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A novel water-soluble glycine bridged zinc(II) Schiff base coordination polymer was synthesized by the
condensation of 2,6-diformyl-4-methylphenol, glycine, and zinc(II) chloride. The complex was character-
ized by 1HNMR, FT-IR, elemental analyses and X-ray crystallography. The polymeric complex was built up
of two glycine-bridged Zn/L moieties, where L denotes the Schiff base containing 2,6-diformyl-4-
methylphenol and glycine in 1:1 M ratio. The carboxylic group of L was coordinated to the Zn atoms of
the neighboring moieties; thus each Zn center was five-coordinated. The interaction between polymeric
Zn(II) complex and bovine serum albumin (BSA) was studied by UV–Vis, fluorescence, and synchronous
fluorescence spectroscopic techniques. By considering the sign and values of the thermodynamic param-
eters (DH and DS), it is clear that the binding between BSA and complex was exothermic and entropy-
driven and electrostatic interactions between the complex and BSA was supposed. Site-selective binding
studies revealed that the complex were mainly located in the region of site II (subdomain IIIA) in BSA.
From the synchronous fluorescence spectroscopic studies, it is concluded that complex could bind to tyr-
osine and tryptophan residues simultaneously. The Kb values indicated a high binding affinity of the com-
plex to BSA. In vitro anticancer activity of the polymeric Zn(II) complex was evaluated against A549,
Jurkat, and Raji cell lines by MTT assay. The complex was remarkably active against the cell lines and
can be a good candidate for an anticancer therapy. Theoretical docking studies were performed to further
investigate the BSA binding interactions.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Studies of coordination polymers (CPs) has been started since
1989 by Robson and Hoskins [1,2]. Coordination polymers (CPs)
arising from the interaction between metal ions and multidentate
ligands exhibit structural diversities due to various possibilities for
metal ions and ligands. The application of CPs in the different fields
such as gas storage/separation [3–11], sensors [12–14], catalysis
[15–22], photonics [23,24] and magnetism [25–29] is studied
[30]. In the preparation of coordination polymers, some special
ligands such as phenyldicarboxylates are widely employed because
of their extraordinary varieties in the binding of complexes [31].
Also the selection of the metals is very important in designing
CPs. Divalent metal ions of first-transition-row such as Co(II), Ni
(II), Cu(II) and Zn(II) are good candidates as metal sources due to
their low cost and safety in industrial and biological applications
[32]. It is worthy to note that first row transition metals are essen-
tial for many important chemical processes in biological systems.
Zn(II) complexes have been widely reported as radioprotective
agents [33], tumor photosensitizers [34], antidiabetic insulin-
mimetics [35,36], and antibacterial or antimicrobial [37–39]
agents. Amino acid derived Schiff base ligands support the binding
of metal ions rather frequently.

One of the most important challenges in designing metal com-
plexes for drug delivery is the metal effect on the cancer treatment.
Recently some studies comparing mono- and binuclear metal com-
plexes as anticancer drugs have been reported [40–45]. The diver-
sity in the coordination number, geometries, redox states,
thermodynamic-kinetic characteristics and intrinsic properties of
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metal ions and ligands are important in cancer therapy. It is proven
that multinuclearity increases the efficiency and selectivity of the
anticancer drugs due to the potential cooperation between the
metal centers [41,46–52]. Recently, CPs and metal organic frame-
works (MOFs) with multi-metal centers have attracted intense
attention in cancer therapy [53] and multi-carrier of drugs [54].
Many drugs are bound to albumin and transported in the blood.
Thus formation of complexes between drugs and proteins are
important from the point of view of transportation and mechanism
of drug-protein interaction and search of new drug molecules
[53,55–64]. In this study, bovine serum albumin (BSA) as the pro-
tein model is used. Its medical importance as a circulating protein,
its abundance, low cost, availability, ease of purification, ability to
produce an intrinsic fluorescence emission, and structural similar-
ity with human serum albumin (HSA) are the reasons for this selec-
tion [65,66].

In this paper we report synthesis and characterization of a
water soluble glycine bridged zinc(II) Schiff base coordination
polymer. In designing the complex, we expected a bimetallic Schiff
base complex but to our surprise a coordination polymer was syn-
thesized. By considering the unique structure and application of
CPs, the pharmacological properties of the complex were investi-
gated in detail.
2. Experimental section

2.1. Material and measurements

Bovine serum albumin (BSA), phenylbutazone, ibuprofen, p-cre-
sol, hexamethylenetetramine, paraformaldehyde, 2-aminoethanol,
glycine, zinc (II) chloride, sodium nitrate, methanol, ethanol, sulfu-
ric acid, acetic acid, toluene, diethyl ether, n-hexane, chloroform,
dimethylsulfoxide (DMSO), NaCl and Tris for buffer solution,
DMSO-d6, CDCl3 and D2O for NMR spectroscopy, potassium bro-
mide (KBr) for IR spectroscopy were obtained from Merck, Fluka,
Sigma and Aldrich.

