

Article

Subscriber access provided by University of South Dakota

Synthesis and Fluorescence Properties of Pyrimidine Mono- and Bisboron Complexes

Yasuhiro Kubota, Yousuke Ozaki, Kazumasa Funabiki, and Masaki Matsui

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo400879g • Publication Date (Web): 24 Jun 2013

Downloaded from http://pubs.acs.org on June 30, 2013

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Synthesis and Fluorescence Properties of Pyrimidine Mono- and Bisboron Complexes

Yasuhiro Kubota,* Yousuke Ozaki, Kazumasa Funabiki, and Masaki Matsui*

Department of Materials Science and Technology, Faculty of Engineering, Gifu University, 1-1

Yanagido, Gifu 501-1193, Japan

E-mail : kubota@gifu-u.ac.jp, matsuim@gifu-u.ac.jp

Abstract

Novel fluorescent mono- and bisboron complexes based on pyrimidine bearing β -ketoiminate ligands were synthesized and their fluorescence properties were investigated. The nonsubstituted and trifluoromethyl-substituted monoboron complexes showed higher fluorescence quantum yield in solid state than in solution. The dimethylamino derivative of the monoboron complex exhibited positive solvatochromism in the fluorescence spectra. The bisboron complex showed significantly higher molar absorption coefficient and red-shifted maximum absorption and maximum fluorescence wavelengths than the corresponding monoboron complex.

Introduction

Boron complexation is a simple yet effective strategy to express or enhance fluorescence. For example, although dipyrromethene,¹ pyridomethene,² diketone,³ iminoketone,⁴ and azo dyes⁵ generally show no fluorescence, their boron complexes are known to be fluorescent. Among the boron complexes, especially boron dipyrromethene (BODIPY) dyes, show excellent fluorescence in solution and are used as molecular probes,⁶ in photodynamic therapy,⁷ as laser dyes⁸ and solar cells.⁹ However, most BODIPY dyes show small Stokes shift and lose their fluorescence in solid state.¹⁰ Therefore, the modification of BODIPY core¹¹ and the development of new boron complexes¹² are being actively investigated.

On the other hand, in recent years, much attention has been paid to multinuclear boron complexes.¹³ Bisboron complexes with interesting properties such as long-wavelength absorption and fluorescence,¹⁴ fluorescent near infrared (NIR)-labeling,¹⁵ *in vivo* imaging,¹⁶ two-photon absorption,¹⁷ nonlinear optical properties,¹⁸ and solid-state fluorescence¹⁹ have been reported. Recently, we have reported that monoboron complexes based on pyrazine or thiazole structures bearing a β -ketoiminate ligand show interesting fluorescence properties such as a large Stokes shift, solid-state fluorescence and aggregation-induced emission enhancement (AIEE) effect.⁴ In the course of our studies on the development of fluorescent boron complexes bearing β -ketoiminate ligands, we are interested in the synthesis of the boron complex based on pyrimidine structure. In this paper, we describe the synthesis and fluorescence properties of novel mono- and bisboron complexes based on pyrimidines bearing β -ketoiminate ligands.

Results and Discussion

Synthesis

The Journal of Organic Chemistry

The reaction of 4,6-dichloropyrimidine with acetophenone in the presence of sodium hydride gave bidentate ligand 1, which consists of a tautomeric mixture of iminoketone 1a and iminoenol 1b in CDCl₃ (Scheme 1). The iminoketone and iminoenol structures were confirmed by ¹H NMR spectra of the methylene signal at δ 4.47 (s, 2H) of 1a and olefinic signal at δ 6.01 (s, 1H) and hydroxy signal at δ 14.6 (brs, 1H) of 1b. The ratio of 1a and 1b was 1 : 15 in CDCl₃. The tautomeric mixture of 1 was treated with boron trifluoride diethyl ether complex in the presence of triethylamine to give monoboron complex 4. Solution of 4 and acetophenone in tetrahydrofuran was refluxed, quenched with water, extracted with dichloromethane, and concentrated. The residue was reacted with boron trifluoride diethyl ether complex in the presence of triethylamine to 7.

Similar reactions of 4,6-dichloropyrimidine with 4'-(trifluoromethyl)acetophenone and 4'dimethylaminoacetophenone gave the corresponding monodentate ligands 2 and 3 (Scheme 1). The ligands 2 and 3 were allowed to react with boron trifluoride diethyl ether complex in the presence of triethylamine to give trifluoromethyl- and dimethylamino-substituted BF_2 complexes 5 and 6, respectively.

Scheme 1. Synthesis of pyrimidine boron complexes.

Crystal structures

The structures of 4–7 were confirmed by X-ray crystallographic analysis. The ORTEP drawings of 4–7 are shown in Figures 1–4, respectively. The crystal structure of 7 shows C_2 symmetry along the C4–C5 axis. The C1–O1 bond lengths of 4 (1.32 Å) and 7 (1.33 Å) are between typical C–O (ca. 1.43 Å) and C=O (ca. 1.23 Å) bond lengths (Figures S1 and S2). The C2–C3 (4: 1.41 Å, 7: 1.42 Å) bonds are longer than C1–C2 bonds (4: 1.35 Å, 7: 1.36 Å). The B1–O1 bond lengths of 4 (1.44 Å) and 7 (1.44 Å) are considerably smaller than the B1–N1 bond lengths of 4 (1.59 Å) and 7 (1.59 Å). These results suggest that the six-membered rings of 4 and 7 have delocalized iminoenolate structures.

The boron atoms of **4** and **7** have a tetrahedral geometry. Although the B1 atom of **4** lies in the same plane as the pyrimidine ring, the B1* and B1 atoms of **7** are located above and below the corresponding pyrimidine ring (Figures S1 and S2). As a result, while **4** is almost planar, **7** is slightly bent. Additionally, the F2 and F1 atoms of **4** are evenly situated above and below the pyrimidine ring. On the other hand, two fluorine atoms of **7** (F1* and F1) are oriented perpendicularly above and below the pyrimidine ring and the others (F2* and F2) are arranged horizontally to the pyrimidine ring of **4**, dihedral angle between the C12–C4–C3 plane and the N2–C5–N1 plane is 0.5° (Figure S1). Meanwhile, in the case of **7**, the corresponding dihedral angle is 2.2° (Figure S2). The adjacent bidentate coordination of two boron atoms through the pyrimidine moiety causes a larger distortion in the structure of **7** than in that of **4**. This may be due to the relief of the steric repulsion between neighboring boron moieties.

