (1.0 eq)					
	O O N	IBr (2.0 eq) AgClO ₄ H ₂ O (3.0 eq)	$0 = \frac{0}{N_{\perp}} \frac{1}{N_{\perp}} $				
	H OAc OAc OAc 6 (1.0 eq)	MS3Å CH ₂ Cl ₂ -94 °C	H OAc OAc OAc 14~1	18			
Entry	Acceptor ^a	Time (min)	Product	Yield (%)	$\alpha:\beta^b$		
1	9 No.	15	14	83	1:1		
2	HO OH BnO BnO OMe 10	20	15	62	1:1		
3	HO 11	15	16	38	1.8:1		
4	HO OBn HO BnO BnO OMe 12	15	17	35°	1.8:1°		
5	BnO OBn HO BnO OMe 13	15	18	38	1:1		

^a Arrows point to the glycosylation site.

^b Determined by ¹H NMR analysis of the α : β mixture.

^c Determined after the acetylation of the α : β mixture.

mmol) and CSA (188 mg, 810 µmol) at rt under an Ar atmosphere. The progress of the reaction was monitored by TLC (CHCl₃–MeOH 10:1). After stirring for 10 min, the reaction mixture was quenched by the addition of NEt₃, and concentrated. The residue was purified by column chromatography on silica gel (CHCl₃–MeOH, 90:1) to give **3** as white foam (4.90 g, 96%): [α]_D –6.3 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.53–7.34 (m, 5H, Ph), 6.71 (d, 1H, *J*_{5,*NH*} = 8.7 Hz, NH), 5.08 (d, 1H, *J* = 6.0 Hz, –OH), 4.51 (d, 1H, *J*_{5,6} = 6.4 Hz, H-6), 4.03 (q, 1H, *J*_{7,8} = *J*_{8,9a} = *J*_{8,9b} = 6.6 Hz, H-8), 3.87 (t, 1H, *J*_{gem} = 7.2 Hz, H-9a), 3.76 (t, 1H, H-9b), 3.46–3.22 (m, 6H, H-4, H-5, H-7, COOMe), 2.57 (dd, 1H, *J*_{3eq,4} = 4.3 Hz, *J*_{gem} = 12.5 Hz, H-3eq),

1.61 (dd, 1H, $J_{3ax,4} = 11.9$ Hz, H-3ax), 1.37 (s, 9H, -C(CH₃)₃), 1.26, 1.17 (2s, 6H, -C(CH₃)₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 168.5, 156.3, 136.0, 129.6, 129.2, 128.6, 107.7, 86.7, 78.0, 76.3, 75.1, 69.3, 66.5, 52.6, 51.9, 41.0, 28.2, 26.7, 25.4; MALDI-TOFMS *m*/*z* calcd for [C₂₄H₃₅NO₈S+K]⁺: 536.17. Found: 536.20.

3.4. Methyl (phenyl 5-amino-5-*N*,7-*O*-carbonyl-8,9-isopropylidene-3,5-dideoxy-2-thio-D-*glycero-*α-D-*galacto*-2nonulopyranosid)onate (4)

To a solution of compound **3** (4.90 g, 9.54 mmol) in THF (500 mL) was added 60% NaH (3.82 g, 95.5 mmol) portion-wise at 0 °C under an Ar atmosphere, then the

reaction mixture was stirred at 40 °C for 27 h. The progress of the reaction was monitored by TLC (CHCl₃-MeOH 10:1). After cooling to 0 °C, the reaction mixture was quenched by the addition of AcOH, and the solution was extracted with EtOAc, and washed with H₂O and brine. The organic layer was dried over Na₂SO₄, concentrated, and purified by column chromatography on silica gel (CHCl₃-MeOH 100:1 \rightarrow 50:1) to give 4 as a colorless syrup (3.68 g, 88%): $[\alpha]_D$ +43.1 (c 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.30 (m, 5H, Ph), 7.17 (s, 1H, NH), 4.60 (t, 1H, $J_{6,7} =$ $J_{7.8} = 5.3$ Hz, H-7), 4.48 (q, 1H, $J_{8.9a} = J_{8.9b} = 6.2$ Hz, H-8), 4.33 (br s, 1H, -OH), 4.13-4.03 (m, 2H, H-9a, H-9b), 3.67 (dd, 1H, $J_{5.6} = 10.3$ Hz, H-6), 3.58 (s, 3H, COOMe), 3.54 (m, 1H, H-4), 3.25 (t, 1H, $J_{4.5} =$ 9.8 Hz, H-5), 2.85 (dd, 1H, $J_{3eq,4} = 4.3$ Hz, $J_{gem} =$ 13.5 Hz, H-3eq), 1.79 (dd, 1H, $J_{3ax,4} = 11.5$ Hz, H-3ax), 1.53 and 1.44 (2s, 6H, -C(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 153.1, 136.5, 130.0, 128.7, 128.6, 110.1, 88.6, 76.1, 74.4, 69.4, 68.8, 65.7, 54.0, 52.9, 26.4, 25.6; MALDI-TOFMS m/z calcd for $[C_{20}H_{25} NO_8S + Na]^+$: 462.11. Found: 462.49.

