Tetrahedron Letters 55 (2014) 6878-6881

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

3,5-Dinitrobenzoic acid catalyzed synthesis of 2,3-unsaturated *O*- and *S*-glycosides and tetrahydropyranylation of alcohols and phenols

Naganjaneyulu Bodipati, Srinivasa Rao Palla, Venkateshwarlu Komera, Rama Krishna Peddinti*

Department of Chemistry, Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India

ARTICLE INFO

Article history: Received 2 September 2014 Revised 14 October 2014 Accepted 15 October 2014 Available online 22 October 2014

Keywords: 3,5-Dinitrobenzoic acid Organocatalyst Ferrier rearrangement O-glycosylation S-glycosylation

2,3-Unsaturated glycopyranosides are a class of important chiral intermediates^{1,2} in the synthesis of biologically active compounds such as glycopeptide building blocks,³ oligosaccharides,⁴ and modified carbohydrates.^{5a} In addition 2,3-unsaturated glycosides have also been employed in the synthesis of antibiotics, nucleosides, and various natural products.⁵ Because of the importance of 2,3-unsaturated glycosides, several reports have appeared in the literature. The synthesis of 2,3-unsaturated glycopyranosides is generally achieved by the treatment of corresponding glycal with an alcohol or thiol in the presence of a Lewis or a Brønsted acid. This reaction was discovered by Ferrier by using BF₃·Et₂O as a Lewis acid catalyst and is popularly known as the Ferrier rearrangement or Ferrier type I reaction.^{2a} Apart from BF₃ Et₂O several other Lewis acid catalysts, oxidants or protic acids such as ZnCl₂,⁶ H₃PO₄,⁷ InCl₃,⁸ SnCl₄,⁹ Yb(OTf)₃,¹⁰ FeCl₃,¹¹ montmorillonite K-10,¹² Dy(OTf)₃,¹³ DDQ,¹⁴ I₂,¹⁵ I(Coll)₂ClO₄,¹⁶ CAN,¹⁷ CeCl₃·7H₂O,¹⁸ HClO₄/ SiO₂,¹⁹ MeOH HCl,²⁰ and N-iodosuccinamide²¹ have been reported to affect this rearrangement. All of these methods offer several advantages but some of them suffer drawbacks due to low yield, longer reaction times, harsh reaction conditions, and the use of air sensitive catalysts. Owing to the importance of the Ferrier rearrangement products, the introduction of new and efficient catalysts for this transformation is still in demand.

With an objective of developing a viable procedure for Ferrier rearrangement, we focused on finding a low cost and efficient catalyst that would give high yields and easy handling procedure under aerobic conditions. In continuation of our work on novel organocatalysts for organic transformations,²² we became interested to use very cheap 3,5-dinitrobenzoic acid (3,5-DNBA, <\$0.1 per gram) as organocatalyst for the aforementioned reaction. Though 3,5-DNBA has been used as an additive in many reactions,^{23,24} it has not been used as a catalyst. In the present Letter, we describe the successful utilization of 3,5-DNBA as an organocatalyst for the Ferrier rearrangement of glycals and tetrahydropyranylation of various primary and secondary alcohols and phenols.

In our preliminary experiment, we allowed to stir a mixture of benzyl alcohol (1 mmol) and glucal **1** (1.1 mmol) in the presence of 3,5-DNBA (0.2 mmol) in CH_2Cl_2 at room temperature for 24 h. Under these conditions the reaction did not proceed. When we carried out the reaction at 80 °C in CH_3CN , the reaction underwent smoothly to give 2,3-unsaturated-O-glucopyranoside **3e** in 81% yield. However, the reaction with low catalyst loading (0.1 mmol) led to longer reaction times and resulted in the formation of glycoside **3e** in low yield. Having developed conditions in hand, the methodology was applied for alcohols such as allyl alcohol, propanol, butanol, and *iso*-butanol. The 3,5-DNBA catalyzed reactions of all these reactants proceeded smoothly under the same conditions to afford the corresponding *O*-glycosides **3a–d** in high yields (Scheme 1, Table 1). Similarly, the Ferrier rearrangement of galactal **2** provided the 2,3-unsaturated-O-galactopyranosides

АВЅТВАСТ

A simple procedure for the synthesis of 2,3-unsaturated glycosides in acetonitrile and tetrahydropyranylation of alcohols and phenols in dichloromethane in the presence of 3,5-dinitrobenzoic acid is described. A variety of alcohols and thiols are reacted with glycals to give the desired products in high yields with high α -selectivity.