The torsion angles of C2–C1–C6–C7 of 4–7 are 5.9°, 0.8°, 6.7° and 10.2°, respectively (Figure S3). This indicates that the terminal aryl groups allow the extension of π -conjugation. The C1–C6 bond length of 4–7 is as follows: 1.477 Å for 4, 1.481 Å for 5, 1.461 Å for 6 and 1.479 Å for 7 (Figure S3).

The C1–C6 bond length of **6** is shorter than those of **4**, **5** and **7**, suggesting that contribution of the resonance structure shown in Figure S4 is important in the ground state of **6**.

Figure 1. ORTEP view of 4 (CCDC 931994). Hydrogen atoms have been omitted for clarity.

Figure 2. ORTEP view of 7 (CCDC 931992). Hydrogen atoms have been omitted for clarity.

Figure 3. ORTEP view of 5 (CCDC 931993). Hydrogen atoms have been omitted for clarity.

Figure 4. ORTEP view of 6 (CCDC 931995). Hydrogen atoms have been omitted for clarity.

Optical properties

The UV–vis absorption and normalized fluorescence spectra of **4**–**7** in dichloromethane are shown in Figures 5 and 6, respectively. The maximum absorption wavelength (λ_{max}) of monoboron complex **4** (375 nm) was slightly red-shifted compared to that of ligand **1** (346 nm) (Table 1). Although ligand **1** did not show fluorescence, complex **4** exhibited weak blue fluorescence at 429 nm. The fluorescence quantum yields (Φ_f) of **1** and **4** in dichloromethane were 0.00 and 0.02, respectively. Bisboron complex **7** showed a sharp absorption peak at 475 nm along with a vibrational peak at 449 nm. The λ_{max} of **7** was 100 nm red-shifted compared to that of **4**. Molar absorption coefficient (ε) of **7** (107,300) was significantly higher than that of **4** (42,600), which may be because of the extension of π conjugation by annulation and the two terminal phenyl groups. Bisboron complex **7** exhibited relatively strong yellow-green fluorescence ($\Phi_f = 0.55$) and the maximum fluorescence wavelength (F_{max}) was 490 nm. The Stokes shift of **7** (645 cm⁻¹) was very small, similar to other boron complexes such as BODIPY dyes¹ (400–600 cm⁻¹, in most cases) and pyridomethene–BF₂ complexes^{2b} (250–400 cm⁻¹). This suggests that **7** has rigid molecular structure with little difference between the ground and excitedstate structures.²⁰ The λ_{max} of **5** (372 nm) was slightly blue-shifted and ε was lower (35,800) compared

The Journal of Organic Chemistry

to that of **4** (375 nm and 42,600), respectively. On the other hand, **6** showed relatively large bathochromic shift of λ_{max} (459 nm) and increase in ε (70,800).

Table 1. O	optical pro	perties of	pyrimidine	boron complexes
------------	-------------	------------	------------	-----------------

	In dichloromethane ^[a]						Solid state	
Compd -	$\lambda_{\max} [nm] (\varepsilon)$	$F_{\max}^{[b]}$ [nm]	$arPsi_{ m f}^{[{ m b},{ m c}]}$	$\tau_{\rm s}^{\rm [d]} [{\rm ns}]$	$k_{\rm f}^{\rm [e]} [10^9 {\rm s}^{-1}]$	$k_{\rm nr}^{\rm [f]} [10^9 {\rm s}^{-1}]$	$F_{\max}^{[g]}[nm]$	$arPsi_{ m f}^{[m c,g]}$
4	375 (42,600) 391 (33,300)	411, 429	0.02	[h]			525	0.13
5	372 (35,800) 388 (24,000)	407, 426	0.01	[h]			488	0.15
6	459 (70,800)	529	0.78	2.8	0.28	0.08	629	0.20
7	449 (85,000) 475 (107,300)	490, 517	0.55	1.4	0.39	0.32	641	0.07

[a] Measured at a concentration of 1.0×10^{-5} mol dm⁻³. [b] The excitation wavelengths (λ_{ex}) were as follows: **4** (377 nm), **5** (377 nm), **6** (452 nm) and **7** (464 nm). [c] Measured using an integrating sphere method. [d] Measured using a single-photon-counting method. [e] Radiative rate constant ($k_{ff} = \Phi_{f}/\tau_{s}$). [f] Non-radiative rate constant ($k_{nr} = (1 - \Phi_{f})/\tau_{s}$). [g] The λ_{ex} were as follows: **4** (368 nm), **5** (372 nm), **6** (523 nm) and **7** (504 nm). [h] Too short to be measured ($\tau_{s} < 0.1$ ns).

Figure 5. UV–vis absorption spectra of 4–7 in dichloromethane $(1.0 \times 10^{-5} \text{ M})$.

Figure 6. Normalized fluorescence spectra of 4–7 in dichloromethane $(1.0 \times 10^{-5} \text{ M})$.

Theoretical calculation

To understand the absorption properties of 4–7, density functional theory (DFT) calculations were performed with a Gaussian 09 package.²¹ The geometries were optimized at DFT/B3LYP level using a 6-31G(d,p) basis set. Time-dependent DFT (TDDFT) calculations were also performed using a B3LYP/6-311++G(d,p) method. The calculated λ_{max} , main orbital transition, and oscillator strength *f* are listed in Table S1. For all complexes, the first absorptions are mostly attributed to HOMO–LUMO transitions. For each complex, the HOMO and LUMO orbitals are delocalized over the whole molecule (Figure 7). In particular, in the case of 7, the two terminal phenyl rings significantly contribute to the delocalization. Therefore, bisboron complex 7 is expected to have red-shifted λ_{max} and high ε . The DFT calculations indicate that dimethylamino derivative 6 shows intramolecular charge-transfer (ICT) transition from dimethylamino group to the pyrimidine moiety. The red-shifted λ_{max} of 6 are owing to the ICT transition.

Figure 7. Molecular orbital energy diagram and isodensity surface plots of the HOMO–1, HOMO, LUMO and LUMO+1 of **4**–**7**.

