Tetrahedron Letters 52 (2011) 3872-3875

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Solid phase total synthesis of callipeltin E isolated from marine sponge Latrunculia sp.

Mari Kikuchi^a, Kazuto Nosaka^b, Kenichi Akaji^c, Hiroyuki Konno^{a,*}

^a Department of Biochemical Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa 982-8510, Japan

ABSTRACT

^b Department of Chemistry, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan

^c Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan

ARTICLE INFO

Article history: Received 15 April 2011 Revised 11 May 2011 Accepted 13 May 2011 Available online 27 May 2011

Keywords: Unusual amino acid Marine sponge Callipeltin Solid phase synthesis

Callipeltin E (1) is an acyclic hexapeptide isolated from the marine sponge Latrunculia sp. by D'Auria and co-workers in 2002.¹ Callipeltin E (1) was shown to be a truncated, open-chain derivative of callipeltin A (2) (Fig. 1). Callipeltin A (2), isolated from the shallow water sponge *Callipelta*,^{2,3} is the first natural peptide found to act against HIV and shows antifungal activity and potent cytotoxicity against several human carcinoma cell lines.^{4,5,6} Callipeltin E (1) is composed of unique amino acids: *N*-methylalanine (MeAla), β-methoxytyrosine (βMeOTyr), N-methylglutamine (MeGln), leucine (Leu), D-arginine (D-Arg), and D-allothreonine (p-alloThr). The configuration of β MeOTyr, which could not be determined in Minale's isolation study,³ was determined as 2R,3R by D'Auria and co-workers⁷ using chemical degradation of callipeltin A (2) and derivatization of the resulting amino acids, and also by Konno et al.⁸ using NMR comparison of four diastereoisomeric tripeptides, independently. On the other hand, by employing quantum mechanical calculation of coupling constants, it was suggested by Bifulco and co-workers⁹ that both of the threonine residues in callipeltin A (2) have a D-allo configuration. Based on these reports, callipeltin E (1) was determined to have the structure H-D-alloThr-D-Arg-Leu-N-MeGln-(2R,3R)-βMeOTyr-N-MeAla-OH. Lipton reported the solid phase synthesis and confirmation of the configurational assignment of callipeltin E (1).¹⁰ Although Lipton did not use acidic conditions in the study due to the acidsensitive nature of the β MeOTyr residue, we recently reported that

* Corresponding author. E-mail address: konno@yz.yamagata-u.ac.jp (H. Konno).

Figure 1. Callipeltin E (1) and calliepltin A (2).

Solid phase total synthesis of callipeltin E (1), truncated linear peptide isolated from marine sponge, Latrunculia sp. was achieved. Our strategy based on traditional Fmoc-SPPS was in common use TFA-treatment final deprotection to reach callipeltin E (1) contained acid-sensitive β MeOTyr. © 2011 Elsevier Ltd. All rights reserved.

^{0040-4039/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.05.062

 β MeOTyr was not decomposed by TFA treatment.⁸ The results were a major advantage to construct the depsipeptide such as callipeltins and similar complex molecules in the point of permission to employ the traditional Fmoc-solid phase peptide synthesis (Fmoc-SPPS).

For the solid phase total synthesis of callipeltin A (2) and its analogues using the traditional Fmoc-SPPS strategy, we decided to synthesize callipeltin E (1) as a model peptide. Herein, we report the efficient solid phase synthesis of callipeltin E (1) based on the Fmoc-SPPS strategy.

Our approach to the synthesis of callipeltin E (1) employed traditional Fmoc-SPPS, that is, both Fmoc deprotection using piperidine and TFA-mediated final deprotection. Prior to the total synthesis of callipeltin E (1), the necessary four unusual amino acids with protecting groups, Fmoc-MeAla-OH (3), Fmoc- β MeOTyr(OMEM)-OH (4), Fmoc-MeGln-OH (5), and Fmoc-D-all-oThr-OH (8) were synthesized (Scheme 1).

The required residue Fmoc-(2R,3R)- β MeOTyr(OMEM)-OH (**4**) was synthesized from the previously reported aziridine derivative (**9**) in three steps with 94% overall yield^{8,11} (Scheme 2). In the previous report,⁸ aziridine was opened using catalytic BF₃·Et₂O and 10 equiv of MeOH in CH₂Cl₂, but the diastereoselectivity of the ring opening was moderate (3:1). In an attempt to improve diastereoselectivity, we found that treatment of aziridine (**9**) with a catalytic amount of BF₃·Et₂O in MeOH at room temperature gave anti-methoxyamine, and then an ethoxycarbonyl group was saponified to afford the amino acid (**10**). It was noted that MeOH for methoxy source was effective to use as a solvent. Under these conditions, anti-substitution was observed, leading to no loss of

callipeltin E (1)

Scheme 1. Synthetic plan for callipeltin E (1).