© 2014 Published by Elsevier Ltd.

^{*} Corresponding author. Tel.: +91 133 228 5438; fax: +91 133 227 3560. *E-mail addresses:* rkpedfcy@iitr.ac.in, ramakpeddinti@gmail.com (R.K. Peddinti).

Scheme 1. Synthesis of 2,3-unsaturated glycopyranosides by using alcohols and thiols in the presence of organocatalyst 3,5-DNBA.

 Table 1

 Ferrier rearrangement of 2,3-tri-O-acetyl-D-glycals with alcohols and thiols in the presence of 3,5-DNBA

Entry	Substrate	Alcohol/thiol	Time (h)	Prod	uct	
				Glycoside	Yield ^a (%)	$\alpha/\beta^{\rm b}$
1		ОН	2	Aco ¹¹ Aco ¹¹ 3a	86	5:1
2	1	ОН	2	Aco ¹ Ac	84	6:1
3	1	ОН	2.5		86	4:1
4	1	ОН	2.5	AcO de	82	8:1
5	1	ОН	2	AcO	81	10:1
6		ОН	2	Aco 4a	89	6:1
7	2	ОН	2	Aco 4b	82	9:1
8	2	ОН	2.5	Aco 4c	86	14:1
9	2	ОН	2.5	Aco 4d	80	12:1
10	2	ОН	2	Aco 4e	87	22:1
11		SH	1.5	Aco ^V Aco ^V 5a	91	6:1
12	1	CI	2	Aco ^{VI} CI	86	7:1
13	1	SH	1.5	AcO ^{VI} AcO ^{VI} 5c	89	13:1
14	1	SH	1	AcO	95	17:1

Table	1	(continued)
Tuble		(commucu)

Entry	Substrate	Alcohol/thiol	Time (h)	Produ	ıct	
				Glycoside	Yield ^a (%)	α/β^{b}
15	AcO AcO OAc	SH	1.5	Aco 6a	85	4:1
16	2 2	CI	2	Aco Gb	81	7:1
17	2	SH	1.5	Aco 6c	85	12.5:1
18	2	SH	1	Aco 6d	87	20:1

^a Yields are of pure and isolated products.

^b The α/β ratio was determined by the anomeric proton ratio from the ¹H NMR (500 MHz) spectra.

Table 2	
Tetrahydropyranylation of alcohols and phenols ca	atalyzed by 3,5-dinitrobenzoic acid

\bigwedge		3,5-DNBA	(20 mol%)	\frown
<u>_</u>		CH ₂ Cl	2, rt	
7	R = alkyl, aryl			8
Entry	Substrate (ROH)	Time (h)	Product (RO-THP)	Yield ^b (%)
1	OH	2	8a	91
2	ОН	2	8b	91
3	ОН	2	8c	92
4	OH	2	8d	94
5	ОН	2	8e	97
6	ОН	2	8f	98
7	OH	3	8g	88
8	OH OMe	6	8h	80
9	OH OMe	8	8i	86
10	OH Br	4	8j	91
11	OH CI	4	8k	82
12	OH OMe	4	81	91

Table 2 (continued)

Entry	Substrate (ROH)	Time (h)	Product (RO-THP)	Yield ^b (%)		
13	OH	3	8m	85		
14	OH NO ₂	8	8n	84		
15	OH OMe	8	80	80		
16	OH OMe	8	8p	81		
17	OH	4	8q	81		
18	ОН	4	8r	87		

^a The reactions were carried out with 1 mmol of alcohol/phenol and 1 mmol of DHP in the presence of 0.2 mmol of 3,5-DNBA in CH_2Cl_2 at room temperature. ^b Yields are of pure and isolated products.

4a–e in very high yields. In all the reactions, the α -anomer was obtained predominately, as confirmed by spectroscopic data. The predominant formation of this α -anomer may arise from a thermo-dynamic anomeric effect. Encouraged by these results, the protocol was extended to thiols.

The 3,5-DNBA catalyzed Ferrier rearrangement of glycals **1** and **2** with thiophenol, 4-chlorothiophenol, 4-methylthiophenol, and benzyl thiol underwent smoothly to furnish *S*-glycosides **5a**-**d**-**6a**-**d** in good yields and α -anomers were obtained as major products (Table 1).