Discussion of fluorescence quantum yield in solution

Although complexes 4 and 5 hardly showed any fluorescence ($\Phi_f \le 0.02$), complexes 6 ($\Phi_f = 0.78$) and 7 ($\Phi_f = 0.55$) exhibited relatively strong fluorescence. Recently, we reported that thiazole– monoboron complexes bearing β -ketoiminate hardly show fluorescence in solution owing to the intramolecular C–Ar rotation, which promotes nonradiative processes.^{4b} In order to consider the effect of the C–Ar rotation on the Φ_f value, we investigated the fluorescence properties of 4 in THF–water mixtures of various rations. The fluorescence color and F_{max} were almost unchanged until the addition of 80% water by volume, because 4 was soluble in the THF–water mixtures. However, when the water ACS Paragon Plus Environment fraction exceeded 85%, the fluorescence color and F_{max} were dramatically changed from blue to yellowgreen and from 430 to 520 nm, respectively (Figures S5, 6). The fluorescence intensity was also increased with increasing the water fraction. As described below in detail, **4** has higher Φ_f value and more red-shifted F_{max} in solid state than in solution. Thus, these changes are considered to result from the formation of aggregates in the THF–water mixtures: the formation of nanoparticles was confirmed by the observation of the Tyndall phenomenon (Figure S7). Since molecular rotations are restricted in the solid state, the observed increase of fluorescence intensity indicates the intramolecular C–Ar rotation causes the fluorescence quenching in solution.^{4b, 22} However, in the light of the fact that the nonradiative rate constant (k_{nr}) of **7** (0.32 × 10⁹ s⁻¹) having two phenyl groups is small compared to those of **4** (5.00 × 10⁹ s⁻¹) and **5** (4.57 × 10⁹ s⁻¹), there may be other process in the nonradiative decay of **4** such as a heavyatom effect of chlorine (Table S2, S3, and 2).²³

The k_{nr} value of **6** (0.08 × 10⁹ s⁻¹) was obviously smaller than those of **4** and **5**. This suggests that the higher Φ_f value of **6** is due to the suppression of nonradiative processes. In the case of **6**, the resonance structure predicts the restriction of the C–Ar rotation (Figure S4). Therefore, the higher Φ_f value of **6** may be because of not only the difference of the transition between **4**, **5** (π – π * transition) and **6** (ICT transition) but also the restriction of the intramolecular C–Ar rotation.

Solvent effect

The effects of solvent on the absorption and fluorescence properties of **4**–**6** were investigated. The λ_{max} , ε , and F_{max} values of **4** and **5** were slightly affected by the type of solvent (Figures S8–S11, Tables S2 and S3). Moreover, the absorption spectra of **6** were hardly affected by the solvent (Figure 8). However, **6** showed pronounced positive solvatochromism in the fluorescence spectra (Figures 9 and Table 2). As the solvent polarity increased, the fluorescence spectra got red-shifted and broadened. To estimate the difference in dipole moments between the excited state and ground state ($\Delta\mu$), Lippert-

The Journal of Organic Chemistry

Mataga plot of **6** was created (Figures 10 and 11).²⁴ Solvent polarity parameters (Δf) are obtained from equation shown in Figure 10.²⁵ The radius of Onsager cavity was calculated by B3LYP/6-31G(d,p) method (a = 4.98 Å). The $\Delta \mu$ value of **6** was estimated to be 11.4 D from the slope of Lippert-Mataga plot (10,630 cm⁻¹). The dipole moment in the ground state (μ_g) was calculated to be 9.17 D by using B3LYP/6-31G(d,p) method. Therefore, the dipole moment of **6** in the excited state (μ_e) was estimated to be *ca*. 20.6 D. The high μ_e value suggests the formation of ICT-excited state with higher dipolar moment than the ground state.²⁶ Because the ICT-excited state is stabilized in more polar solvents, F_{max} red-shifted with increasing solvent polarity.

Table 2. Absorption and	fluorescence properties	of 6 in	various	solvents
1	1 1			

Solvent ^[a]	$\Delta f^{[b]}$	$\lambda_{\max} \left[nm ight] \left(\varepsilon ight)$	$F_{\max}^{[c]}$ [nm]	Stokes shift [cm ⁻¹]	$arPsi_{ m f}^{[m c,d]}$	$\tau_{s}^{[e]}[ns]$	$k_{\rm f}^{\rm [f]} [10^9 {\rm s}^{-1}]$	$k_{\rm nr}^{\rm [g]} [10^9 {\rm s}^{-1}]$
Hexane	0.00	444 (73,900)	456	593	0.82	1.9	0.44	0.10
Toluene	0.02	453 (68,900)	494	1832	0.84	2.3	0.37	0.07
Chloroform	0.15	460 (67,300)	512	2208	0.82	2.5	0.32	0.07
THF	0.21	451 (64,800)	532	3376	0.60	2.6	0.23	0.15
Dichloromethane	0.22	459 (70,800)	529	2882	0.78	2.8	0.28	0.08
Acetonitrile	0.31	452 (63,800)	565	4425	0.03	0.3	0.11	3.46

[a] Measured at a concentration of 1.0×10^{-5} mol dm⁻³. [b] Solvent polarity parameter ([$(\varepsilon - 1)/(2\varepsilon + 1)$] - [$(n^2 - 1)/(2n^2 + 1)$]) (ref. 25). [c] The excitation wavelengths (λ_{ex}) were as

follows: hexane (445 nm), toluene (452 nm), chloroform (458 nm), THF (451 nm), dichloromethane (452 nm) and acetonitrile (451 nm). [d] Measured using an integrating sphere method. [e] Measured using a single-photon-counting method. [f] Radiative rate constant ($k_f = \Phi_f/\tau_s$). [g] Non-radiative rate constant ($k_{nr} = (1 - \Phi_f)/\tau_s$).

Figure 8. UV-vis absorption spectra of **6** in various solvents $(1.0 \times 10^{-5} \text{ M})$.

Figure 9. Normalized fluorescence spectra of 6 in various solvents $(1.0 \times 10^{-5} \text{ M})$.

The Journal of Organic Chemistry

$$\Delta v = v_{abs} - v_{fl}$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{2\Delta\mu^2}{hca^3} \Delta f + \text{ constant}$$

$$= \frac{(9.05 \times 10^{34}) \Delta\mu^2}{a^3} \Delta f \quad [\text{C}^{-2}] + \text{ constant}$$

$$\Delta f = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}$$

Figure 10. Lippert-Mataga equation.

 Δv : Stokes shift.

- $v_{\rm abs}$: Wavenumber of absorption maximum.
- $v_{\rm fl}$: Wavenumber of fluorescence maximum.

 ε_0 : Dielectric constant of vacuum.

- $\Delta \mu$: The difference in the dipole moment between excited and ground states.
- *h* : Planck constant.
- c: Light velocity.
- *a* : Radius of Onsager cavity.
- Δf : Orientation polarizability.
- ε : Dielectric constant of solvent.
- n: Refractive index of solvent.