The NMR spectra were recorded on Bruker Avance DPX
250 MHz spectrometer. UV–Vis. measurements were carried out
on Perkin-Elmer (LAMBDA 2) UV–Vis. spectrophotometer
equipped with a LAUDA-ecoline-RE 104 thermostat at different
temperatures. FT-IR spectra were recorded on Shimadzu FT-IR
8300 infrared spectrophotometer. Elemental analysis (C.H.N.) was
carried out on Thermo Finnigan-Flash 1200. Melting points of com-
pounds were measured with BUCHI 535. The X-ray diffraction
measurements were made at 95 K on a SuperNova diffractometer
of Rigaku Oxford Diffraction using the mirror-collimated CuKa
radiation from a micro-focus sealed X-ray tube and CCD detector
Atlas S2. All experiments were carried out in triple distilled water
at pH 7.4, 1 mM Tris buffer and 5 mM NaCl. Fluorescence and syn-
chronous fluorescence measurement were carried out on a Perkin
Elmer (LS 45) spectrofluorimeter.
2.2. Synthesis of 2,6-diformyl-4-methylphenol [67]

To a solution of p-cresol (10.8 g, 0.1 mol) in acetic acid (50 cm3)
were added hexamethylenetetramine (28.2 g, 0.2 mol) and
paraformaldehyde (30 g, 1.0 mol). The system was stirred until a
light brown viscous solution was formed and then heated (70–
90 �C) for 2 h. The solution was cooled to room temperature and
conc. H2SO4 (10 cm3) added carefully. The resulting solution was
refluxed again for 0.5 h and then on treatment with distilled water
(400 cm3) resulted in the formation of a light yellow precipitate,
which was stored at 4 �C overnight. The yellow product was iso-
lated by filtration and washed with a small amount of cold CH3OH.
A purer product was obtained after recrystallization from toluene.
Yield: 5.7 g (35%); color: yellow; m.p: 130–134 �C (lit., 133.5 �C);
1H NMR [250 MHz, DMSO-d6, d (ppm)]: 11.38 (s, 1H, OH), 10.19 (s,
2H, HC@O), 7.82 (s, 2H, Ar-H), 2.31 (s, 3H, CH3); 1HNMR (CDCl3,
ppm): 11.39 (s, 1H, OH), 10.15 (s, 2H, HC@O), 7.70 (s, 2H, Ar-H),
2.32 (s, 3H, CH3); FT-IR (KBr, cm�1): 2869 (tC-H), 1674 (tC@O),
1211 (tC-O); Elemental Analysis, Found (Calc.)%: C9H8O3

(MW = 164.05 g.mol�1) C: 66.02 (65.85); H: 4.78 (4.91); N: 0 (0).

2.3. Synthesis of polymeric complex

To a solution of 2,6-diformyl-4-methylphenol (0.16 g, 1 mmol)
in 20 mL ethanol was added a solution of glycine (0.15 g, 2 mmol)
in 10 mL water. The reaction mixture was refluxed. After 3 h zinc
(II) chloride (0.27 g, 2 mmol) was added to the solution. A yellow
solid precipitate was collected by filtration after solvent evapora-
tion and washed with cold ethanol and diethyl ether. Yellow crys-
tals suitable for X-ray crystallography were obtained by
recrystallization in water.

Yield: 0.53 g (48%); color: yellow; m.p: 280 �C; FT-IR (KBr,
cm�1): 3448 (tOH), 1658 (tC@O), 1542 (tC@N); Elemental Analysis,
Found (Calc.)%: C26H24N4O10Zn2�4H2O (MW = 755.33 g.mol�1) C:
41.85 (41.34); H: 4.36 (4.27); N: 7.59 (7.42).

2.4. Protein-binding study

2.4.1. Absorption spectra
Electronic absorption spectra were recorded on a Perkin-Elmer

(Lambda 2) UV–Vis spectrophotometer, equipped with thermostat.
The wavelength range was from 250 to 500 nm at 293, 298, 303
and 308 K. Absorption spectral titrations were carried out in Tris-
HCl buffer (pH = 7.4) for the free proteins (bovine serum albumin)
(2 � 10�5 M) in the absence and presence of the complex
(8 � 10�4 M) in the same buffer. The mixture in the cuvette was
shacked homogeneously before each scan.

2.4.2. Fluorescence spectra
Intrinsic fluorescence of proteins makes the fluorescence spec-

troscopy as a reliable technique in the study of drug-protein inter-
action. The fluorescence emission spectra of BSA were scanned in
the range 300–500 nm using an excitation wavelength of
280 nm. In a fluorescence measurement, 2.5 mL of serum albumin
solutions (bovine serum albumin) (pH 7.4) with the concentration
of 7.2 � 10�8 M in 1 mM Tris buffer and 5 mM NaCl was added
accurately to the quartz cell of 1 cm optical path and titrated by
successive additions of complex (5 � 10�5 M) (0–55 lL) in the
same buffer in the time intervals equal to 3 min. So the change
in fluorescence emission intensity was measured within 3 min
after each addition of the complex to bovine serum albumin.

2.4.3. Site marker competitive experiments
Binding location studies between the complex and bovine

serum albumin (BSA) in the presence of phenylbutazone (site mar-
ker of site I) and ibuprofen (site marker of site II) were measured
using the fluorescence titration methods. For this purpose, a mix-
ture of 2.5 mL BSA (7.2 � 10�8 M) and 10 lL phenylbutazone
(1.8 � 10�5 M in 50/50 V/V% water/acetone) was kept for 1 h and
titrated by complex solution. Similar solutions containing 10 lL
ibuprofen (1.8 � 10�5 M in 50/50 V/V% water/acetone) and
2.5 mL BSA (7.2 � 10�8 M) were prepared and titrated with com-
plex (5 � 10�5 M) (0–45 lL). Titration was followed by fluores-
cence spectroscopy using excitation wavelength of 280 nm.

