Complexes of germanium(IV) fluoride with phosphane ligands: structural and spectroscopic authentication of germanium(IV) phosphane complexes[†]

Martin F. Davis, William Levason,* Gillian Reid and Michael Webster

Received 31st October 2007, Accepted 11th February 2008 First published as an Advance Article on the web 19th March 2008 DOI: 10.1039/b716765b

The first phosphane complexes of germanium(IV) fluoride, *trans*-[GeF₄(PR₃)₂] (R = Me or Ph) and *cis*-[GeF₄(diphosphane)] (diphosphane = R₂P(CH₂)₂PR₂, R = Me, Et, Ph or Cy; o-C₆H₄(PR₂)₂, R = Me or Ph) have been prepared from [GeF₄(MeCN)₂] and the ligands in dry CH₂Cl₂ and characterised by microanalysis, IR, Raman, ¹H, ¹⁹F{¹H} and ³¹P{¹H} NMR spectroscopy. The crystal structures of [GeF₄(diphosphane)] (diphosphane = Ph₂P(CH₂)₂PPh₂ and o-C₆H₄(PMe₂)₂) have been determined and show the expected *cis* octahedral geometries. In anhydrous CH₂Cl₂ solution the complexes are slowly converted into the corresponding phosphane oxide adducts by dry O₂. The apparently contradictory literature on the reaction of GeCl₄ with phosphanes is clarified. The complexes *trans*-[GeCl₄(AsR₃)₂] (R = Me or Et) are obtained from GeCl₄ and AsR₃ either without solvent or in CH₂Cl₂, and the structures of *trans*-[GeCl₄(AsEt₃)₂] and Et₃AsCl₂ determined. Unexpectedly, the complexes of GeF₄ with arsane ligands are very unstable and have not been isolated in a pure state. The behaviour of the germanium(IV) halides towards phosphane and arsane ligands are compared with the corresponding silicon(IV) and tin(IV) systems.

Introduction

In marked contrast to the very extensive chemistry with d-block metals, complexes of the p-block metals and metalloids with soft neutral ligands such as phosphanes or arsanes have been relatively little investigated. Whilst a variety of phosphane complexes are known for the heavier halides of Ga^{III}, In^{III}, Bi^{III} and Sn^{IV}, little is known about other Lewis acids in this block.¹⁻⁴ Complexes of the p-block fluorides with phosphanes are extremely rare, and apart from some very early work on SiF_4 ,¹ the only examples are from our recent study of SnF4 adducts,5 which provided detailed spectroscopic and structural data on a range of complexes including $[SnF_4(diphosphane)]$ (diphosphane = $o-C_6H_4(PR_2)_2$, $R = Me \text{ or } Ph; R_2P(CH_2)_2PR_2, R = Me, Et, Cy \text{ or } Ph) and trans [SnF_4(PR_3)_2]$ (R = Me or Cy).⁵ There are no reports of tertiary phosphane complexes of GeF₄, and with GeCl₄ the reports are few and apparently contradictory. Beattie⁶ and Ozin⁷ and their coworkers reported the formation of *trans*-[GeCl₄(PMe₃)₂] and $[GeX_4(PMe_3)]$ (X = Cl or Br) respectively, by reaction of GeX₄ and PMe₃ in the absence of a solvent, and used detailed IR and Raman studies to identify the products. In contrast, the reactions of PR₃ (R = ^tBu or ⁱPr) with GeX₄ in benzene gave the redox products [PR₃X][Ge^{II}X₃].⁸ In a recent study by Godfrey et al.,⁹ the reaction of GeCl₄ with a wide range of tertiary phosphanes (PR₃, $R = Me, Et, {}^{n}Pr, {}^{n}Bu, Cy etc.$) in diethyl ether solution was found to give exclusively [PR₃Cl][Ge^{II}Cl₃], identified by microanalysis, ${}^{31}P{}^{1}H$ NMR spectroscopy and by the crystal structure of

[PⁿBu₃Cl][GeCl₃]. Similar redox reactions occur with primary and secondary phosphanes, although the initial products often undergo further reaction with elimination of HX to form species such as R₂PGeX₃ or RHPGeX₃.¹⁰ However Godfrey *et al.*⁹ were able to prepare and structurally characterise the first Ge^{IV} arsane, *trans*-[GeCl₄(AsMe₃)₂]. The redox chemistry in the GeX₄–PR₃ reactions (at least under some conditions) contrasts with that of the SnX₄ systems where simple adduct formation occurs with the majority of phosphanes and diphosphanes.⁴⁻⁷ It should be noted however that P^tBu₃ and SnX₄ produce [P^tBu₃X][SnX₃].⁸ Here we report the synthesis, structural and spectroscopic characterisation of a series of phosphane complexes of GeF₄, further studies into the GeCl₄ and GeBr₄ reactions, and also studies of complexes of GeX₄ with arsane ligands.