Figure 11. Lippert-Mataga plot of 6.

Solid-state fluorescence

Boron complexes 4-7 showed solid-state fluorescence (Table 1). The fluorescence spectra of 4-7 are shown in Figure 12. The $\Phi_{\rm f}$ values were as follows: 0.13 (4), 0.15 (5), 0.20 (6), and 0.07 (7). Interestingly, monoboron complexes 4 and 5 showed higher $\Phi_{\rm f}$ values in solid state than in solution ($\Phi_{\rm f} \leq 0.05$); in other words, 4 and 5 have aggregation-induced enhanced emission (AIEE) character. This is probably because of the restriction of intramolecular C–Ar rotation in the solid state.^{4b, 22}

To consider the differences in $\Phi_{\rm fs}$ we investigated the crystal packing of 4-7. In the crystal packing of 7, the molecules depicted in blue and red (Figure 13) formed independent stacking columns 7A and 7B by intermolecular π - π interactions (C-C: 3.40–3.67 Å). Furthermore, π - π interactions (C-C: 3.56–3.69 Å) were observed between the columns 7A and 7B. As a result, bisboron complex 7 formed consecutive intermolecular π - π interactions throughout the molecule. In many cases, strong and continuous intermolecular interactions between the neighboring fluorophores cause fluorescence quenching in the solid state.²⁷ Therefore, because of the consecutive π - π interactions, 7 is considered to have relatively low $\Phi_{\rm f}$ (0.07).

In the case of 4, the molecules depicted in blue and red as well as in orange and gray formed dimers by π - π interactions (C-C: 3.36-3.70 Å) (Figure 14). Additionally, π - π interactions were observed for each of the dimers (C-C: 3.52-3.69 Å). Thus, similar to 7, independent stacking columns **4A** and **4B** were formed by consecutive π - π interactions. However, π - π interactions between the columns **4A** and **4B** were not observed. Because the interactions between the stacking columns were inhibited, monoboron complex **4** could exhibit higher $\Phi_{\rm f}$ (0.13) than 7.

As shown in Figure 15, trifluoromethyl derivative **5** also formed dimers by π - π interactions (C-C: 3.58–3.70 Å). Similar to **4**, stacking columns **5A** and **5B** were formed by π - π interactions between each of the dimers (C–C: 3.63 Å) in the crystal of **5**. However, the interactions between the dimers of **5** (C–C: 3.63 Å) were weaker than those of **4** (C–C: 3.52–3.69 Å). Therefore, **5** is considered to have **ACS Paragon Plus Environment**

weaker intermolecular interactions than 4, and the slightly higher Φ_f of 5 (0.15) is probably owing to the weak π - π interactions.

In the crystal packing of **6**, dimers were formed by π - π interactions between the molecules presented in blue and red (C–C: 3.47–3.68 Å) (Figure 16). However, unlike the other boron complexes, there were no π - π interactions between the adjacent dimers. Because of the inhibition of interactions between the dimers, **6** exhibited relatively strong $\Phi_{\rm f}$ (0.20) compared to the other complexes.

Figure 12. Normalized fluorescence spectra of 4-7 in the solid state.

Figure 13. (a) Top view of the crystal structure of 7 (Z = 2). (b) Side view of the crystal structure of 7. (c) List of intermolecular interactions of 7. Green- and light blue-dotted lines show π - π interactions in a stacking column and between the stacking columns, respectively.

Figure 14. (a) Top view of the crystal structure of 4 (Z = 4). (b) Side view of the crystal structure of 4. (c) List of intermolecular interactions of 4. Green- and pink-dotted lines show $\pi - \pi$ interactions in a dimer and between the dimers, respectively.

Figure 15. (a) Top view of the crystal structure of 5 (Z = 4). (b) Side view of the crystal structure of 5. (c) List of intermolecular interactions of 5. Green- and pink-dotted lines show π - π interactions in a dimer and between the dimers, respectively.

Figure 16. (a) Top view of the crystal structure of 6 (Z = 2). (b) Side view of the crystal structure of 6. (c) List of intermolecular interactions of 6. Green-dotted lines show π - π interactions in a dimer.

Conclusions

In conclusion, we synthesized mono- and bisboron complexes based on pyrimidine bearing β ketoiminate ligands and investigated their fluorescence properties both in solution and in solid states. Although the nonsubstituted and trifluoromethyl-substituted monoboron complexes hardly showed any fluorescence in dichloromethane (F_{max} : 425–428 nm, $\Phi_{\rm f} \leq 0.02$), relatively strong fluorescence was observed in solid state (F_{max} : 488–525 nm, $\Phi_{\rm f} \leq 0.02$), relatively strong fluorescence was observed in solid state (F_{max} : 488–525 nm, $\Phi_{\rm f} < 0.13-0.15$), probably because of the restriction of intramolecular C–Ar rotation that promotes the nonradiative processes. The dimethylamino-substituted monoboron complex exhibited strong and relatively red-shifted fluorescence in dichloromethane (F_{max} : 529 nm, $\Phi_{\rm f} = 0.78$). The F_{max} of the dimethylamino derivative red-shifted with increasing solvent polarity (F_{max} : 456–565 nm). The DFT calculation result and relatively large $\mu_{\rm e}$ value (20.6 D) obtained from Lippert-Mataga plot suggest the formation of ICT-excited state. The dimethylamino derivative showed the highest $\Phi_{\rm f}$ (0.20) in solid state because of the inhibition of consecutive π – π intermolecular interactions. The bisboron complex had higher ε (107,300) as well as red-shifted λ_{max} (475 nm) and F_{max} (490 nm) compared to the corresponding nonsubstituted monoboron complex, probably because of the extension of π -conjugation by annulation and the two terminal phenyl groups.

Experimental section

General: NMR spectra were recorded on 400 or 600 MHz spectrometers. Chemical shifts are referred to TMS (¹H and ¹³C) as internal standards and CFCl₃ (¹⁹F) as an external standard. Infrared (IR) spectra were recorded in KBr pallets. UV–vis and fluorescence spectra were recorded in a quartz cell (light path: 10 mm). Absolute fluorescence quantum yields were measured using an integrating sphere. Fluorescence lifetimes were measured by a single-photon-counting method. Mass spectra were

measured in electron impact (EI) mode. Melting points were measured on a Yanagimoto MP–S2 micro– melting–point apparatus. Analytical Thin-layer chromatography (TLC) was performed on pre-coated plates (Merck, silica gel 60 F254). Silica gel (Wakogel C–200) was used for column chromatography. Crystallographic X-ray data were collected using Mo *K*α radiation.