Scheme 2. Preparation of Fmoc-(2*R*,3*R*)-βMeOTyr(OMEM)-OH (**4**).

diastereoselectivity (>20:1). The amino acid (**10**) was protected with Fmoc-OSu to yield Fmoc-(2R,3R)- β MeOTyr(OMEM)-OH (**4**) in quantitative yield.

Fmoc- N^{α} -MeAla-OH (**3**) and Fmoc- N^{α} -MeGln-OH (**5**) were prepared from commercially available Fmoc- N^{α} -Ala-OH and N^{δ} -trityl- N^{α} -Fmoc-Gln-OH via the oxazolidinone intermediates employing Freidinger's procedure¹² in 93% and 75% overall yields, respectively (Scheme 3).

Fmoc-D-alloThr-OH (8) was prepared from L-Thr in the study reported by Yajima et al.¹³ L-Thr was subjected to epimerization using salicylaldehyde to give a diastereomeric mixture of L-Thr

R = Me (**3**) (98%) R = CH₂CH₂C(O)NH (**5**) (86%)

Scheme 3. Preparation of Fmoc-N-MeAla-OH (3) and Fmoc-N-MeGln-OH (5).

Scheme 4. Preparation of Fmoc-D-alloThr-OH (8).

Scheme 5. Solid phase synthesis of callipeltin E (1).

and D-alloThr in a molar ratio of 1:0.6. After acetylation of the amino group followed by converting the ammonium salt, separation of Ac-D-alloThr-OH ammonium salt as a soluble in EtOH and Ac-L-Thr-OH ammonium salt as a less-soluble diastereomeric salt by filtration obtained Ac-D-alloThr-OH as 50% de. The sequence of hydrolysis, recrystallization and Fmoc protection gave pure Fmoc-D-alloThr-OH (**8**) in 9% overall yield (Scheme 4).

Callipeltin E (1) was synthesized by Fmoc-based SPPS according to the route shown in Scheme 5. As a solid support, 2-chlorotrityl chloride resin was selected. Fmoc-N-MeAla-OH (3) was reacted with 2-chlorotrityl chloride resin in DMF in the presence of *i*Pr₂₋ NEt. The Fmoc group of the resulting resin was removed with 20% piperidine/DMF and Fmoc-(2R,3R)-βMeOTyr(OMEM)-OH (4) was condensed by HATU¹⁴/HOAt¹⁵ in the presence of *i*Pr₂NEt. The same deprotection/condensation procedure was repeated for the introduction of Fmoc-N-MeGln-OH (5), Fmoc-Leu-OH (6), Fmoc-D-Arg(Pbf)-OH (7), and Fmoc-D-alloThr-OH (8). In the attempt at several coupling reagents, all coupling conditions monitored by Keiser test¹⁶ were optimized to use the HATU/HOAt combination. Finally, the resin was treated with TFA/CH_2Cl_2 (1:3 v/v) to cleave from the resin and deprotection to give crude callipeltin E (1). The crude product showed a single major peak on HPLC and was purified by preparative RP-HPLC to afford callipeltin E (1) in 0.93% overall yield. Although decomposed products were not shown on the HPLC profile under these conditions, treatment of resin with TFA in a mixture of H₂O as an additive afforded by-products with desmethoxy or desmethyl functional groups of the βMeOTyr residue. The spectroscopic data (¹H NMR, ESIMS) on synthetic 1 were identical to those of synthetic callipeltin E reported by Lipton et al.¹⁰ or isolated natural product callipeltin E¹ within normal error limits.

In conclusion, we achieved the solid phase total synthesis of callipeltin E(1) based on the traditional Fmoc-SPPS. The configuration of callipeltin E(1) was identified using Lipton's revised structure. This procedure is easily applicable to solid phase synthesis of the analogues of callipeltins using commercially available Fmoc-amino acids. The total synthesis of callipeltin A (2) is now underway.

Acknowledgements

We thank Dr. Nobutaka Fujii and Dr. Shinya Oishi (Kyoto University) for the measurement of mass spectra. This work was supported in part by the Japan Science Society (23-324) in Japan, and a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant 21689004 to H. K.)