2.4.4. Synchronous fluorescence spectra measurements
In the synchronous fluorescence spectra, the excitation and

emission monochromator with a fixed wavelength differences
(Dk) between them was scanned simultaneously. Synchronous flu-
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Scheme 1. The synthetic route to the compounds.
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orescence spectroscopy is a useful technique to explore the struc-
tural changes of BSA by addition of the complex (5 � 10�5 M) (0–
40 lL). The synchronous fluorescence spectra at the wavelength
interval Dk = 15 nm is due to the tyrosine residues and at the
wavelength interval Dk = 60 nm is due to the tryptophan residue
of BSA [68].

2.4.5. The cytotoxicity assay
The growth inhibitory effects of the complex against three cell

lines including Jurkat human T cell leukemia, Raji Burkitt’s lym-
phoma and A549 lung carcinoma were examined by 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay as previously described [69]. The cell lines were cultured in
RPMI 1640 medium (Sigma, St. Louis, MO) supplemented with
10% fetal calf serum (Gibco, Berlin, Germany). Cells were main-
tained at 37 �C with 5% CO2 and 95% humidity. The cells were fed
until confluent and expanded by trypsinization (for A549), then
sub-cultured at lower numbers in new culture flasks. A predeter-
mined number of cells (15 � 103 for Jurkat and Raji cells and
7.5 � 103 for A549 cells) were seeded in the wells of a 96-well plate
with varying concentrations of the complex (0.1–100 mg/mL) and
incubated at 37 �C with 5% CO2 for 48 h. Cells treated only with
dimethyl sulfoxide (solvent) at a concentration equal to the test
wells was used as negative control and those treated only with cis-
platin as positive control. 10 lL MTT solutions (5 mg mL�1 in RPMI
medium) were added to each well and incubation was continued
for 4 h. At the end, the produced insoluble formazan was dissolved
by adding DMSO and shaking for 10 min. Then, the optical density
(OD) was read at 570 nmwith a reference wavelength of 630 nm in
a microplate reader (Bio-Tek’s ELx808, VT). To calculating the per-
centage of growth inhibition, the equation: [1 � (test OD/negative
control OD)] � 100 was used. From the graph of inhibition percent-
age against different compounds concentrations the 50% cell inhi-
bition (IC50) value was calculated.

2.4.6. Molecular docking
The crystal structure of BSA (PDB ID 3V03) was taken from the

Brookhaven Protein Data Bank (http://www.pdb.org). 3V03 crystal
structure was preferred for docking process because of no missing
atoms, no crystallized ligand and reasonably good resolution.
Docking calculations considering all flexible ligands were per-
formed using the MVD program package. In order to allow the
ligands to rotate freely even in their most fully extended conforma-
tions, the bonding site was chosen at (x = 37.81, y = 19.87,
z = 58.18) with radius 13 Å. The docked conformation of the com-
plexes with BSA was generated by the molecular docking program
Molegro Virtual Docker (MVD) [70].
3. Results and discussion

3.1. Synthesis and characterization of the compounds

The synthetic route to the compounds is shown in Scheme 1.
The synthesized compounds were identified by X-ray crystallogra-
phy, FT-IR, 1HNMR, electronic spectra and elemental analyses. The
polymeric complex is stable in atmosphere for extended periods
and soluble in water, DMSO and ethanol. It is insoluble in non-
polar solvents.

The 1H NMR spectrum of 2,6-diformyl-4-methylphenol was car-
ried out in DMSO-d6 and CDCl3 (Fig. S1). 1H NMR spectrum in
DMSO-d6 revealed a singlet signal at 11.38 ppm which was
assigned to OH proton. A singlet signal of the aldehydic protons
at 10.19 ppm and a singlet signal of the aromatic protons at
7.82 ppm were observed. Methyl protons were observed as a sin-
glet signal at 2.31 ppm.1H NMR spectrum of the polymeric com-
plex was run in D2O (Fig. S2). Two singlet signals at 8.20 and
8.26 ppm were assigned to HC@N protons, confirmed unequivalent
chemical environment. Aromatic protons were displayed at 7.24–
7.34 ppm. A signal for CH3 protons at 3.39 ppm and signals for
CH2 protons at 2.10–2.18 ppm were observed. In the FT-IR spec-
trum of 2,6-diformyl-4-methylphenol a strong intensity band at
1674 cm�1 was assigned to the C@O group (Fig. S3). By comparing
the FT-IR spectrum of the precursor aldehyde and the polymeric
complex (Fig. S4), it was revealed that (C-O) stretching vibration
shifts toward lower values as a result of coordination of oxygens
to the metal ion [71]. (C@N) stretching vibration which was
observed at 1685 cm�1 indicated the formation of imine bonds.
Medium-weak bands at 2923 cm�1 for polymeric complex were
related to (CAH) modes of vibrations [72]. The ring skeletal vibra-
tions (C@C) were consistent in the region of 1440–1465 in the
polymeric complex [73]. The electronic absorption spectrum of
the CP (Tris-HCl buffer, 5 � 10�5 M), displayed two intense absorp-
tion bands at 216 and 243 nm which were assigned to phenyl and
imine (p?p⁄) transitions, respectively. A wide weaker absorption
band at 415 nm was related to imine (n?p⁄) transition (Fig. S5).
The thermal decomposition of the complex was studied to evaluate
its thermal stability. During the thermal analysis, heating rates
were set to 20 �Cmin�1 under helium atmosphere, and the weight
loss was measured from the ambient temperature up to 1000 �C.
Two endothermic effects were revealed at 133.8 and 180.8 �C
which confirmed that the complex was stable before 133.8 �C. It
means that during the biological studies thermal decomposition
was not been occurred (Fig. S6).