Synthesis of 1: Sodium hydride (60w% in oil, 1.61 g, 40.3 mmol) was added to a THF (150 mL) solution of 4,6-dichloropyrimidine (2.00 g, 13.4 mmol) and acetophenone (3.22 g, 26.8 mmol) at room temperature. The solution was refluxed for 1 day. After cooling to room temperature, water was added to the reaction mixture and extracted with dichloromethane. The extract was dried over Na₂SO₄ and concentrated in vacuo. Column chromatography of the residue on silica gel (CH₂Cl₂, R_f = 0.3), followed by recrystallization from ethanol to give **1** (875 mg, 28%, **1a** : **1b** = 1 : 15 in CDCl₃) as a yellow-white powder. **1** (mixtuire of **1a** and **1b**): mp 112.0-104.0 °C; UV-vis (CH₂Cl₂) λ_{max} 346 nm (log ε = 4.41); IR (KBr) 3070, 1628, 1566, 1415, 1057, 1096, 864, 756 cm⁻¹; EIMS (*m*/*z*) (rel intensity) 234 ([M+2]⁺; 8), 280 (M⁺; 23), 105 (100); Anal. calcd for C₁₂H₉ClN₂O: C, 61.95; H, 3.90; N, 12.04. found: C, 61.98; H, 4.04; N, 11.74; **1b**: ¹H NMR (400 MHz, CDCl₃) δ 6.01 (s, 1H), 7.03 (s, 1H), 7.43-7.50 (m, 3H), 7.85 (d, *J* = 7.4 Hz, 2H), 8.72 (s, 1H), 14.6 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 92.9, 116.5, 126.1, 128.6, 130.9, 134.6, 155.5, 160.3, 165.3, 169.2.

Synthesis of 2: Sodium hydride (60w% in oil, 1.61 g, 40.3 mmol) was added to a THF (150 mL) solution of 4,6-dichloropyrimidine (2.00 g, 13.4 mmol) and 4'-(trifluoromethyl)acetophenone (4.45 g, 23.7 mmol) at room temperature. The solution was refluxed for 1 day. After cooling to room temperature, water was added to the reaction mixture and extracted with dichloromethane. The extract was dried over Na₂SO₄ and concentrated in vacuo. Column chromatography of the residue on silica gel (CH₂Cl₂, R_f = 0.7), followed by recrystallization from ethanol gave 2 (852 mg, 21%, 2a : 2b = 1 : 9 in CDCl₃) as a yellow-white powder. 2 (mixtuire of 2a and 2b): mp 101.0-103.0 °C; IR (KBr) 3086, 1632, 1574, 1424, 1335, 1115, 1072, 910 cm⁻¹; UV-vis (CH₂Cl₂) λ_{max} 344 nm (log ε = 4.60); EIMS (*m/z*) (rel intensity) 302 ([M+2]⁺; 23), 300 (M⁺; 68), 299 (73), 173 (100), 145 (67); Anal. calcd for

C₁₃H₈ClF₃N₂O: C, 51.93; H, 2.68; N, 9.32. found: C, 51.67; H, 2.62; N, 9.31; **2a**: ¹H NMR (400 MHz, CDCl₃) δ4.48 (s, 2H), 7.44 (s, 1H), 7.78 (d, J = 8.6 Hz, 2H), 8.15 (d, J = 8.6 Hz, 2H), 8.95 (s, 1H); **2b**: ¹H NMR (400 MHz, CDCl₃) δ 6.05 (s, 1H), 7.08 (s, 1H), 7.70 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 8.76 (s, 1H), 14.6 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ94.2, 117.1, 123.9 (q, J = 274.1 Hz), 125.6, 126.5, 132.4 (q, J = 33.4 Hz), 138.1, 155.7, 160.9, 165.0, 167.2; ¹⁹F NMR (376 MHz, CDCl₃, ext. CFCl₃) δ-62.7 (s, 3F).

Synthesis of 3: Sodium hydride (60w% in oil, 1.61 g, 40.3 mmol) was added to a THF (150 mL) solution of 4,6-dichloropyrimidine (2.00 g, 13.4 mmol) and 4'-dimethylaminoacetophenone (3.45 g, 21.1 mmol) at room temperature. The solution was refluxed for 2 day. After cooling to room temperature, water was added to the reaction mixture and extracted with dichloromethane. The extract was dried over Na₂SO₄ and concentrated in vacuo. Column chromatography of the residue on silica gel $(CH_2Cl_2 : AcOEt = 20 : 1, R_f = 0.4)$, followed by recrystallization from ethanol gave 3 (582 mg, 16%, 3a) : 3b = 5 : 1 in CDCl₃) as a vellow-white powder. 3 (mixtuire of 3a and 3b): mp 194.0-196.0 °C; IR (KBr) 3059, 1659, 1601, 1570, 1531, 1377, 1331, 1246, 1200, 818 cm⁻¹; UV-vis (CH₂Cl₂) λ_{max} 342 nm (log $\varepsilon = 4.60$), 406 nm (log $\varepsilon = 3.97$); EIMS (*m/z*) (rel intensity) 277 ([M+2]⁺; 10), 275 (M⁺; 30), 148 (100); Anal. calcd for C₁₄H₁₄ClN₃O: C, 60.98; H, 5.12; N, 15.24. found: C, 61.04; H, 5.03; N, 15.03; **3a**: ¹H NMR (400 MHz, CDCl₃) δ 3.08 (s, 6H), 4.36 (s, 2H), 6.67 (d, J = 9.2 Hz, 2H), 7.44 (s, 1H), 7.93 (d, J = 9.2 Hz, 2H), 8.93 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 40.0, 46.6, 110.8, 122.2, 127.7, 131.1, 153.9, 158.6, 161.3, 166.6, 192.2; **3b**: ¹H NMR (400 MHz, CDCl₃) δ3.05 (s, 6H), 5.87 (s, 1H), 6.73 (d, J = 8.3 Hz, 2H), 6.91 (s, 1H), 7.76 (d, J = 8.3 Hz, 2H), 8.60 (s, 1H), 14.7 (brs, 1H); ¹³C NMR (150) MHz, CDCl₃) δ40.1, 90.0, 111.4, 115.5, 121.6, 123.8, 152.2, 155.3, 159.5, 165.4, 170.5.