In an effort to further explore the scope of this catalyst, we studied the tetrahydropyranylation of numerous alcohols and phenols. Initially, the tetrahydropyranylation of phenol (1 mmol) was performed with dihydropyran (DHP, 7, 1 mmol) in CH₂Cl₂ in the presence of 20 mol % 3,5-DNBA at room temperature under aerobic conditions for 3 h (Table 2, entry 7) to afford its tetrahydropyranyl ether 8g in 88% yield. Using this protocol, various primary, secondary alcohols and phenols were transformed easily into the corresponding THP-ethers 8a-r in good yields (Table 2). It is observed that irrespective of the nature of the substitutents present on phenols, THP-ethers 8g-r were obtained in good yields. Importantly, no isomerization of double bond took place in case of eugenol (Table 2, entry 16). Although, several reports have appeared in the literature,^{25–33} most of them suffer due to the use of expensive and moisture sensitive catalysts, high temperature, longer reaction times, and incompatibility with other functional groups, and some reagents also have to be prepared freshly prior to use.²⁵⁻²⁸

In conclusion, we have developed a simple and convenient method for the synthesis of 2.3-unsaturated glycosides via the Ferrier rearrangement and tetrahydropyranylation. 3,5-Dinitrobenzoic acid is an effective, very cheap, and viable catalyst in above synthetic transformations with various alcohols and thiols. Thus, we have demonstrated that 3,5-dinitrobenzoic acid is a useful organocatalyst in the transformations depicted herein and this methodology is a valuable addition to modern synthetic methodologies.

Acknowledgments

We gratefully acknowledge financial support from the Council for Scientific and Industrial Research [Project No. CSIR-01(2297)/ 09/EMR-II], New Delhi - India. N.B. thanks CSIR for research fellowship.

Supplementary data

Supplementary data (experimental details and products characterization for compounds 3a-3e, 4a-4e, 5a-5e, 6a-6e, and 8a-8r) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.10.093.

References and notes

- 1. Williams, N. R.; Wander, J. D. The Carbohydrates in Chemistry and Biochemistry; Academic Press: New York, 1980; p 761.
- (a) Ferrier, R. J. Adv. Carbohydr. Chem. Biochem. 1969, 24, 199-266; (b) Schmidt, 2. R. R.; Angerbauer, R. Carbohydr. Res. 1979, 72, 272-275; (c) Fraser, R. B. Acc. Chem. Res. 1985, 18, 347-354; (d) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503-1531; (e) Dorgan, B. J.; Jackson, R. F. W. Synlett 1996, 859-861; (f) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. 1996, 35, 1380-1419;

(g) Liu, Z. J.; Zhou, M.; Min, J. M.; Zhang, L. H. Tetrahedron: Asymmetry 1999, 10, 2119-2127; (h) Nicolaou, K. C.; Mitchell, H. J. Angew. Chem., Int. Ed. 2001, 40, 1576-1624.