Results and discussion

Germanium(IV) phosphanes

Our previous studies have shown that towards hard N- or Odonor ligands GeF₄ is a much stronger Lewis acid than GeCl₄ or GeBr₄.¹¹ The reaction of $[GeF_4(MeCN)_2]^{11}$ with two mol. equivalents of PMe₃ in anhydrous CH₂Cl₂ gave $[GeF_4(PMe_3)_2]$ (Scheme 1) as a white, moisture sensitive powder, only slightly soluble in chlorocarbons. The ¹H NMR spectrum in CD₂Cl₂ solution contained a single doublet at $\delta = 1.46$ (²J_{PH} = 12 Hz), the ¹⁹F{¹H} NMR spectrum is a 1:2:1 triplet at 295 K, and was unchanged on cooling, showing only the *trans* isomer was present in detectable amounts. As expected, the ³¹P{¹H} NMR spectrum is a quintet at $\delta = -12.4$ (²J_{PF} = 196 Hz). The corresponding reaction using PPh₃ gave white *trans*-[GeF₄(PPh₃)₂] (Table 1) which was easily soluble in chlorocarbons, but extensively dissociated at room temperature in solution. The ¹⁹F{¹H} and ³¹P{¹H} NMR data were recorded at 210 K and show the expected multiplets, but

School of Chemistry, University of Southampton, Southampton, UK SO17 1BJ. E-mail: wxl@soton.ac.uk

[†] Electronic supplementary information (ESI) available: Structures (Fig. S1 and S2), and bond lengths and angles (Table S1 and S2) of $[Me_2P(H)(CH_2)_2P(H)Me_2][GeCl_3]_2$ and $[Me_2P(O)(CH_2)_2P(O)Me_2H]$ -[GeCl_3]. CCDC reference numbers 665905–665910. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b716765b

on warming to >240 K the resonances are lost. In view of the easy chlorination of phosphanes by GeCl₄ (*vide infra*), the reaction of $[GeF_4(MeCN)_2]$ with excess molten PPh₃ was also carried out, which constitutes more forcing conditions, but examination of the products by ³¹P{¹H} and ¹⁹F{¹H} NMR spectroscopy revealed only *trans*-[GeF₄(PPh₃)₂], traces of [GeF₄(OPPh₃)₂]¹¹ and excess PPh₃, and there is no evidence for fluorination of the ligand (to Ph₃PF₂). Attempts to isolate *trans*-[GeF₄(PCy₃)₂] were unsuccessful, the products obtained were extremely moisture sensitive and NMR studies suggested a mixture of species was present.

The reactions of $[GeF_4(MeCN)_2]$ with the diphosphanes $R_2P(CH_2)_2PR_2$ (R = Me, Et, Ph or Cy) and $o-C_6H_4(PR_2)_2$ (R = Me or Ph) in anhydrous CH_2Cl_2 were undertaken with the aim of obtaining *cis* isomers and in the expectation that chelation would produce more stable complexes. These readily gave *cis*-[GeF_4(diphosphane)] as white powders, which can be handled briefly in air with no detectable decomposition. Like the tin analogues, the solids tenaciously retain chlorinated solvents (evident in the ¹H NMR spectra). The complexes exhibit several strong, overlapping v(GeF) vibrations in their IR spectra in the range 620–560 cm⁻¹ (theory for a *cis*-MF_4P_2 is four IR active

stretches: $2a_1 + b_1 + b_2$) which may be compared with the t_{1u} mode in $[GeF_6]^{2-}$ at 600 cm⁻¹.¹² $[GeF_4{Me_2P(CH_2)_2PMe_2}]$ is only slightly soluble in CH_2Cl_2 but the other complexes dissolve easily in chlorocarbons. The ¹H NMR spectra in CD₂Cl₂ or CDCl₃ solution at 295 K are simple, showing only coordinated diphosphane ligands present. At ambient temperatures both the ${}^{19}F{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra are broad lines with ill-defined or unresolved couplings, indicative of reversible dissociation or chelate ring-opening on the appropriate NMR time-scales. On moderate cooling of the solutions (273-243 K depending on the ligand present), the resonances sharpen and show the coupling patterns expected for *cis*-octahedral complexes (Table 1).⁵ The ${}^{31}P{}^{1}H$ spectra are 12 line patterns (d,d,t) and the ${}^{19}F{}^{1}H$ spectra show two resonances; a t,t for the two axial fluorines and a d,d,t for the fluorines trans to phosphorus. The chemical shifts and coupling constants are shown in Table 1. Notably the spectra show no other species present in significant amounts and are unchanged after the solutions have been allowed to stand for several hours. The ${}^{31}P{}^{1}H{}$ chemical shifts are very similar to those observed in the analogous [SnF₄(diphosphane)] complexes,⁵ and as in those cases the coordination shifts $\Delta (\Delta = \delta_{\text{complex}} - \delta_{\text{ligand}})$ are irregular, although generally the stronger σ -donor ligands produce high frequency