Synthesis of 4: Ligand **1** (500 mg, 2.15 mmol) was dissolved in dry dichloromethane (100 mL). Triethylamine (0.74 mL, 5.3 mmol) and boron trifluoride diethyl ether complex (0.68 mL, 5.4 mmol) was added to the solution and stirred at room temperature for 6 h. Then water was added to the solution.

The solution was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄. After concentration of solvent, the residue was purified *via* chromatography with silica gel (CH₂Cl₂, R_f = 0.6), followed by recrystallization from chloroform to afford **4** (537 mg, 89%) as a yellow solid. **4**: mp 281.0-282.0°C; ¹H NMR (600 MHz, CDCl₃) δ 6.33 (s, 1H), 7.20 (s, 1H), 7.49 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.97 (d, *J* = 7.6 Hz, 2H), 8.84 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 92.9, 117.5, 127.4, 129.7, 133.1, 133.2, 152.6, 157.2, 162.0, 167.4; ¹⁹F NMR (565 MHz, CDCl₃, ext. CFCl₃) δ -137.9 (q, *J* = 12.1 Hz, 2F); IR (KBr) 3090, 1597, 1512, 1396, 1138, 1096, 1053, 1033 cm⁻¹; EIMS (*m/z*) (rel intensity) 282 ([M+2]⁺; 17), 280 (M⁺; 56), 279 (100), 77 (17); Anal. calcd for C₁₂H₈BClF₂N₂O: C, 51.39; H, 2.88; N, 9.99. found: C, 51.15; H, 2.92; N, 9.97.

Synthesis of 5: Ligand 2 (500 mg, 1.66 mmol) was dissolved in dry dichloromethane (100 mL). Triethylamine (0.60 mL, 4.3 mmol) and boron trifluoride diethyl ether complex (0.55 mL, 4.4 mmol) was added to the solution and stirred at room temperature for 6 h. Then water was added to the solution. The solution was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄. After concentration of solvent, the residue was purified *via* chromatography with silica gel (CH₂Cl₂, R_f = 0.8), followed by recrystallization from chloroform to afford 5 (480 mg, 83%) as a yellow solid. 5: mp 209.0-210.0°C; ¹H NMR (400 MHz, CDCl₃) δ 6.39 (s, 1H), 7.29 (s, 1H), 7.75 (d, *J* = 8.2 Hz, 2H), 8.07 (d, *J* = 8.2 Hz, 2H), 8.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 92.5, 116.2, 123.6 (q, *J* = 276.5 Hz), 125.9, 127.7, 134.1 (q, *J* = 33.4 Hz), 136.3, 151.9, 156.7, 163.4, 168.1; ¹⁹F NMR (376 MHz, CDCl₃, ext. CFCl₃) δ -137.7 (q, *J* = 11.9 Hz, 2F), -63.0 (s, 3F); IR (KBr) 3093, 1601, 1508, 1327, 1130, 1069 cm⁻¹; EIMS (*m/z*) (rel intensity) 350 ([M+2]⁺; 18), 348 (M⁺; 61), 347 (100); Anal. calcd for C₁₃H₇BClF₅N₂O: C, 44.81; H, 2.02; N, 8.04. found: C, 44.76; H, 1.99; N, 7.98.

Synthesis of 6: Ligand 3 (600 mg, 2.18 mmol) was dissolved in dry dichloromethane (100 mL). Triethylamine (0.90 mL, 6.5 mmol) and boron trifluoride diethyl ether complex (0.83 mL, 6.6 mmol) was added to the solution and stirred at room temperature for 6 h. Then water was added to the solution. The solution was extracted with CH₂Cl₂. The organic layer was washed with water and dried over ACS Paragon Plus Environment MgSO₄. After concentration of solvent, the residue was purified *via* chromatography with silica gel (CH₂Cl₂, R_f = 0.4) to afford **6** (606 mg, 86%) as a red solid. **6**: mp 273.0-275.0°C; ¹H NMR (400 MHz, CDCl₃) δ 3.10 (s, 6H), 6.12 (s, 1H), 6.68 (d, *J* = 8.9 Hz, 2H), 7.00 (s, 1H), 7.87 (d, *J* = 8.9 Hz, 2H), 8.65 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 40.1, 88.4, 111.2, 114.6, 119.3, 127.7, 151.6, 153.5, 156.1, 160.4, 170.8; ¹⁹F NMR (565 MHz, CDCl₃, ext. CFCl₃) δ -139.2 (q, *J* = 13.6 Hz, 2F); IR (KBr) 3117, 1586, 1500, 1431, 1396, 1196 cm⁻¹; EIMS (*m/z*) (rel intensity) 325 ([M+2]⁺; 32), 323 (M⁺; 100), 149 (17); Anal. calcd for C₁₄H₁₃BClF₂N₃O: C, 51.97; H, 4.05; N, 12.99. found: C, 52.23; H, 4.05; N, 12.72.

Synthesis of 7: Sodium hydride (60w% in oil, 172 mg, 4.29 mmol) was added to a THF (150 mL) solution of 4 (400 mg, 1.43 mmol) and acetophenone (205 mg, 1.71 mmol) at room temperature. The solution was refluxed for 2 day. After cooling to room temperature, water was added to the reaction mixture and extracted with dichloromethane. The extract was dried over Na₂SO₄ and concentrated in vacuo. The residue was dissolved in dry dichloromethane (70 mL). Triethylamine (1.0 mL, 7.2 mmol) and boron trifluoride diethyl ether complex (0.90 ml, 7.2 mmol) was added to the solution and stirred at room temperature for 6 h. Then water was added to the solution. The solution was extracted with dichloromethane. The organic layer was dried over Na₂SO₄. After concentration of solvent, the residue was purified via chromatography with silica gel (CH₂Cl₂, $R_f = 0.6$), followed by recrystallization from chloroform to afford 7 (94 mg, 16%) as a red solid. 7: mp 235.0-236.0°C; ¹H NMR (600 MHz, CDCl₃) δ 6.43 (s, 2H), 6.79 (s, 1H), 7.51 (dd, J = 8.2, 7.6 Hz, 4H), 7.59 (t, J = 7.6 Hz, 2H), 8.00 (d, J = 8.2 Hz, 4H), 9.04 (s, 1H); ¹³C NMR (150 MHz, acetone- d_6) δ 94.2, 111.5, 128.2, 129.9, 132.6, 133.7, 149.5, 155.5, 169.9; ¹⁹F NMR (565 MHz, CDCl₃, ext. CFCl₃) δ -140.8 (q, J = 8.6 Hz, 4F); IR (KBr) 3082, 1651, 1555, 1512, 1489, 1397, 1192, 1053 cm⁻¹; EIMS (*m/z*) (rel intensity) 412 (M⁺; 100), 411 (92), 105 (36); Anal. calcd for C₂₀H₁₄B₂F₄N₂O₂: C, 58.31; H, 3.43; N, 6.80. found: C, 58.29; H, 3.23; N, 6.59.