3.5. Methyl (phenyl 5-amino-5-*N*,7-*O*-carbonyl-3,5-dideoxy-2-thio-D-*glycero*-α-D-*galacto*-2-nonulopyranosid)onate (5)

A suspension of compound 4 (575 mg, 1.31 mmol) in 80% AcOH (13 mL) was stirred at 40 °C for 1.5 h. The progress of the reaction was monitored by TLC (CHCl₃-MeOH 5:1). After cooling to rt, the reaction mixture was co-evaporated with MeOH. The residue was purified by column chromatography on silica gel (CHCl₃–MeOH, $20:1 \rightarrow 10:1$) to give 5 as a colorless syrup (400 mg, 76%): $[\alpha]_{D}$ +77.7 (*c* 0.4, CH₃OH); ¹H NMR (400 MHz, DMSO-d₆) δ 7.51–7.36 (m, 5H, Ph), 7.14 (s, 1H, NH), 5.34 (m, 2H, H-7, -OH), 4.71 (t, 1H, $J_{8,9a} =$ $J_{gem} = 4.8$ Hz, H-9a), 4.32 (t, 1H, $J_{5.6} = J_{6.7} = 4.1$ Hz, H-6), 3.96 (m, 1H, H-8), 3.66-3.52 (m, 2H, H-5, H-9b), 3.50 (s, 3H, COOMe), 3.31 (m, 1H, H-4), 2.60 (dd, 1H, $J_{3eq,4} = 4.1$ Hz, $J_{gem} = 12.8$ Hz, H-3eq), 1.62 (dd, 1H, $J_{3ax,4} = 12.2$ Hz, H-3ax); ¹³C NMR (100 MHz, DMSO- d_6) δ 168.0, 151.7, 135.9, 129.9, 128.9, 128.6, 88.0, 74.9, 73.7, 70.4, 68.3, 62.4, 54.1, 52.6; MALDI-TOFMS m/z calcd for [C₁₇H₂₁NO₈S $+K^{+}: 438.06$. Found: 438.77.

3.6. Methyl (phenyl 4,8,9-tri-*O*-acetyl-5-amino-5-*N*,7-*O*carbonyl-3,5-dideoxy-2-thio-D-*glycero*-α-D-*galacto*-2nonulopyranosid)onate (6)

To a solution of compound 5 (78 mg, 195 mmol) in pyridine (1.0 mL) was added Ac_2O (0.5 mL) at rt under an Ar atmosphere. The progress of the reaction was monitored by TLC (CHCl₃–MeOH 10:1). After stirring for 3.5 h, the reaction mixture was quenched by the addition

of MeOH, and concentrated with toluene. The residue was extracted with EtOAc, and washed with 2 M HCl, satd NaHCO₃, and brine. The organic layer was dried over Na₂SO₄, and concentrated. The resulting residue was purified by column chromatography on silica gel (EtOAc-Hexane 4:3) to give 6 as a colorless syrup (96 mg, 94%): $[\alpha]_{D}$ +37.5 (c 0.7, CHCl₃); ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3) \delta 7.50-7.32 \text{ (m, 6H, NH, Ph)},$ 5.64 (m, 1H, H-8), 4.65 (m, 2H, H-4, H-7), 4.49 (dd, 1H, $J_{8,9a} = 3.0$ Hz, $J_{gem} = 12.0$ Hz, H-9a), 4.33 (dd, 1H, $J_{8,9b} = 6.0$ Hz, H-9b), 3.90 (dd, 1H, $J_{5,6} = 10.8$ Hz, $J_{6.7} = 4.9$ Hz, H-6), 3.77 (dd, 1H, $J_{4.5} = 10.0$ Hz, H-5), 3.51 (s, 3H, COOMe), 2.94 (dd, 1H, $J_{3eq.4} = 4.6$ Hz, $J_{gem} = 14.6$ Hz, H-3eq), 2.20, 2.11 and 2.10 (3s, 9H, 3 Ac), 1.81 (dd, 1H, $J_{3ax,4} = 11.4$ Hz, H-3ax); ¹³C NMR (125 MHz, CDCl₃) δ 170.4, 169.9, 167.3, 151.5, 135.7, 129.9, 128.8, 128.7, 88.9, 77.2, 72.8, 70.3, 70.0, 68.0, 62.9, 52.8, 50.6, 36.7, 21.2, 20.8, 20.6; MALDI-TOFMS m/z calcd for $[C_{23}H_{28}NO_{11}S+H]^+$: 526.13. Found: 526.14.

3.7. General procedure for the glycosylation with 6 under the promotion of $IBr-AgClO_4$ ·H₂O

A mixture of compound 6 (100 μ mol), acceptor (100 μ mol), AgClO₄·H₂O (300 μ mol), and activated 3 Å molecular sieves (500 mg) in CH₂Cl₂ (2.0 mL) was stirred for 1 h at rt under an Ar atmosphere in the dark, and then cooled to -94 °C. After stirring for 30 min, a 1.0 M solution of IBr in CH₂Cl₂ (200 µmol) was added dropwise, and the mixture was stirred for 15 min. The reaction mixture was diluted with EtOAc, warmed to ambient temperature, and quenched by the addition of satd aq NaHCO₃. After stirring vigorously for 10 min, the mixture was filtered through a pad of Celite. The combined filtrate and washings were washed with satd aq Na₂S₂O₃ and brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified on Sephadex LH-20 to give an anomeric mixture of glycosidated product, which was then separated by column chromatography on silica gel.

3.8. Methyl 2,3,4-tri-O-benzyl-6-O-(methyl 4,8,9-tri-O-acetyl-5-amino-5-N,7-O-carbonyl-3,5-dideoxy-D-glycero- α -D-galacto-2-nonulopyranosylonate)- α -D-glucopyranoside (8 α)