 Table 1
 Selected NMR data for GeF₄ complexes^a

Compound	$\delta^{31} \mathrm{P} \{^{1}\mathrm{H}\}^{b}$	\varDelta^c	δ ¹⁹ F{ ¹ H}	$^{2}J(^{31}P-^{19}F)/Hz$	$^{2}J(^{19}\mathrm{F}-^{19}\mathrm{F})/\mathrm{Hz}$
$[GeF_4{o-C_6H_4(PMe_2)_2}]$	-31.8(t, d, d)	23	-97.2(t,t), -126.0(d,d,t)	77, 135, 155	54
$[GeF_4{o-C_6H_4(PPh_2)_2}]$	-17.1(t, d, d)	-4	-81.9(t,t), -121.9(d,d,t)	64, 110, 129	65
$[GeF_4{Et_2P(CH_2)_2PEt_2}]$	-9.2(t, d, d)	9	-91.9(t,t), -113.6(d,d,t)	66, 131, 136	55
$[GeF_{4}{Me_{2}P(CH_{2})_{2}PMe_{2}}]$	-24.6(t, d, d)	23	-96.2(t,t), -121.2(d,d,t)	80, 135, 149	55
$[GeF_4{Ph_2P(CH_2)_2PPh_2}]$	-17.1(t, d, d)	-4	-73.7(t,t), -110.3(d,d,t)	64, 119, 151	61
$[GeF_4 \{Cv_2P(CH_2), PCv_2\}]$	-8.7(t, d, d)	-11	-81.2(t,t), -103.1(d,d,t)	60, 121, 122	57
trans-[GeF ₄ (PMe ₃) ₂]	-12.4(q)	50	-96.9(t)	196	
trans-[GeF ₄ (PPh ₂) ₂] ^d	2.8(a)	8	-70.6(t)	180	

^{*a*} In CH₂Cl₂–10% CDCl₃. Spectra were typically recorded at 240 K to resolve couplings (see text). ^{*b*} Ligand chemical shifts are: *o*-C₆H₄(PMe₂)₂ –55; *o*-C₆H₄(PPh₂)₂ –13; Ph₂P(CH₂)₂PPh₂ –13; Et₂P(CH₂)₂PEt₂ –18; Me₂P(CH₂)₂PMe₂ –48; Cy₂P(CH₂)₂PCy₂ +2; PMe₃ –62; PPh₃ –6 ppm. ^{*c*} Coordination shift ($\Delta = \delta_{complex} - \delta_{ligand}$). ^{*d*} At 190 K. Resonances disappear >240 K. coordination shifts and the weaker donor aryl-diphosphanes low frequency shifts. Only [GeF₄{Cy₂P(CH₂)₂PCy₂}] does not conform to this pattern, exhibiting a coordination shift of -11, despite being a strong σ -donor. It is likely that steric factors from this bulky ligand on the small germanium centre are a major contributor here. These erratic coordination shifts are seen in phosphane complexes of Sn^{IV 4} and Ga^{III},¹³ but the cause is presently unclear. The ¹⁹F{¹H} chemical shifts are higher frequency than those observed in the [SnF₄(diphosphane)] analogues⁵ and the ²J_{FF} and ²J_{PF} couplings are larger in the germanium systems. Similar ²J_{FF} values (50–60 Hz) are found in *cis*-[GeF₄(OPR₃)₂]¹¹ and in [GeF₄(L-L)] (L-L = 2,2'-bipyridyl, 1,10-phenanthroline, Me₂N(CH₂)₂NMe₂),¹⁴ although rather larger values (70–80 Hz) are seen in [GeF₄{RS(CH₂)₂SR}].¹⁵

Confirmation of the [GeF₄(diphosphane)] constitution was provided by X-ray crystal structures of two examples, with the diphosphanes o-C₆H₄(PMe₂)₂ and Ph₂P(CH₂)₂PPh₂. The structure of the former is shown in Fig. 1, and Table 2 contains selected bond lengths and angles. The germanium environment is approximately octahedral with the angles F–Ge–F slightly greater than 90°, F–Ge–P slightly less than 90°, and P–Ge–P 85.61(4)°. As observed in GeF₄ complexes with N- or O-donor ligands,^{11,14} Ge– F_{transF} (1.809(2), 1.815(2) Å) are longer than Ge–F_{transP} (1.765(2), 1.772(2) Å). Similar patterns of bond lengths and angles are found in the structure of [GeF₄{Ph₂P(CH₂)₂PPh₂}] (Fig. 2, Table 3) although the Ge–P bonds are slightly longer in the complex of the aryl-diphosphane, possibly due to its weaker σ -donation.