The Journal of Organic Chemistry

Supporting Information Available: ¹H and ¹³C NMR spectra, DFT calculation data, X-ray crystal structures, UV-vis absorption and fluorescence spectra and tables of properties are included. This material is available free of charge via the internet at http://pubs.acs.org.

Acknowledgements: This work was supported by JSPS KAKENHI (23750228, Grant-in-Aid for Young Scientists (B)) and JST A-STEP (AS242Z02734M).

References

- (a) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891. (b) Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem. Int. Ed. 2008, 47, 1184. (c) Benstead, M.; Mehl, G. H.; Boyle, R. W. Tetrahedron 2011, 67, 3573.
- (2) (a) Douglass, J. E.; Barelski, P. M.; Blankenship, R. M. J. Heterocycl. Chem. 1973, 10, 255. (b) Kubota, Y.; Tsuzuki, T.; Funabiki, K.; Ebihara, M.; Matsui, M. Org. Lett. 2010, 12, 4010.
- (3) (a) Nagai, A.; Kokado, K.; Nagata, Y.; Arita, M. Chujo, Y. J. Org. Chem. 2008, 73, 8605. (b) Maeda, H.; Mihashi, Y.; Haketa, Y. Org. Lett. 2008, 10, 3179. (c) Ono, K.; Yoshikawa, K.; Tsuji, Y.; Yamaguchi, H.; Uozumi, R.; Tomura, M.; Taga, K.; Saito, K. Tetrahedron 2007, 63, 9354. (d) Zhang, G.; Lu, J.; Sabat, M.; Fraser, C. L. J. Am. Chem. Soc. 2010, 132, 2160.
- (4) (a) Kubota, Y.; Hara, H.; Tanaka, S.; Funabiki, K.; Matsui, M. Org. Lett. 2011, 13, 6544. (b) Kubota, Y.; Tanaka, S.; Funabiki, K.; Matsui, M. Org. Lett. 2012, 14, 4682.
- (5) (a) Yoshino, J.; Furuta, A.; Kambe, T.; Itoi, H.; Kano, N.; Kawashima, T.; Ito, Y.; Asashima, M. *Chem.-Eur. J.* 2010, *16*, 5026. (b) Yoshino, J.; Kano, N.; Kawashima, T. *Chem. Commun.* 2007, 559.
- (6) (a) Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. *Chem. Rev.* 2010, *110*, 2620. (b) Shao, J.; Sun, H.; Guo, H.; Ji, S.; Zhao, J.; Wu, W.; Yuan, X.; Zhang, C.; James, T. D. *Chem. Sci.* 2012, *3*, 1049.
- (7) (a) Lovell, J. F.; Liu, T. W. B.; Chen, J.; Zheng, G. Chem. Rev. 2010, 110, 2839. (b) Ozlem, S.; Akkaya, E. U. J. Am. Chem. Soc. 2009, 131, 48. (c)
 Wang, J.; Hou, Y.; Lei, W.; Zhou, Q.; Li, C; Zhang, B.; Wang, X. ChemPhysChem. 2012, 13, 2739.
- (8) (a) Gómez-Durán, C. F. A.; García-Moreno, I.; Costela, A.; Martin, V.; Sastre, R.; Bañuelos, J.; López Arbeloa, F.; López Arbeloa, I.; Peña-Cabrera, E. *Chem. Commun.* 2010, 5103. (b) Sisk, W. N.; Ono, N.; Yano, T.; Wada, M. *Dyes Pigm.* 2002, *55*, 143.
- (9) (a) Ertan-Ela, S.; Yilmaz, M. D.; Icli, B.; Dede, Y.; Icli, S.; Akkaya, E. U. Org. Lett. 2008, 10, 3299. (b) Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali, J. Chem. Commun. 2009, 1673. (c) Mao, M.; Wang, J.-B.; Xiao, Z.-F.; Dai, S.-Y.; Song, Q.-H. Dyes Pigm. 2012, 94, 224.
- (10) (a) Zhang, D.; Wen, Y.; Xiao, Y.; Yu, G.; Liu, Y.; Qian, X. Chem. Commun. 2008, 4777. (b) Kubota, Y.; Uehara, J.; Funabiki, K.; Matsui, M. Tetrahedron. Lett. 2010, 51, 6195.