- Bussolo, V. D.; Kim, Y. J.; Gin, D. Y. J. Am. Chem. Soc. 1998, 120, 13515-13516. 3 (a) Schmidt, R. R.; Angerbauer, R. Carbohydr. Res. 1981, 89, 159-162; (b) 4.
- Angerbauer, R.; Schmidt, R. R. Carbohydr. Res. 1981, 89, 193-201. 5 (a) Tolstikov, A. G.; Tolstikov, G. A. Russ. Chem. Rev. 1993, 62, 579-601; (b) Ruiz,
- J. M. J.; Obwald, G.; Petersen, M.; Fessener, W.-D. J. Mol. Catal. 2001, 11, 189-197; (c) Bracherro, M. P.; Cabrera, E. F.; Gomez, G. M.; Peredes, L. M. R. Carbohydr. Res. 1998, 308, 181–190.
- Bettadaiah, B. K.; Srinivas, P. Tetrahedron Lett. 2003, 44, 7257-7259. 6
- Gorityala, B. K.; Cai, S.; Lorpitthaya, R.; Ma, J.; Pasunooti, K. K.; Liu, X. W. Tetrahedron Lett. 2009, 50, 676-679.
- Babu, B. S.; Balasubramanian, K. K. Tetrahedron Lett. 2000, 41, 1271–1274. Q
- 9. (a) Grynkiewicz, G.; Priebe, W.; Zamojski, A. Carbohydr. Res. 1979, 68, 33-41; (b) Bhate, P.; Horton, D.; Priebe, W. Carbohydr. Res. 1985, 144, 331-337
- Takhi, M.; Rahman, A.; Adel, A. H.; Schmidt, R. R. Tetrahedron Lett. 2001, 42, 10 4053-4056.
- 11. Masson, C.; Soto, J.; Bessodes, M. Synlett 2000, 1281-1282.
- (a) Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M. Synlett 1995, 306-308; (b) Shanmugasundaram, B.; Bose, A. K.; Balasubramanian, K. K. Tetrahedron Lett. 2002, 43, 6795-6798; (c) Oliviera, R. N.; Freitas, J. R. F.; Srivastava, R. M. Tetrahedron Lett. 2002, 43, 2141–2143.
- 13. Yadav, J. S.; Reddy, B. V. S.; Reddy, J. S. S. J. Chem. Soc., Perkin Trans. 1 2002, 2390-2394.
- Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M.; Kinoshita, M. J. Chem. Soc., 14. Chem. Commun. 1993, 704-706.
- 15. Koreeda, M.; Houston, T. A.; Shull, B. K.; Klemke, E.; Tuinman, R. J. Synlett 1994, 90-92.
- Lopez, J. C.; Fraser, R. B. J. Chem. Soc., Chem. Commun. 1992, 94-96. 16.
- Yadav, J. S.; Reddy, B. V. S.; Pandey, S. K. New J. Chem. 2001, 25, 538-540. 17.
- 18. Yadav, J. S.; Reddy, B. V. S.; Reddy, K. B.; Satyanarayana, M. Tetrahedron Lett. 2002, 43, 7009-7012.
- 19. (a) Misra, A. K.; Tiwari, P.; Agnihotri, G. Synthesis 2005, 260-266; (b) Agarwal, A.; Rani, S.; Vankar, Y. D. J. Org. Chem. 2004, 69, 6137-6140.
- Hadfield, A. F.; Sartoli, A. C. Carbohydr. Res. 1982, 101, 197-208.
- Lopez, J. C.; Gomez, A. M.; Valverde, S.; Fraser, R. B. J. Org. Chem. 1995, 60, 21. 3851-3858
- (a) Rani, R.; Peddinti, R. K. Tetrahedron: Asymmetry 2010, 21, 775-779; (b) 22. Agarwal, J.; Peddinti, R. K. Tetrahedron: Asymmetry 2010, 21, 1906–1909; (c) Rani, R.; Peddinti, R. K. Tetrahedron: Asymmetry 2010, 21, 2487-2492; (d) Agarwal, J.; Peddinti, R. K. Tetrahedron Lett. 2011, 52, 117-121; (e) Agarwal, J.; Peddinti, R. K. J. Org. Chem. 2011, 76, 3502-3505.
- (a) Stevenson, C. P.; Nielsen, L. P. C.; Jacobsen, E. N. Org. Synth. 2006, 83, 162-23. 169; (b) But, T. Y. S.; Lu, J.; Toy, P. H. Synlett 2010, 1115-1117.
- For papers involving co-crystals of 3,5-DNBA, see: (a) Ranganathan, A.; 24. Pedireddi, V. R. Tetrahedron Lett. 1998, 39, 1803-1806; (b) Pedireddi, V. R.; Ranganathan, A.; Chartterjee, S. Tetrahedron Lett. 1998, 39, 9831-9834; (c) Pedireddi, V. R.; PrakashaReddy, J. Tetrahedron Lett. 2002, 43, 4927-4930; (d) Sikorski, A.; Trzybiński, D. Tetrahedron Lett. 2014, 55, 2253-2255.
- 25. Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem. 1977, 42, 3772-3774.
- Namboodiri, V. V.; Varma, R. S. Tetrahedron Lett. 2002, 43, 1143-1146. 26.
- Karimi, B.; Maleki, J. Tetrahedron Lett. 2002, 43, 5353-5355. 27
- Khan, A. T.; Choudhury, L. H.; Ghosh, S. Tetrahedron Lett. 2004, 45, 7891–7894. 28.
- Khan, A. T.; Ghosh, S.; Choudhury, L. H. Eur. J. Org. Chem. 2005, 4891-4896. 29.
- Pachamuthu, K.; Vankar, Y. D. J. Org. Chem. 2001, 66, 7511–7513.
 Naik, S.; Gopinath, R.; Patel, B. K. Tetrahedron Lett. 2001, 42, 7679–7681.
- Hon, Y. S.; Lee, C. F.; Chen, R. J.; Szu, P. H. Tetrahedron 2001, 57, 5991-6001. 32.
- Yaday, J. S.: Reddy, B. V. S.: Gnaneshwar, D. New J. Chem. 2003, 27, 202-204. 33