$$\begin{split} & [\alpha]_{\rm D} + 29.5~(c~1.3,~{\rm CHCl_3});~^{1}{\rm H}~{\rm NMR}~(500~{\rm MHz},~{\rm CDCl_3}) \\ & \delta~7.34-7.24~({\rm m},~15{\rm H},~3~{\rm Ph}),~6.12~({\rm s},~1{\rm H},~{\rm NH}),~5.57~({\rm m},~1{\rm H},~{\rm H}-8^{Neu}),~4.97~({\rm d},~1{\rm H},~-CH_2{\rm Ph}),~4.87~({\rm d},~1{\rm H},~-CH_2{\rm Ph}),~4.72~({\rm d},~1{\rm H},~-CH_2{\rm Ph}),~4.72~({\rm d},~1{\rm H},~-CH_2{\rm Ph}),~4.72~({\rm d},~1{\rm H},~-CH_2{\rm Ph}),~4.72~({\rm d},~1{\rm H},~-H_{2}{\rm Meu}),~4.51~({\rm d},~1{\rm H},~-CH_2{\rm Ph}),~4.64~({\rm m},~2{\rm H},~-H_{2}{\rm He}),~4.51~({\rm d},~1{\rm H},~-CH_2{\rm Ph}),~4.46~({\rm m},~2{\rm H},~-H_{2}{\rm He}),~4.23~({\rm d},~1{\rm H},~J_{8,9b}=5.7~{\rm Hz},~J_{gem}=12.0~{\rm Hz},~-CH_2{\rm Ph}),~4.02~({\rm d},~1{\rm H},~J_{5,6}=10.3~{\rm Hz},~J_{6,7}=5.1~{\rm Hz},~-H_{2}{\rm He}),~3.95~({\rm t},~1{\rm H},~J_{2,3}=J_{3,4}=9.2~{\rm Hz},~-H_{2}{\rm He}),~4.23~{\rm Hz},~-H_{2}{\rm He}),~-H_{2}{\rm He}),~4.02~{\rm Hz},~-H_{2}{\rm He}),~-H_{2}{\rm He}),~$$

H-3^{*Glc*}), 3.75–3.63 (m, 7H, H-5^{*Neu*}, COOMe, H-5^{*Glc*}, H-6a^{*Glc*}, H-6b^{*Glc*}), 3.44 (dd, 1H, $J_{1,2} = 3.5$ Hz, H-2^{*Glc*}), 3.33 (m, 4H, H-4^{*Glc*}, -OMe), 2.75 (dd, 1H, $J_{3eq,4} = 4.6$ Hz, $J_{gem} = 13.2$ Hz, H-3eq^{*Neu*}), 2.10, 2.05, 2.00 (3s, 9H, 3 Ac), 1.71 (dd, 1H, $J_{3ax,4} = 12.3$ Hz, H-3ax^{*Neu*}); ¹³C NMR (125 MHz, CDCl₃) δ 170.4, 169.9, 167.4, 150.7, 138.5, 138.1, 128.5, 128.4, 128.1, 128.0, 127.8, 127.7, 127.6, 100.3, 97.8, 81.9, 79.8, 77.8, 75.8, 74.9, 73.4, 73.0, 70.7, 69.4, 68.2, 64.3, 62.7, 55.0, 53.0, 51.2, 36.2, 20.8, 20.7, 20.6; MALDI-TOFMS *m/z* calcd for [C₄₅H₅₃NO₁₇+Na]⁺: 902.32. Found: 902.31.

3.9. Methyl 2,3,4-tri-O-benzyl-6-O-(methyl 4,8,9-tri-O-acetyl-5-amino-5-N,7-O-carbonyl-3,5-dideoxy-D-glycero- β -D-galacto-2-nonulopyranosylonate)- α -D-glucopyranoside (8 β)

 $[\alpha]_{D}$ +32.1 (c 2.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.38–7.26 (m, 15H, 3 Ph), 6.80 (s, 1H, NH), 5.59 (m, 1H, H-8^{*Neu*}), 5.05 (dt, 1H, $J_{3eq.4} = 4.8$ Hz, $J_{3ax.4} =$ $J_{4.5} = 10.3$ Hz, H-4^{Neu}), 4.96 (d, 1H, -CH₂Ph), 4.91 (d, 1H, -CH₂Ph), 4.79 (d, 1H, -CH₂Ph), 4.76 (d, 1H, -CH₂Ph), 4.64 (2d, 2H, 2 -CH₂Ph), 4.61 (d, 1H, $J_{1,2} = 3.4$ Hz, H-1^{Glc}), 4.48 (m, 2H, H-7^{Neu}, H-9a^{Neu}), $J_{1,2} = 5.4$ Hz, H-1), 4.46 (m, 2H, H-7), H-9a), 4.28 (m, 2H, H-6^{Neu}, H-9b^{Neu}), 3.96 (t, 1H, $J_{2,3} = J_{3,4} = 9.3$ Hz, H-3^{Glc}), 3.77–3.62 (m, 7H, H-5^{Neu}, COOMe, H-5^{Glc}, H-6a^{Glc}, H-6b^{Glc}), 3.55 (m, 2H, H-2^{Glc}, H-4^{Glc}), 3.36 (s, 3H, -OMe), 2.57 (dd, 1H, $J_{3eq,4} = 4.6$ Hz, $J_{gem} = 13.0$ Hz, H-3eq^{Neu}), 2.11, 2.10, 2.07 (3s, 9H, 3 Åc), 1.68 (dd, 1H, $J_{3ax,4} = 12.0$ Hz, H- $3ax^{Neu}$; ¹³C NMR (125 MHz, CDCl₃) δ 170.4, 170.3, 170.1. 166.5. 150.6. 138.4. 138.0. 128.5. 128.4. 128.3. 128.1, 128.0, 127.9, 127.7, 127.6, 99.0, 98.1, 81.8, 80.4, 75.8, 74.9, 73.5, 72.9, 70.5, 69.2, 67.7, 65.4, 63.0, 62.3, 55.3, 52.7, 51.3, 36.1, 20.9, 20.7; MALDI-TOFMS m/z calcd for $[C_{45}H_{53}NO_{17}+Na]^+$: 902.32. Found: 902.34.