- (11) (a) Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.; Suzuki, K. J. Am. Chem. Soc. 2008, 130, 1550. (b) Nepomnyashchii, A. B.; Bröring, M.; Ahrens, J.; Bard, A. J. J. Am. Chem. Soc. 2011, 133, 8633. (c) Gresser, R.; Hartmann, H.; Wrackmeyer, M.; Leo, K.; Riede, M. Tetrahedron 2011, 67, 7148. (d) Kowada, T.; Yamaguchi, S.; Ohe, K. Org. Lett. 2010, 12, 296. (d) Bura, T.; Retailleau, P.; Ulrich, G.; Ziessel, R. J. Org. Chem. 2011, 76, 1109. (e) Chen, J.; Burghart, A.; Derecskei-Kovacs, A.; Burgess, K. J. Org. Chem. 2000, 65, 2900. (f) Goze, C.; Ulrich, G.; Mallon, L. J.; Allen, B. D.; Harriman, A.; Ziessel, R. J. Am. Chem. Soc. 2006, 128, 10231.
- (12) (a) Araneda, J. F.; Piers, W. E.; Heyne, B.; Parvez, M. McDonald, R. Angew. Chem., Int. Ed. 2011, 50, 12214. (b) Li, Y.; Patrick, B. O.; Dolphin, D. J. Org. Chem. 2009, 74, 5237. (c) Li, W.; Lin, W.; Wang, J.; Guan, X. Org. Lett. 2013, 15, 1768. (d) Bañuelos, J.; López Arbeloa, F.; Martinez, V.; Liras, M.; Costela, A.; García Moreno, I.; López Arbeloa, I. Phys. Chem. Chem. Phys. 2011, 13, 3437. (e) Zhou, Y.; Xiao, Y.; Li, D.; Fu, M.; Qian, X. J. Org. Chem. 2008, 73, 1571. (f) Hachiya, S.; Inagaki, T.; Hashizume, D.; Maki, S.; Niwa, H.; Hirano, T. Tetrahedron. Lett. 2010, 51, 1613. (g) Mao, M.; Xiao, S.;Yi, T.; Zou, K. J. Fluo. Chem. 2011, 132, 612. (h) Wu, L.; Burgess, K. J. Am. Chem. Soc. 2008, 130, 4089. (i) Yan, W.; Wan, X.; Chen, Y. J. Mol. Struct. 2010, 968, 85. (j) Xia, M.; Wu, B.; Xiang, G. J. Fluo. Chem. 2008, 129, 402. (k) Kobayashi, N.; Takeuchi, Y.; Matsuda, A. Angew. Chem., Int. Ed. 2007, 46, 758. (l) Singh, R. S.; Yadav, M.; Gupta, R. K.; Pandey, R. Pandey D. S. Dalton Trans. 2013, 42, 1696.
- (13) (a) Fischer, G. M.; Daltrozzo, E.; Zumbusch, A. Angew. Chem. Int. Ed. 2011, 50, 1406. (b) Curiel, D.; Más-Montoya, M.; Usea, L.; Espinosa, A.; Orenes, R. A.; Molina, P. Org. Lett. 2012, 14, 3360. (c) Traven, V. F.; Chibisova, T. A.; Manaev, A. V. Dyes Pigm. 2003, 58, 41. (d) Guliyev, R.; Ozturk, S.; Sahin, E. Akkaya, E. U. Org. Lett. 2012, 14, 1528.
- (14) (a) Fischer, G. M.; Ehlers, A. P.; Zumbusch, A.; Daltrozzo, E. Angew. Chem. Int. Ed. 2007, 46, 3750. (b) Hayashi, Y.; Yamaguchi, S.; Cha, W. Y.;
 Kim, D.; Shinokubo, H. Org. Lett. 2011, 13, 2992. (c) Fischer, G. M.; Isomäki-Krondahl, M.; Göttker-Schnetmann, I.; Daltrozzo, E.; Zumbusch, A. Chem. Eur. J. 2009, 15, 4857. (d) Feng, J.; Liang, B.; Wang, D.; Xue, L.; Li, X. Org. Lett. 2008, 10, 4437.
- (15) Fischer, G. M.; Jüngst, C.; Isomäki-Krondahl, M.; Gauss, D.; Möller, H. M.; Daltrozzo, E.; Zumbusch, A. Chem. Commun. 2010, 5289.
- (16) Berezin, M. Y.; Akers, W. J.; Guo, K.; Fischer, G. M.; Daltrozzo, E.; Zumbusch, A.; Achilefu, S. Biophys J. 2009, 97, 22.
- (17) Li, H.-J.; Fu, W.-F.; Li, L.; Gan, X.; Mu, W.-H.; Chen, W.-Q.; Duan, X.-M.; Song, H.-B. Org. Lett. 2010, 12, 2924.
- (18) (a) Matichak, J. D.; Hales, J. M.; Barlow, S.; Perry, J. W.; Marder, S. R. J. Phys. Chem. A 2011, 115, 2160. (b) Matichak, J. D.; Hales, J. M.; Ohira, S.; Barlow, S.; Jang, S.-H.; Jen, A. K.-Y.; Brédas, J.-L.; Perry, J. W.; Marder, S. R. ChemPhysChem. 2010, 11, 130.
- (19) (a) Zhou, Y.; Kim, J. W.; Nandhakumar, R.; Kim, M. J.; Cho, E.; Kim, Y. S.; Jang, Y. H.; Lee, C.; Han, S.; Kim, K. M.; Jang-Joo Kim, J.-J. Yoon, J. *Chem. Commun.* 2010, 6512. (b) Wang, D. L. K.; Huang, S.; Qu, S.; Liu, X.; Zhu, Q.; Zhang, H.; Wang, Y. *J. Mater. Chem.* 2011, *21*, 15298. (c) Li, D.; Yuan, Y.; Bi, H.; Yao, D.; Zhao, X.; Tian, W.; Wang, Y.; Zhang, H. *Inorg. Chem.* 2011, *50*, 4825.
- (20) (a) Ito, F.; Nagai, T.; Ono, Y.; Yamaguchi, K.; Furuta, H.; Nagamura, T. *Chem. Phys. Lett.* 2007, 435, 283. (b) Qin, W.; Rohand, T.; Baruah, M.; Stefan, A.; Van der Auweraer, M.; Dehaen, W.; Boens, N. *Chem. Phys. Lett.* 2006, 420, 562.
- (21) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;

The Journal of Organic Chemistry

Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara,
A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 09, Revision A. 02*; Gaussian, Inc.:
Wallingford, CT, 2009.

(22) (a) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332. (b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361.

- (23) (a) Caldwell, R. A.; Jacobs, L. D.; Furlani, T. R.; Nalley, E. A.; Laboy, J. J. Am. Chem. Soc. 1992, 114, 1623. (b) Gorman, A.; Killoran, J.; O'Shea, C.; Kenna, T.; Gallagher, W. M.; O'Shea, D. F. J. Am. Chem. Soc. 2004, 126, 10619.
- (24) (a) Mataga, N.; Kaifu, Y.; Koizumi, M. Bull. Chem. Soc. Jpn. 1956, 29, 465. (b) Lippert, V. E. Z. Elektrochem. 1957, 61, 962.
- (25) (a) Hu, R.; Lager, E.; Aguilar-Aguilar, A.; Liu, J.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Zhong, Y.; Wong, K. S.; Peña-Cabrera, E.; Tang, B. Z. J. Phys. Chem. C. 2009, 113, 15845–15853; (b) Moyon, N. S.; Mitra, S. J. Phys. Chem. A. 2011, 115, 2456–2464.
- (26) (a) Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899. (b) Kokado, K.; Chujo, Y. J. Org. Chem. 2011, 76, 316. (c) Thomas, K. R. J.; Kapoor, N.; Bolisetty, M. N. K. P.; Jou, J.-H.; Chen, Y.-L.; Jou Y.-C. J. Org. Chem. 2012, 77, 3921.
- (27) (a) Park, S.-Y.; Ebihara, M.; Kubota, Y.; Funabiki, K.; Matsui, M. *Dyes Pigm.* 2009, *82*, 258. (b) Ooyama, Y.; Okamoto, T.; Yamaguchi, T.; Suzuki, T.; Hayashi, A.; Yoshida, K. *Chem. Eur. J.* 2006, *12*, 7827. (c) Shirai, K.; Matsuoka, M.; Fukunishi, K. *Dyes Pigm.* 1999, *42*, 95.