3.2. X-ray structure analysis

Yellow crystals suitable for X-ray crystallography were
obtained by recrystallization in water. Structure was solved with
Superflip [74] and refined with Jana2006 [75]. X-ray crystallogra-
phy determination revealed that polymeric complex crystalized
in the monoclinic space group P1 21/c1 with two formula units
in the unit cell. The asymmetric units of complex comprise two
Zn/L units and two bridging glycine molecules. The ORTEP view
of the polymeric complex is shown in Figs. 1, 2. Crystallographic
data and refinement parameters of the polymeric complex are
listed in Tables 1, 2. The coordination environment about each
zinc(II) center was a distorted square pyramidal with the phenolic
oxygen, iminic nitrogen and oxygen atom of Schiff base and oxygen
atom of the bridged glycine. These four atoms made a slightly dis-
torted square coordination around Zn(II), and a carbonyl group of

http://www.pdb


Fig. 1. An ORTEP view of the zinc(II) polymeric complex with the atom numbering
scheme. One repeated unit of the polymeric complex is shown and four uncoor-
dinated water molecules are omitted for clarity. Two similar but not symmetry-
equivalent parts of the complex are distinguished by ‘‘a” and ‘‘b” suffixes.

Fig. 2. Crystal structure of the polymeric complex.

Table 1
Crystal data and structure refinement for the polymeric complex.

Complex

Formula C26H24N4O10.Zn2.4(H2O)
Temperature/K 95 K
Crystal system Monoclinic
Space group P 1 21/c 1
a [Å] 18.4322(7)
b [Å] 8.4517(2)
c [Å] 19.2226(7)
a [�] 90
b [�] 104.960(3)
c [�] 90
vol/Å3 2893.07(17)
Z,Z0 4
D, g/cm3 1.734
m [mm�1] 2.749
F(000) 1544.44
R(reflections) 0.0473(3563)
wR2(reflections) 0.1158(5183)

Table 2
Selected bond lengths (Å) and angles (�) for the polymeric complex.

Bond angles (�) Bond lengths (Å)

O1a,Zn1a,O2a 145.1(1) Zn1a-O1a 2.027(3)
O1a,Zn1a,O4b 92.4(1) Zn1a-O2a 2.069(4)
O1a,Zn1a,N1a 87.9(1) Zn1a-O4b 1.959(4)
O1a,Zn1a,O3a 109.0(1) Zn1a-N1a 2.039(4)
O2a,Zn1a,O4b 94.8(1) Zn1a-O3a (polymeric) 2.020(3)
O2a,Zn1a,N1a 80.1(1) Zn1b-O4a 2.001(3)
O2a,Zn1a,O3a 103.8(1) Zn1b-O1b 2.048(3)
O4b,Zn1a,N1a 171.1(1) Zn1b-O2b 2.218(3)
O4b,Zn1a,O3a 97.5(1) Zn1b-N1b 2.036(4)
N1a,Zn1a,O3a 90.8(1) Zn1b-O3b (polymeric) 1.975(3)
O4a,Zn1b,O1b 95.6(1) O3a-Zn1a 2.020(3)
O4a,Zn1b,O2b 85.7(1) O3b-Zn1b 1.975(3)
O4a,Zn1b,N1b 140.4(1)
O4a,Zn1b,O3b 99.9(1)
O1b,Zn1b,O2b 159.5(1)
O1b,Zn1b,N1b 87.9(1)
O1b,Zn1b,O3b 104.0(1)
O2b,Zn1b,N1b 78.4(1)
O2b,Zn1b,O3b 95.9(1)
N1b,Zn1b,O3b 117.5(1)
Zn1a,O1a,C1a 124.4(3)
Zn1a,O2a,C9a 114.6(3)
C9a,O3a,Zn1a 134.4(3)
Zn1b,O4a,C13a 124.2(3)
Zn1b,O1b,C1b 130.4(3)
Zn1b,O2b,C9b 113.8(3)
C9b,O3b,Zn1b 142.5(3)
Zn1a,O4b,C13b 133.2(3)
Zn1a,N1a,C7a 126.6(3)
Zn1a,N1a,C8a 112.1(3)
C7a,N1a,C8a 120.3(4)
C11a,N2a,C12a 126.5(4)
C11a,N2a,H1n2a 113(3)
C12a,N2a,H1n2a 119(3)
Zn1b,N1b,C7b 127.5(3)
Zn1b,N1b,C8b 114.5(3)
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the neighboring moiety was coordinated in the apical position,
thus each Zn center is five coordinated. The coordination bond
angles were 95.6(1)� (O4a-Zn1b-O1b), 87.9(1)� (O1b-Zn1b-N1b),
78.4(1)� (O2b-Zn1b-N1b), 85.7(1)� (O2b-Zn1b-O4a), respectively.
The apical bond angles were 99.9(1)� (O4a-Zn1b-O3b), 117.5(1)�
(N1b-Zn1b-O3b), 95.9(1)� (O2b-Zn1b-O3b), 104.0(1)� (O1b-Zn1b-
O3b), respectively. These bond angles revealed that Zn atom was
located out of the square plane. The bond distances around zinc
center were 2.039(4), 2.027(3), 2.069(4), 1.959(4), and 2.020(3)
for Zn1a-N1a, Zn1a-O1a, Zn1a-O2a, Zn1a-O4b, Zn1a-O3b (poly-
meric type), respectively.
3.3. Fluorescence quenching studies