3.10. 1,2:3,4-Diisopropylidene-6-*O*-(methyl 4,8,9-tri-*O*acetyl-5-amino-5-*N*,7-*O*-carbonyl-3,5-dideoxy-D-*glycero*-D-*galacto*-2-nonulopyranosylonate)-α-D-galactose (14)

3.10.1. α-Isomer. $[\alpha]_D -9.7$ (*c* 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.99 (s, 1H, NH), 5.58 (m, 1H, H-8^{Neu}), 5.45 (d, 1H, $J_{1,2} = 5.0$ Hz, H-1^{Gal}), 4.69 (m, 2H, H-4^{Neu}, H-7^{Neu}), 4.57 (dd, 1H, $J_{2,3} = 7.8$ Hz, $J_{3,4} = 2.3$ Hz, H-3^{Gal}), 4.48 (dd, 1H, $J_{8,9a} = 3.0$ Hz, $J_{gem} = 12.1$ Hz, H-9a^{Neu}), 4.27 (m, 2H, H-9b^{Neu}, H-2^{Gal}), 4.16 (dd, 1H, $J_{4,5} = 7.8$ Hz, H-4^{Gal}), 4.06 (dd, 1H, $J_{5,6} = 10.5$ Hz, $J_{6,7} = 5.0$ Hz, H-6^{Neu}), 3.84 (m, 4H, COOMe, H-5^{Gal}), 3.75 (m, 2H, H-5^{Neu}, H-6a^{Gal}), 3.56 (dd, 1H, $J_{5,6b} = 5.9$ Hz, $J_{gem} = 9.6$ Hz, H-6b^{Gal}), 2.78 (dd, 1H, $J_{3eq,4} = 4.5$ Hz, $J_{gem} = 13.2$ Hz, H-3eq^{Neu}), 2.11, 2.10, 2.08 (3s, 9H, 3 Ac), 1.78 (dd, 1H, $J_{3ax,4} = 11.5$ Hz, H-3ax^{Neu}), 1.50, 1.39 and 1.31 (3s, 12H, 2 -C(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.6, 170.0, 167.8, 151.6, 109.4, 108.7, 100.3, 96.3,

72.9, 70.9, 70.6, 70.5, 68.4, 66.6, 64.0, 62.8, 53.1, 51.1, 36.6, 26.1, 26.0, 25.0, 24.6, 21.0, 20.9, 20.8; MALDI-TOFMS m/z calcd for $[C_{29}H_{41}NO_{17}+Na]^+$: 698.22. Found: 698.29.

3.10.2. β-Isomer. $[\alpha]_{D}$ -8.8 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.85 (s, 1H, NH), 5.60 (m, 1H, H-8^{*Neu*}), 5.49 (d, 1H, $J_{1,2} = 5.1$ Hz, H-1^{*Gal*}), 4.97 (dt, 1H, $J_{3eq,4} = 4.4$ Hz, $J_{3ax,4} = J_{4,5} = 10.2$ Hz, H-4^{Neu}), 4.64 (dd, 1H, $J_{2,3} = 7.8$ Hz, $J_{3,4} = 2.3$ Hz, H-3^{Gal}), 4.57 (m, 1H, H-6^{*Neu*}, H-7^{*Neu*}), 4.49 (dd, 1H, $J_{8,9a} = 3.0$ Hz, $J_{gem} = 12.1$ Hz, H-9a^{*Neu*}), 4.33 (m, 2H, H-2^{*Gal*}, H-4^{*Gal*}), 4.28 (dd, 1H, $J_{8,9b} = 5.5$ Hz, H-9b^{Neu}), 4.03 (m, 1H, H-5^{Gal}), 3.75 (m, 5H, H-5^{Neu}, COOMe, H-6a^{Gal}), 3.42 (dd, 1H, $J_{5,6b} = 5.2$ Hz, $J_{gem} = 8.0$ Hz, H-6b^{Gal}), 2.57 (dd, 1H, $J_{gem} = 13.0$ Hz, H-3eq^{Neu}), 2.11, 2.09 and 2.08 (3s, 9H, 3 Ac), 1.66 (dd, 1H, H-3ax^{Neu}), 1.57, 1.45, 1.34, 1.33 (4s, 12H, 2 $-C(CH_3)_2$); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.1, 166.5, 151.2, 109.2, 108.7, 99.0, 96.1, 72.7, 70.6, 70.5, 70.3, 67.5, 67.3, 64.9, 62.9, 60.8, 52.7, 5.07, 36.1, 26.0, 25.7, 24.8, 23.9, 20.8, 20.6; MALDI-TOFMS m/z calcd for $[C_{29}H_{41}NO_{17}+$ Na]⁺: 698.22. Found: 698.24.

3.11. Methyl 2,3-di-O-benzyl-6-O-(methyl 4,8,9-tri-Oacetyl-5-amino-5-N,7-O-carbonyl-3,5-dideoxy-D-glycero-D-galacto-2-nonulopyranosylonate)-α-D-galactopyranoside (15)