References and notes

- 1. Zampella, A.; Randazzo, A.; Borbone, N.; Luciani, S.; Trevisi, L.; Debitus, C.; D'Auria, M. V. Tetrahedron Lett. **2002**, 43, 6163–6166.
- Zampella, A.; D'Auria, M. V.; Gomez-Paloma, L.; Casapulla, A.; Debitus, C.; Henin, Y. J. Am. Chem. Soc. 1996, 118, 6202–6209.
- D'Auria, M. V.; Zampella, A.; Gomez-Paloma, L.; Minale, L.; Debitus, C.; Roussakis, C.; LeBert, V. Tetrahedron 1996, 52, 9589–9596.
- (a) D'Auria, M. V.; Sepe, V.; D'Orsi, R.; Bellotta, F.; Debitus, C.; Zampella, A. *Tetrahedron* **2007**, *63*, 131–140; (b) Sepe, V.; D'Orsi, R.; Borbone, N.; D'Auria, M. V.; Bifulco, G.; Monti, M. C.; Catania, A.; Zampella, A. *Tetrahedron* **2006**, *62*, 833– 840; (c) Terevisi, L.; Cargnelli, G.; Ceolotto, G.; Papparella, I.; Semplicini, A.; Zampella, A.; D'Auria, M. V.; Luciani, S. *Biochem. Pharmacol.* **2004**, *68*, 1331– 1338.
- For the recent synthetic studies of cyclic depsipeptides see: (a) Xie, W.; Ding, D.; Zi, W.; Li, G.; Ma, D. Angew. Chem., Int. Ed. 2008, 47, 2844–2848; (b) Krishnamoorthy, R.; Vazquez-Serrano, L. D.; Turk, J. A.; Kowalski, J. A.; Benson, A. G.; Breaux, N. T.; Lipton, M. A. J. Am. Chem. Soc. 2006, 128, 15392–15393; (c) Hamada, Y.; Shioiri, T. Chem. Rev. 2005, 105, 4441–4482.
- (a) Konno, H.; Takebayashi, Y.; Nosaka, K.; Akaji, K. *Heterocycles* **2010**, *81*, 79–89; (b) Hansen, D. B.; Wan, X.; Carroll, P. J.; Joullié, M. M. J. Org. Chem. **2005**, *70*, 3120–3126; (c) Okamoto, N.; Hara, O.; Makino, K.; Hamada, Y. J. Org. Chem. **2002**, 67, 9210–9215; (d) Hu, X. E.; Kim, N. K.; Ledoussal, B. Org. Lett. **2002**, 4, 4499–4502; (e) Williams, L.; Zhang, Z.; Shao, F.; Carroll, P.; Joullié, M. M. Tetrahedron **1996**, *52*, 11673–11694.
- Zampella, A.; D'Orsi, R.; Sepe, V.; Casapullo, A.; Monti, M. C.; D'Auria, M. V. Org. Lett. 2005, 7, 3585–3589.
- Konno, H.; Aoyama, S.; Nosaka, K.; Akaji, K. Synthesis 2007, 23, 3666– 3672.
- Bassarello, C.; Zampella, A.; Monti, M. C.; Gomez-Paloma, L.; D'Auria, M. V.; Riccio, R.; Bifulco, G. *Eur. J. Org. Chem.* **2006**, 604–609.
- 10. Calimsiz, S.; Romos, I. M.; Lipton, M. A. J. Org. Chem. 2006, 71, 6351-6356.
- 11. Cranfill, D. C.; Lipton, M. A. Org. Lett. 2007, 9, 3511-3513.
- (a) Freidinger, R. M.; Hinkle, J. S.; Perlow, D. S.; Arison, B. H. J. Org. Chem. 1983, 48, 77–81; (b) Aurelio, L.; Box, J. S.; Brownlee, R. T. C.; Hughes, A. B.; Sleebs, M. M. J. Org. Chem. 2003, 68, 2652–2667.

- Yajima, T.; Ichimura, S.; Horii, S.; Shiraiwa, T. *Biosci. Biotechnol. Biochem.* 2010, 74, 2106–2109.
 Carpino, L. A. *J. Am. Chem. Soc.* 1993, *115*, 4397–4398.
 Carpino, L. A.; Imazumi, H.; El-Faham, A.; Ferrer, F. J.; Zhang, C.; Lee, Y.; Foxman, B. M.; Henklein, P.; Hanay, C.; Mugge, C.; Wenschuh, H.;

Klose, J.: Beyerman, M.; Bienert, M. Angew. Chem., Int. Ed. 2002, 41, 442–445.
Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Anal. Biochem. 1970, 34,

595-598.