Interaction of drugs with plasma proteins, particularly with
serum albumin (the most abundant protein in plasma) is impor-
tant especially in drug delivery and drug design studies. Bovine
serum albumin is very useful in the protein studies due to its struc-
tural similarity with human serum albumin (HSA) and its low cost
[76]. Three intrinsic fluorophores present in the protein are trypto-
phan, tyrosine, and phenylalanine residues. The intrinsic fluores-
cence of serum albumins is created by Trp alone, because Phe
has a very low quantum yield and the fluorescence of Tyr is
quenched if it is ionized or placed near an amino group, a carboxyl
group, or a Trp. Thus the overall changes of intrinsic fluorescence
intensity of serum albumins are related to the changes in the fluo-
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rescence intensity of Trp residue when small molecule is added to
serum albumin [77–79]. Fluorescence emission is very sensitive to
the environment and spectral shifts in the excitation and emission
spectra have been observed during transferring the fluorophore
between high and low polarity environment.

The effect of Zn(II) complex (5 � 10�5 M) (0-55 lL) on BSA
(7.2 � 10�8 M) fluorescence intensity is shown in Fig. 3. It is obvi-
ous that serum albumin reveals strong fluorescence emission peak
around 340 nm after excitation at 280 nm. By titration a fixed con-
centration of BSA with different amounts of complex, a remarkable
quenching of BSA fluorescence emission peak with a hypsochromic
shift due to the formation of a complex between the polymeric
complex and BSA was observed [76]. The hypsochromic shift sug-
gested that the microenvironment around tryptophan residues
becomes slightly hydrophobic upon the interaction of polymeric
complex with BSA [80].

The fluorescence quenching data are analyzed by the Stern–Vol-
mer Eq. (1) [81].

F0
F
¼ 1þ KSV½Q � ¼ 1þ kqs0½Q � ð1Þ

where F and F0 are the fluorescence intensities in the presence and
the absence of quencher, respectively. KSV is the Stern-Volmer
quenching constant, [Q] is the concentration of quencher, kq is the
bimolecular quenching constant, and s0 is the lifetime of the fluo-
rophore in the absence of a quencher, which is 10–8 s for BSA [80].

KSV values obtained from the plot of F0/F vs. [Q]. The corre-
sponding Stern-Volmer quenching constant was KSV = 3.9 � 104

(M�1) and quenching rate constant was kq = 3.9 � 1012 (M�1s�1)
at 298 K. The linear Stern-Volmer plots indicated that Eq. (1) is
applicable for the present systems (Fig. 4).

Two different mechanisms for fluorescence quenching are clas-
sified as dynamic quenching and static quenching. Dynamic
quenching refers to the excited state when fluorophore and the
quencher come into contact during the transient existence. The
static quenching refers to fluorophore–quencher forming a ground
state. In order to confirm the quenching mechanism of BSA by the
polymeric complex, UV–Vis absorption spectra were recorded [82].

3.4. UV–Vis absorption studies

The UV–Vis spectral measurements can be used to distinguish
the type of quenching mechanism i.e., static or dynamic quenching.
Dynamic quenching causes no change in the absorption spectra
because it effects on the excited state of the fluorophore. However,
in the static quenching the ground-state complex formation results
in changing of the absorption spectrum of the fluorophore [76].
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The absorption spectra of BSA (2 � 10�5 M) in the absence and
presence of complex (8 � 10�4 M) (0–220 lL) are shown in
Fig. S7 which displayed that the absorption intensity of BSA
enhanced by addition the compound, with a slight blue shift
[53]. This result suggested a static interaction between the com-
plex and BSA due to the formation of a complex-BSA ground state
system. The intrinsic binding constant, Kb was determined from
the spectral titration data using Eq. (2) at four temperatures
(293, 298, 303 and 308 K) (Figs. 5 & S8):

½complex�
ðea��efÞ ¼

½complex�
ðeb��efÞ þ

1
Kbðeb��efÞ ð2Þ

where [complex] is the concentration of complex, ea corresponds to
the extinction coefficient observed (Aobsd/[M]), ef corresponds to the
extinction coefficient of the free compound, eb is the extinction
coefficient of the compound when fully bound to BSA, and Kb is
the intrinsic binding constant. The ratio of slope to intercept in
the plot of [complex]/(ea � ef) versus [complex] gave the values of
Kb (Fig. 6) which are presented in Table 3.