3.11.1. α -Isomer. $[\alpha]_{D}$ +29.4 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.26 (m, 10H, 2Ph), 6.84 (s, 1H, NH), 5.58 (m, 1H, H-8^{Neu}), 4.79 (m, 2H, 2 $-CH_2$ Ph), 4.67 (m, 4H, H-4^{Neu}, H-7^{Neu}, 2 $-CH_2$ Ph), 4.58 (d, 1H, $J_{1,2} = 3.2$ Hz, H-1^{Gal}), 4.46 (dd, 1H, $J_{8,9a} = 3.0$ Hz, $J_{gem} = 12.1$ Hz, H-9a^{Neu}), 4.25 (dd, 1H, $J_{8.9b}^{0,5/a} = 5.9 \text{ Hz}, \text{ H}^{-9b}^{Neu}$, 4.06 (dd, 1H, $J_{5,6} = 10.5 \text{ Hz}$, $J_{6,7} = 5.0$ Hz, H-6^{*Neu*}), 3.94 (br s, 1H, H-4^{*Gal*}), 3.86-3.68 (m, 8H, H-5^{*Neu*}, COOMe, H-2^{*Gal*}, H-3^{*Gal*}, H-5^{*Gal*}, H-6a^{Gal}), 3.58 (dd, 1H, $J_{5,6b} = 5.5$ Hz, $J_{gem} = 9.1$ Hz, H-6b^{Gal}), 3.32 (s, 3H, -OMe), 2.75 (dd, 1H, $J_{3eq,4} =$ 4.7 Hz, $J_{gem} = 13.0$ Hz, H-3eq^{Neu}), 2.44 (s, 1H, $-OH^{Gal}$), 2.10, 2.07 and 2.06 (3s, 9H, 3 Ac), 1.73 (dd, 1H, $J_{3ax.4} = 11.9 \text{ Hz}, \text{ H-}3ax^{Neu}$; ¹³C NMR (100 MHz, CDCl₃) & 170.5, 170.4, 169.8, 167.6, 151.3, 138.2, 138.0, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 100.1, 98.3, 75.6, 73.5, 72.9, 72.8, 70.2, 68.3, 68.2, 67.8, 67.4, 63.9, 62.6, 55.2, 53.2, 51.1, 36.3, 20.7, 20.6; MALDI-TOFMS m/z calcd for $[C_{38}H_{47}NO_{17}+Na]^+$: 812.27. Found: 812.31.

3.11.2. β-Isomer. $[\alpha]_D$ +13.5 (*c* 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.26 (m, 11H, NH, 2Ph), 5.58 (m, 1H, H-8^{*Neu*}), 5.03 (dt, 1H, $J_{3eq,4} = 4.6$ Hz, $J_{3ax,4} = J_{4,5} = 10.5$ Hz, H-4^{*Neu*}), 4.75 (m, 3H, 3 – CH₂Ph), 4.63 (m, 3H, H-7^{*Neu*}, H-1^{*Gal*}, –CH₂Ph), 4.46 (dd, 1H, $J_{8.9a} = 3.0$ Hz, $J_{gem} = 12.2$ Hz, H-9a^{*Neu*}), 4.26

(m, 2H, H-6^{*Neu*}, H-9b^{*Neu*}), 4.01 (br s, 1H, H-4^{*Gal*}), 3.86– 3.68 (m, 8H, H-5^{*Neu*}, COOMe, H-2^{*Gal*}, H-3^{*Gal*}, H-5^{*Gal*}, H-6a^{*Gal*}), 3.38 (dd, 1H, $J_{5,6b} = 5.9$ Hz, $J_{gem} =$ 8.7 Hz, H-6b^{*Gal*}), 3.34 (s, 3H, –OMe), 3.21 (s, 1H, – OH^{*Gal*}), 2.34 (dd, 1H, $J_{gem} = 13.2$ Hz, H-3eq^{*Neu*}), 2.12, 2.09 and 2.08 (3s, 9H, 3 Ac), 1.73 (dd, 1H, H-3ax^{*Neu*}); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.4, 170.0, 166.5, 151.9, 138.3, 138.1, 128.5, 128.3, 128.0, 127.8, 127.7, 127.6, 99.2, 98.6, 77.5, 75.4, 73.5, 72.7, 72.6, 70.0, 67.5, 66.8, 66.6, 65.5, 62.7, 61.1, 55.4, 52.7, 51.0, 36.2, 21.0, 20.8, 20.7; MALDI-TOFMS *m/z* calcd for [C₃₈H₄₇NO₁₇+Na]⁺: 812.27. Found: 812.32.

3.12. Methyl (2-adamantyl 4,8,9-tri-*O*-acetyl-5-amino-5-*N*,7-*O*-carbonyl-3,5-dideoxy-D-*glycero*-D-*galacto*-2-nonulopyranosid)onate (16)

3.12.1. \alpha-Isomer. [α]_D +23.2 (*c* 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.81 (s, 1H, NH), 5.60 (m, 1H, H-8), 4.73 (t, 1H, $J_{6,7} = J_{7,8} = 5.8$ Hz, H-7), 4.76 (m, 1H, H-4), 4.43 (dd, 1H, $J_{8,9a} = 3.5$ Hz, $J_{gem} = 12.1$ Hz, H-9a), 4.24 (dd, 1H, $J_{8,9b} = 6.9$ Hz, H-9b), 3.96 (m, 2H, H-6, Adam), 3.83 (s, 3H, COOMe), 3.68 (t, 1H, $J_{4,5} = J_{5,6} = 10.0$ Hz, H-5), 2.87 (dd, 1H, $J_{3eq.4} = 4.6$ Hz, $J_{gem} = 13.2$ Hz, H-3eq), 2.12, 2.08 and 2.07 (3s, 9H, 3 Ac), 2.03–1.43 (m, 15H, H-3ax, Adam); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 170.5, 169.6, 168.6, 151.6, 100.5, 78.0, 74.0, 70.6, 69.5, 68.0, 62.6, 53.0, 53.0, 51.7, 37.5, 37.4, 36.7, 34.1, 33.0, 31.5, 31.5, 27.2, 26.9, 21.0, 20.9, 20.8; MALDI-TOFMS *m*/*z* calcd for [C₂₇H₃₇NO₁₂+Na]⁺: 590.22. Found: 590.22.

3.12.2. β-Isomer. $[\alpha]_D$ +8.5 (*c* 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.53 (s, 1H, NH), 5.60 (m, 1H, H-8), 5.09 (dt, 1H, $J_{3eq,4} = 4.6$ Hz, $J_{3ax,4} = J_{4,5} = 10.5$ Hz, H-4), 4.60 (t, 1H, $J_{6,7} = 5.2$ Hz, $J_{7,8} = 8.6$ Hz, H-7), 4.49 (dd, 1H, $J_{8,9a} = 2.8$ Hz, $J_{gem} = 12.0$ Hz, H-9a), 4.29 (dd, 1H, $J_{8,9b} = 5.7$ Hz, H-9b), 4.20 (dd, 1H, $J_{5,6} = 10.3$ Hz, H-6), 3.77 (m, 2H, H-5, Adam), 3.73 (s, 3H, COOMe), 2.68 (dd, 1H, $J_{gem} = 12.9$ Hz, H-3eq), 2.13, 2.11 and 2.09 (3s, 9H, 3 Ac), 1.85–1.47 (m, 15H, H-3ax, Adam); ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 170.5, 170.3, 167.7, 151.1, 99.7, 78.6, 73.0, 70.6, 67.9, 66.4, 63.1, 52.5, 51.4, 37.3, 37.2, 36.8, 36.6, 34.3, 32.7, 31.8, 31.4, 27.1, 26.9, 21.0, 20.9, 20.8; MAL-DI-TOFMS *m*/*z* calcd for $[C_{27}H_{37}NO_{12}+Na]^+$: 590.22. Found: 590.19.

3.13. Methyl 4-*O*-acetyl-2,6-di-*O*-benzyl-3-*O*-(methyl 4, 8,9-tri-*O*-acetyl-5-amino-5-*N*,7-*O*-carbonyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-α-D-galactopyranoside (17)

3.13.1. α-Isomer. $[\alpha]_D$ +33.6 (*c* 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.26 (m, 10H, 2Ph), 6.67 (s, 1H, NH), 5.59 (dt, 1H, $J_{7,8} = J_{8,9a} = 3.7$ Hz, $J_{8,9b} =$

7.5 Hz, H-8^{*Neu*}), 5.24 (d, 1H, $J_{3,4} = 3.4$ Hz, H-4^{*Gal*}) 4.79 (dt, 1H, $J_{3eq,4} = 4.4$ Hz, $J_{3ax,4} = J_{4,5} = 10.7$ Hz, H-4^{*Neu*}), 4.73 (dd, 1H, $J_{6,7} = 5.8$ Hz, H-7^{*Neu*}), 4.67 (m, 3H, H-1^{Gal}, 2–CH₂Ph), 4.53 (m, 3H, H-3^{Gal}, 2–CH₂Ph), 4.43 (m, 2H, H-9a^{Neu}, $-CH_2Ph$), 4.27 (dd, 1H, $J_{oem} =$ 12.0 Hz, H-9b^{*Neu*}), 4.07 (t, 1H, $J_{5,6a} = J_{5,6b} = 5.7$ Hz, H-5^{Gal}), 3.86 (s, 3H, COOMe), 3.77 (dd, 1H, $J_{5,6} =$ 9.8 Hz, H-6^{*Neu*}), 3.67 (dd, 1H, $J_{1,2} = 3.5$ Hz, $J_{2,3} = 10.3$ Hz, H-2^{*Gal*}), 3.64 (t, 1H, H-5^{*Neu*}), 3.47 (dd, 1H, $J_{gem} = 9.8$ Hz, H-6a^{Gal}), 3.42 (dd, 1H, H-6b^{Gal}), 3.37 (s, 3H, -OMe), 2.73 (dd, 1H, $J_{gem} = 13.4$ Hz, H-3eq^{Neu}), 2.07, 2.03 and 2.01 (3s, 12H, 4 Ac), 1.91 (dd, 1H, H-3ax^{Neu}); ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 170.4, 169.9, 169.5, 167.7, 151.3, 138.1, 138.0, 128.4. 128.3, 128.0, 127.8, 127.6, 100.2, 98.5, 75.0, 74.9, 73.3, 70.9, 70.7, 70.1, 70.0, 69.0, 67.9, 67.5, 62.4, 55.3, 53.4, 51.7, 35.4, 20.9, 20.8, 20.7, 20.6; MALDI-TOFMS m/z calcd for $[C_{40}H_{49}NO_{18}+Na]^+$: 854.28. Found: 854.28.