The different quenching mechanisms are usually classified as
either dynamic or static interaction, which can be distinguished
by their different dependence on temperature and viscosity, or
by lifetime measurements. Dynamic interaction mainly depends
on diffusion. Higher temperatures will result in faster diffusion
and hence higher dynamic interaction constants. In the case of sta-
tic interaction, a complex is formed between bio-macromolecule
and the quencher in the ground state. Increasing of temperature
result in the dissociation of weakly bound complexes, and there-
fore, the values of the static interaction constants are expected to
be smaller [83]. The Kb at different temperatures in Table 3 sug-
gested a static quenching pathway, because the Kb decreased with
increasing the temperature.
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3.5. Thermodynamic parameters and binding modes

The binding of metal complexes to BSA were characterized clas-
sically through spectrophotometric titrations, by following the
changes in absorption spectra. Protein–drug binding is included
of hydrophobic interactions, electrostatic interactions, van der
Waals forces and hydrogen bonds. The binding mode can be deter-
mined by analyzing the thermodynamic parameters such as free
energy, enthalpy and entropy, which serve the main evidence for
confirming the binding mode. The DH and DS values were calcu-
lated from Van0t Hoff Eq. (3) [80,84]:

lnKb ¼ � H
RT

þ S
R

ð3Þ

where Kb is defined as the binding constant at special temperatures
and R is the gas constant. Eq. (4) was used to calculate Free energy
changes (DG) at different temperatures [84]:

G ¼ H� TS ð4Þ
Thermodynamic parameters determined from the linear Van0t

Hoff plot (Fig. S9) are presented in Table 3. The DH and DS values
suggest that the binding between BSA and complex was exother-
mic and entropy-driven process. The negative value of DG indi-
cated that the interaction process was spontaneous. According to
the criteria set up by Ross and Subramanian [85], the negative
DH and positive DS values indicated that electrostatic forces play
an important role in the complex-BSA binding interaction [80].

3.6. Binding stoichiometry

For determination the average aggregation number of BSA, hJi,
Eq. (5) was used.

1� F
F0

¼ hJi ½Q �
½BSA�0

ð5Þ

The linear plots have been presented. The slopes (hJi) (Fig. S10)
with J = 0.0015 <1 showed that the complex did not aggregate on
BSA molecules and the stoichiometry for complex-BSA system
was 1:1.
Table 3
Apparent binding constant and relative thermodynamic parameters for the interaction of

T (K) Kb (M�1) R2 D

293 (6.1 ± 0.1) � 103 0.9909 �
298 (5.7 ± 0.2) � 103 0.9937
303 (5.1 ± 0.3) � 103 0.9916
308 (4.7 ± 0.2) � 103 0.9932
3.7. Binding constants and the number of binding sites

For static quenching interaction, the fluorescence intensity data
can also be used to analyze the apparent binding constant (Kb) and
the number of binding sites (n) for the complex and BSA system by
Eq. (6) [82]:

log
F0 � F

F

� �
¼ logKb þ nlog½Q � ð6Þ

where Kb is the binding constant of the compound with BSA, n is
the number of binding sites and [Q] is the concentration of
quencher. From the plot of log [(F0 � F)/F] vs. log [Q], the binding
constant (Kb = 8.8 � 103 (M�1)) and the number of binding sites
(n = 0.339) were calculated (Fig. S11). The value of n was approxi-
mately equal to 1, suggested that there was only one binding site
for the complex on BSA [82].

3.8. Site-selective binding of complex on BSA

Bovine serum albumin has two main sites for binding to drugs:
(i) site I of BSA in which tryptophan residue is bound to drugs and
(ii) site II in which tyrosine is located and capable to accept the
binding of drugs. In order to identify the preference of the binding
sites by drugs, displacement experiments were performed with
phenylbutazone and ibuprofen as site markers, because site I of
BSA showed affinity for warfarin, phenylbutazone, etc., whereas
site II was well suited for ibuprofen, diazepam, fluofenamic acid,
etc. [86] The emission spectra of a mixture of complex
(5 � 10�5 M) (0–45 lL), BSA (7.2 � 10�8 M) and site marker
(1.8 � 10�5 M) were measured to identify the binding site. The
spectra showed that the quenching of BSA in the presence of
ibuprofen was smaller than in its absence (Fig. 7). The calculated
binding constants (Table 4) revealed that by addition of ibuprofen,
the binding constant of complex-BSA system decreased while it
remained almost constant with the addition of phenyl butazone.
These results revealed that the complex was displaced from the
binding site by ibuprofen, thus the complex were mainly located
in the region of site II (subdomain IIIA) in BSA.

3.9. Energy transfer and binding distance between complex and BSA

Proximity and angular orientation of fluorophores can be esti-
mated by FRET (Fluorescence resonance energy transfer) which is
a nondestructive spectroscopic method. FRET has been nominated
as ‘‘spectroscopic ruler”. Because by this method the molecular dis-
tance between the complex and protein systems can be measured.
Calculating the molecular distance has been done by overlapping
the fluorescence emission band of donor with excitation band of
acceptor. If these two band overlap with each other, it means that
they are within 2–8 nm distance from each other [87,88]. Thus the
effective energy transfer from donor to acceptor can happen. In the
FRET method fluorophore nominated as donor and it must be
enough overlap between the fluorescence emission spectrum of
the donor and UV–Vis absorption spectrum of the acceptor [89].

Energy transfer in the Förster theory is affected by two param-
eters: the distance between acceptor and donor and the critical
complex with BSA at different temperatures.