3.13.2. β-Isomer. $[\alpha]_D$ +17.7 (*c* 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) & 7.37-7.26 (m, 10H, 2Ph), 5.75 (s, 1H, NH), 5.57 (m, 1H, H-8^{Neu}), 5.31 (d, 1H, $J_{3,4} =$ 2.3 Hz, H-4^{Gal}), 4.93 (dt, 1H, $J_{3eq,4} = 4.4$ Hz, $J_{3ax,4} =$ $J_{4.5} = 10.7$ Hz, H-4^{Neu}), 4.81 (dd, 1H, $J_{5,6} = 10.3$ Hz, $J_{6,7} = 5.1 \text{ Hz}, \text{ H-6}^{Neu}$, 4.68 (dd, 1H, $J_{7,8} = 8.6 \text{ Hz}$, H-7^{Neu}), 4.63 (d, 1H, $-CH_2Ph$), 4.60 (dd, 1H, $J_{2,3} =$ 10.3 Hz, H-3^{Gal}), 4.54 (d, 1H, $J_{1,2} = 3.4$ Hz, H-1^{Gal}), 4.52 (d, 1H, $-CH_2Ph$), 4.48 (dd, 1H, $J_{8.9a} = 2.8$ Hz, $J_{gem} = 12.7 \text{ Hz}, \text{ H-9a}^{Neu}$, 4.40 (2d, 2H, 2 –CH₂Ph), $J_{gem} = 12.7$ Hz, H-9a⁻¹), 4.70^(2d), 21, 2⁽¹⁾, 2⁽¹⁾, 4.27^(dd), 1H, $J_{8,9b} = 5.7$ Hz, H-9b^{Neu}), 4.06^(t), 1H, $J_{5,6a} = J_{5,6b} = 6.0$ Hz, H-5^{Gal}), 3.72^(t), 1H, H-5^{Neu}), 3.67^(dd), 1H, H-2^{Gal}), 3.54^(s), 3H, COOMe), 3.46^(dd), 4.66^(dd), 4.66^(dd) 1H, $J_{gem} = 9.5$ Hz, H-6a^{Gal}), 3.40 (dd, 1H, H-6b^{Gal}) 3.31 (s, 3H, -OMe), 2.73 (dd, 1H, $J_{gem} = 13.7$ Hz, H-3eq^{Neu}), 2.11, 2.09, 2.06, 2.01 (4s, 12H, 4 Ac), 1.71 (dd, 1H, H-3ax^{Neu}); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 170.5, 170.3, 170.0, 165.9, 150.7, 138.1, 137.6, 128.5, 128.4, 128.1, 127.9, 127.8, 100.3, 98.6, 75.7, 75.6, 73.5, 72.8, 70.9, 70.1, 69.9, 68.2, 67.8, 67.7, 66.2, 63.0, 55.5, 52.4, 51.0, 36.6, 20.9, 20.7, 20.6; MALDI-TOFMS m/z calcd for $[C_{40}H_{49}NO_{18}+Na]^+$: 854.28. Found: 854.30.

3.14. Methyl 2,4,6-tri-O-benzyl-3-O-(methyl 4,8,9-tri-O-acetyl-5-amino-5-N,7-O-carbonyl-3,5-dideoxy-D-glycero-D-galacto-2-nonulopyranosylonate)- α -D-galactopyranoside (18)

3.14.1. α-Isomer. $[\alpha]_D$ +24.4 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.25 (m, 15H, 3 Ph), 6.22 (s, 1H, NH), 5.59 (m, 1H, H-8^{*Neu*}), 4.85 (d, 1H, -C*H*₂Ph), 4.79 (dt, 1H, $J_{3eq,4} = 4.6$ Hz, $J_{3ax,4} = J_{4,5} = 10.1$ Hz, H-4^{*Neu*}), 4.73 (dd, 1H, $J_{6,7} = 6.0$ Hz, $J_{7,8} = 3.2$ Hz, H-7^{*Neu*}), 4.69 (m, 2H, H-1^{*Gal*}, -C*H*₂Ph), 4.58–4.50 (3d, 3H, 3–C*H*₂Ph), 4.41 (m, 3H, H-9a^{*Neu*}, H-3^{*Gal*}, -C*H*₂Ph), 4.15 (dd, 1H, $J_{8,9a} = 7.8$ Hz, $J_{eem} = 11.9$ Hz, H-9b^{*Neu*}),

References

- Recent reviews: (a) Boons, B. J.; Demchenko, A. V. *Chem. Rev.* **2000**, *100*, 4539–4565; (b) Halcomb, R. L.; Chappell, M. D. J. Carbohydr. Chem. **2002**, *21*, 723–768; (c) Glonic, D. P.; Gin, D. Y. *Nature* **2007**, *446*, 1000–1007.
- (a) Kanie, O.; Kiso, M.; Hasegawa, A. J. Carbohydr. Chem. 1988, 7, 501–506; (b) Hasegawa, A.; Ohki, H.; Nagahama, T.; Ishida, H.; Kiso, M. Carbohydr. Res. 1991, 212, 277–281.
- (a) Okamoto, K.; Kondo, T.; Goto, T. Tetrahedron Lett. 1986, 27, 5233–5236; (b) Ito, Y.; Ogawa, T. Tetrahedron Lett. 1988, 29, 3987–3990; (c) Castro-Palomino, J. C.; Tsvetkov, Y. E.; Schmidt, R. R. J. Am. Chem. Soc. 1998, 120, 5434–5440.
- (a) Takahashi, T.; Tsukamoto, H.; Yamada, H. Tetrahedron Lett. 1997, 38, 8223–8226; (b) Haberman, J. M.; Gin, D. Y. Org. Lett. 2001, 3, 1665–1668; (c) Ishiwata, A.; Ito, Y. Synlett 2003, 1339–1343.
- (a) Ando, H.; Koike, Y.; Ishida, H.; Kiso, M. Tetrahedron Lett. 2003, 44, 6883–6886; (b) Ando, H.; Koike, Y.; Koizumi, S.; Ishida, H.; Kiso, M. Angew. Chem., Int. Ed. 2005, 44, 6759–6763.
- (a) Komba, S.; Galustian, C.; Ishida, H.; Feizi, T.; Kannagi, R.; Kiso, M. *Angew. Chem., Int. Ed.* **1999**, *38*, 1131–1133; (b) De Meo, C.; Demchenko, A. V.; Boons, G. J. *J. Org. Chem.* **2001**, *66*, 5490–5497.
- 7. Demchenko, A. V.; Boons, G. J. Tetrahedron Lett. 1998, 39, 3065–3068.
- Yu, C.-S.; Niikura, K.; Lin, C.-C.; Wong, C.-H. Angew. Chem., Int. Ed. 2001, 40, 2900–2903.
- 9. Tanaka, K.; Goi, T.; Fukase, K. Synlett 2005, 2958-2962.
- (a) Tanaka, H.; Nishiura, Y.; Takahashi, T. J. Am. Chem. Soc. 2006, 128, 7124–7125; (b) Farris, M. D.; De Meo, C. Tetrahedron Lett. 2007, 48, 1225–1227; (c) Crich, D.; Li, W. J. Org. Chem. 2007, 72, 2387–2391.
- 11. Crich, D.; Wu, B. Tetrahedron 2008, 64, 2042-2047.
- Ohno, H.; Hamaguchi, H.; Tanaka, T. Org. Lett. 2000, 2, 2161–2163.
- Cao, S.; Meunier, S. J.; Andersson, F. O.; Letellier, M.; Roy, R. *Tetrahedron: Asymmetry* 1994, 5, 2303–2312.
- Veeneman, G. H.; van Leeuwen, S. H.; van Boom, J. H. *Tetrahedron Lett.* **1990**, *31*, 1331–1334.
- Xia, J.; Alderfer, J. L.; Piskorz, C. F.; Matta, K. L. Chem. Eur. J. 2001, 7, 356–367.
- (a) Dabrowski, U.; Friebolin, H.; Brossmer, R.; Supp, M. *Tetrahedron Lett.* **1979**, *20*, 4637–4640; (b) Paulsen, H.; Tietz, H. *Angew. Chem., Int. Ed. Engl.* **1982**, *21*, 927–928.
- 17. Ito, Y.; Ogawa, T. Tetrahedron Lett. 1988, 29, 1061-1064.
- (a) Code'e, J. D. C.; van den Bos, L. J.; Litjens, R. E. J. N.; Overkleeft, H. S.; van Boeckel, C. A. A.; van Boom, J. H.; van der Marel, G. A. *Tetrahedron* **2004**, *60*, 1057–1064; (b) Crich, D.; Li, W. Org. Lett. **2006**, *8*, 959–962.
- (a) Ercegovic, T.; Meijer, A.; Magnusson, G.; Ellervik, U. Org. Lett. 2001, 3, 913–915; (b) Meijer, A.; Ellervik, U. J. Org. Chem. 2004, 69, 6249–6256.

3.90 (m, 3H, H-6^{*Neu*}, H-2^{*Gal*}, H-5^{*Gal*}), 3.82 (s, 3H, COOMe), 3.76 (m, 1H, H-4^{*Gal*}), 3.70 (dd, 1H, $J_{4,5} = J_{5,6} = 10.1$ Hz, H-5^{*Neu*}), 3.54 (dd, 1H, $J_{5,6a} = 6.8$ Hz, $J_{gem} = 9.6$ Hz, H-6a^{*Gal*}), 3.46 (dd, 1H, $J_{5,6b} = 5.0$ Hz, H-6b^{*Gal*}), 3.39 (s, 3H, OMe), 2.78 (dd, 1H, $J_{gem} = 13.8$ Hz, H-3eq^{*Neu*}), 2.17 (dd, 1H, H-3ax^{*Neu*}), 2.07, 1.99 and 1.96 (3s, 9H, 3 Ac); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.5, 169.3, 167.7, 151.0, 138.7, 138.3, 138.0, 128.6, 128.4, 128.3, 128.2, 128.1, 127.8, 127.6, 127.5, 101.6, 98.4, 76.1, 74.6, 73.4, 73.3, 70.9, 69.6, 69.4, 67.5, 62.7, 55.1, 53.3, 51.7, 34.2, 20.9, 20.8, 20.5; MALDI-TOFMS *m*/*z* calcd for $[C_{45}H_{53}NO_{17}+Na]^+$: 902.32. Found: 902.34.

3.14.2. β-Isomer. $[\alpha]_D$ +11.7 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.28 (m, 15H, 3 Ph), 5.73 (s, 1H, NH), 5.54 (m, 1H, H-8^{Neu}), 4.83 (dt, 1H, $J_{3eq,4} = 4.5$ Hz, $J_{3ax,4} = J_{4,5} = 10.5$ Hz, H-4^{Neu}), 4.75 (d, 1H, -CH₂Ph), 4.65 (m, 2H, 2 -CH₂Ph), 4.56 (m, 3H, H-7^{Neu}, H-1^{Gal}, -CH₂Ph), 4.47 (m, 4H, H-9a^{Neu}, H-3^{Gal}, 2 -CH₂Ph), 4.24 (m, 3H, H-6^{Neu}, H-9b^{Neu}), 3.97 (dd, 1H, $J_{5,6a} = J_{5,6b} = 6.9$ Hz, H-5^{Gal}), 3.91 (dd, 1H, $J_{1,2} = 3.5$ Hz, $J_{2,3} = 10.4$ Hz, H-2^{Gal}), 3.81 (m, 1H, H-4^{Gal}), 3.72 (dd, 1H, $J_{4,5} = J_{5,6} = 10.1$ Hz, H-5^{Neu}), 3.63–3.53 (m, 5H, COOMe, H-6a^{Gal}, H-6b^{Gal}), 3.30 (s, 3H, OMe), 2.84 (dd, 1H, $J_{gem} = 13.7$ Hz, H-3eq^{Neu}), 2.10, 2.04 and 2.03 (3s, 9H, 3 Ac), 1.75 (dd, 1H, H-3ax^{Neu}); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.1, 170.0, 166.0, 150.1, 138.2, 138.1, 137.7, 128.6, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 127.1, 100.5, 98.6, 78.3, 75.1, 75.0, 73.4, 73.3, 72.8, 70.6, 69.3, 68.3, 67.5, 66.6, 62.9, 55.4, 52.5, 51.1, 36.3, 20.9, 20.7, 20.6; MAL-DI-TOFMS *m*/*z* calcd for [C₄₅H₅₃NO₁₇+Na]⁺: 902.32. Found: 902.33.

Acknowledgments

We greatly thank Dr. Yukishige Ito (RIKEN) for providing the sialic acid. This work was supported by MEXT of Japan (Grant-in-Aid for Scientific Research to H.A., No. 16780083) and Mitsubishi Chemical Corporation Fund (H.A.).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.carres. 2008.05.005.