H (kJ mol�1) DG (kJ mol�1) DS (J mol�1 K�1)

13.4 ± 0.9 �21.25 ± 0.11 26.8 ± 3.0
�21.39 ± 0.13
�21.52 ± 0.14
�21.65 ± 0.12
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Fig. 7. Quenching effect of BSA (7.2 � 10�8 M) binding to complex (5 � 10�5 M) (0–45 lL) in the a) absence of site marker, b) presence of phenyl butazone (1.8 � 10�5 M)
and c) presence of ibuprofen (1.8 � 10�5 M).

Table 4
Binding constants of competitive experiments of complex-BSA system.

Site marker Kb (M�1) R2

Without 8.8 ± 0.1 � 103 0.9923
Ibuprofen 0.8 ± 0.3 � 103 0.9911
Phenyl butazone 2.9 ± 0.2 � 103 0.9965
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(7.2 � 10�8 M) fluorescence spectrum (b).

Table 5
Energy transfer parameters for the interaction of metal complex with BSA.

R0 (nm) r (nm) J (cm3 L mol�1) E

2.01 2.14 2.59 � 10�15 0.41
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distance of energy transfer (R0), which can be calculated by using
Eq. (7):

E ¼ R6
0

R6
0 þ r6

¼ 1� F
F0

ð7Þ

where F and F0 are the fluorescence intensities of biomolecule in the
presence and absence of quencher, r the donor–acceptor distance
and R0 the critical distance where the transfer efficiency is 50%:

R6
0 ¼ 8:8� 10�25K2N�4UJ ð8Þ

where K2 is defined as spatial orientation factor this factor is related
to the geometry of the donor and acceptor, and a random orienta-
tion is defined by K2 = 2/3 in fluid solution, N is the averaged
refracted index of the medium is defined by N in the wavelength
range where spectral overlap is significant, but for the average
refracted index of water and organics N = 1.336 is used, the fluores-
cence quantum yield of the donor is shown by U, and U = 0.118 is a
special figure for the fluorescence quantum yield of tryptophan
[89], and finally the effect of the spectral overlap between the emis-
sion spectrum of the donor and the absorption spectrum of the
acceptor is defined by J, which can be calculated by using Eq. (9):

J ¼
R1
0 FðkÞeðkÞk4dkR1

0 FðkÞdk ð9Þ

In this Equation F(k) is nominated as the corrected fluorescence
intensity of the donor where the wavelength range is varied from k
to (l + Dk) and e(k) is the molar extinction coefficient of the accep-
tor at wavelength k.

As shown in Fig. 8, the emission spectrum of BSA (7.2 � 10�8 M)
overlaps with the absorption spectrum of the complex
(5 � 10�5 M) in the wavelength range from 300 to 470 nm. This
considerable overlap forms the basis of FRET. Thus, the Förster’s
non-radiative energy transfer theory can be used to determine
the distance between the amino acid residues on protein and the
complex in the binding site [56]. The corresponding results are
shown in Table 5. The value of r = 2.14 nm is less than 8 nm, and
0.5R0 < r < 1.5R0, indicating the energy transfer from BSA to the
complex occurs with high probability [90–92].

3.10. Synchronous fluorescence spectroscopic studies

Three amino acids: tyrosine, tryptophan and phenylalanine
residues cause the fluorescence of BSA which is very sensitive to
the microenvironment of these chromophores. In the synchronous
fluorescence spectroscopy the conformational changes of BSA in
the presence of the complex can be investigated [93]. In syn-
chronous fluorescence spectroscopy, the different nature of chro-
mophores, is shown by the difference between excitation and
emission wavelengths (Dk = kem � kex) of tryptophan and tyrosine
residue. The large Dk (60 nm) are ascribed to the fluorescence of
tryptophan while the small Dk (15 nm) for tyrosine residue [94].
It is worthy to note that the maxima of emission spectra of the
tryptophan and tyrosine residues in proteins are related to the
polarity of their surroundings [93]. In this regard increasing polar-
ity of the surrounding environment and/or lower hydrophobicity
of it and/or more loose structure of BSA can all cause the red shift



Table 6
The Inhibitory concentration (IC) 50% for the effects of the complexes on various cell
lines.

IC50(lg/ml)

A549 Jurkat Ragi

93.6 ± 4 7.3 ± 1 9.3 ± 3

Fig. 10. The structure of BSA.
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of the maximum emission wavelength in synchronous fluores-
cence [89]. The effect of complex (5 � 10�5 M) (0–40 lL) on the
synchronous fluorescence spectra of BSA (7.2 � 10�8 M) is shown
in Fig. 9. With increasing the concentrations of complex, the syn-
chronous fluorescence spectra at Dk = 15 nm for BSA displayed a
decrease in fluorescence intensity at 282 nm with slight blue shift
of 1–2 nm and at Dk = 60 nm exhibited a decrease in fluorescence
intensity at 280 nm without any appreciable shift in the position of
the band.

Quenching of the fluorescence of BSA with both Dk indicated
that complex could bind to tyrosine and tryptophan residues
simultaneously. As it was mentioned previously, the maximum
emission wavelength of tyrosine residues had a blue shift but no
obvious wavelength shift of tryptophan residues was observed,
which suggested the decreasing of the polarity around tyrosine
residues and increasing the hydrophobicity, but it was assumed
that the polarity around tryptophan residues had no remarkable
change during the binding process [89].

3.11. Inhibitory effects of the complex on various cancer cell lines

The anticancer properties of complex have been already proved
[95–99]. Water solubility is a main character of a metal complex
when it considers as a drug candidate. Providing some ionic groups
on the metal complexes increase their hydrophilicity and water
solubility. Some ionic groups like PPh3

+ also increase the lipophilic-
ity of complex and accelerate passing through biological
membranes.

By considering the polymeric complex, it is clear that lipophilic
parts were provided in the polymeric complex (aromatic rings) and
hydrophilic parts were also provided (glycine bridge and water
molecules which coordinated to the central metal) thus this com-
plex can easily pass through biological membrane and reveal anti-
cancer activity. In the current study the synthetic complex was
screened for its cytotoxicity activities on A549, Jurkat and Raji cell
lines as the target. The cell lines were incubated in the presence of
increasing concentrations of the complex for 48 h, and then cyto-
toxicity was measured. In Figs. S12–14, the inhibitory effects of
the complex against cancer cell lines are shown. Generally, the
complex showed strong growth inhibitory activity against the cell
lines. In order to compare the cytotoxic effects of the complex, the
IC50 values were determined. IC50 value is defined as the concen-
tration of a compound where 50% of the cell growth is inhibited.
In Table 6, based on the IC50 values, the cytotoxic activity of com-
plex for A549, Jurkat and Raji cell lines are shown. The complex
had a stronger activity against leukemia lymphoma cells (IC50,
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Fig. 9. Synchronous fluorescence spectra of BSA (7.2 � 10�8 M) with Dk = 15 nm (a) and
(5 � 10�5 M) (0–40 lL).
7.3 lg/mL for Jurkat and 9.3 lg/mL for Raji) compared to A549
(IC50, 93.6 lg/mL). The IC50 values of cisplatin for A549 cell line
was 79.4 lg/mL, 25 lg/mL for Jurkat and 30 lg/mL for Raji cells.
3.12. Molecular docking study

The BSA molecule includes three homologous domains: domain
I (residues 1–195), II (196–383) and III (384–585) that are divided
into nine loops (L1–L9) and connected to each other via 17 disul-
fide bonds. Each domain is composed of two sub-domains (A and
B) (Fig. 10). The presence of two tryptophan residues (Trp-134
and Trp-212) makes an intrinsic fluorescence in BSA molecule.
On the surface of subdomain IB, Trp-134 is located and within
the hydrophobic binding pocket of subdomain IIA, Trp-212 is
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Fig. 11. a) Position of the complex docked in the binding site. b) The amino acid residues which surrounding the complex.
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located. In the present study, the MVD program was used to obtain
the binding mode of the complex at the active site of BSA. As can be
observed in the docking results, the complex preferred the binding
pocket of site II (subdomain IIIA). Additionally, there are some
specific hydrogen bonds which are due to the presence of several
polar residues in the proximity of the protein and can play an
important role in binding of the complex to BSA. In fact, hydrogen
bonding can be formed between the O, N, H of a Schiff base com-
plex and the amino acid residues of BSA (Fig. 11). On the basis of
these results, it can be suggested that the formation of hydrogen
bonds stabilizes the complex–BSA composition. Also, the energy
for the binding of complex to BSA was found to be �134.037. These
results are very close to those obtained from the above-mentioned
experimental method. Amino-acid residues are involved in the
complex–BSA interactions and binding energy for the best selected
docking positions are Ala489, Arg409, Arg484, Asn390, Gln384,
Glu382, Glu449, Gly430, Gly433, Ile387, Leu386, Leu406, Leu429,
Leu452, Leu490, Lys413, Met445, Phe402, Phe487, Pro383,
Pro485, Ser488, Thr448, Thr491, Tyr410, Val432.
4. Conclusion

A new water soluble polymeric complex was synthesized and
characterized by elemental analysis, FT-IR, 1H NMR and UV–Vis
spectroscopy, and X-ray structure analysis. The binding interaction
of this complex with BSA was investigated by spectroscopic meth-
ods. Experimental results suggested that this complex could bind
to the serum albumins, and the corresponding quenching rate con-
stants were calculated by Stern-Volmer equation. Experimental
results also showed quenching of fluorescence emission intensity
with a hypsochromic shift during the binding process.

Competitive experiments also showed that the complex was
bound to site II of serum albumin. Based on the Förster energy
transfer theory, the transfer efficiency of energy and the distance
between the complex and proteins were obtained.

From the synchronous fluorescence spectrum, it was concluded
that the interaction of complex with albumins did not change the
conformation of tryptophan microenvironment, while the
hydrophobicity near the tyrosine residues was changed.

Thermodynamic results indicated that the binding process is
exothermic for the complex and essentially entropy-driven. This
suggested that electrostatic forces play an important role in the
binding reaction. The high affinity of albumins for the complex
was clearly evidenced by DG values which clarified the role of
albumins as endogenous carrier for this complex in the body,
which could be a useful guideline for further drug design. The
values of Kb at different temperatures suggested a static quenching
pathway, because the Kb decreased with increasing the
temperature.

Finally, the mentioned complex was also screened for its anti-
cancer activities with Jurkat human T cell leukemia, Raji Burkitt’s
lymphoma and A549 lung carcinoma cell lines as the target.
According to IC50 values, the results indicated that this complex
can be a potential anticancer agent.
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