Fig. 1 Structure of $[GeF_4{o-C_6H_4(PMe_2)_2}]$ with the atom numbering scheme adopted. H atoms are omitted for clarity and displacement ellipsoids are shown at the 50% probability level.

Table 2 Selected bond lengths (Å) and angles (°) for $[GeF_4\{o-C_6H_4(PMe_2)_2\}]$

Ge1–F1	1.815(2)	Ge1–F3	1.772(2)
Ge1–F2	1.765(2)	Ge1–F4	1.809(2)
Ge1–P1	2.4273(12)	Ge1–P2	2.4273(11)
F2-Ge1-F3	93.91(10)	F2-Ge1-F4	92.49(12)
F3-Ge1-F4	93.18(12)	F2-Ge1-F1	92.76(12)
F3-Ge1-F1	91.56(12)	F2-Ge1-P1	89.80(8)
F4-Ge1-P1	87.65(9)	F1-Ge1-P1	87.26(8)
F3-Ge1-P2	90.70(9)	F4-Ge1-P2	86.77(9)
F1-Ge1-P2	87.59(8)	P1-Ge1-P2	85.61(4)

Table 3 Selected bond lengths (Å) and angles (°) for $[GeF_{4^-}\{Ph_2P(CH_2)_2PPh_2\}]$

Gel-Fl	1.7987(14)	Ge1–F3	1.7731(14)
Ge1–F2	1.7829(13)	Ge1–F4	1.7692(14)
Ge1–P1	2.4636(7)	Ge1–P2	2.4822(7)
F4–Ge1–F3	93.21(7)	F4–Ge1–F2	93.44(6)
F3–Ge1–F2	93.44(7)	F3-Ge1-F1	93.02(7)
F4–Ge1–F1	92.71(7)	F2-Ge1-P1	89.28(4)
F4–Ge1–P2	90.18(5)	F1-Ge1-P1	83.94(5)
F2–Ge1–P2	88.08(5)	F1-Ge1-P2	85.08(5)
F3–Ge1–P1	92.44(5)	P1-Ge1-P2	84.08(2)

Fig. 2 Structure of $[GeF_4{Ph_2P(CH_2)_2PPh_2}]$ with the atom numbering scheme adopted. H atoms are omitted for clarity and displacement ellipsoids are shown at the 50% probability level. Only the *ipso* C atom labels are shown and C atoms are numbered sequentially round the ring starting at the label shown.

Studies of the SnX₄-PR₃ systems⁵ showed that in the presence of air, the corresponding phosphane oxide complexes, $[SnX_4(OPR_3)_2]$,¹⁶ form, and we have shown¹⁷ using ¹⁸O₂, that the source of the oxygen is dioxygen rather than water. Using SnI₄ the reaction provides a convenient catalytic route to phosphane oxides.¹⁷ A solution of [GeF₄(PPh₃)₂] in CH₂Cl₂ exposed to dry air, deposited crystals identified by an X-ray structure to be trans-[GeF₄(OPPh₃)₂],¹¹ and since PPh₃ is air stable in solution, this demonstrates that the reaction was promoted by the germanium complex. In view of the generation of [PR₃X][GeX₃] in the cases of X = Cl or Br, which could hydrolyse to OPR₃, it was important to establish the source of the oxygen atoms incorporated. Exposure of a solution of $[GeF_4{Ph_2P(CH_2)_2PPh_2}]$ in CH₂Cl₂ to dry ¹⁸O₂ resulted in the slow formation of the diphosphane dioxide complex (monitored in situ by ${}^{31}P{}^{1}H$ NMR spectroscopy). After the reaction appeared complete the complex was decomposed by treatment with aqueous NaOH, and separation of the organic layer, drying and evaporation produced a white solid. The EI mass spectrum of this solid showed a base peak at m/z = 433 corresponding to $[Ph_2P(^{18}O)(CH_2)_2P(^{18}O)PPh_2 -$ H]⁺, and the IR spectrum showed v(PO) at 1153 cm⁻¹. The $Ph_2P(^{16}O)(CH_2)_2P(^{16}O)PPh_2$ exhibits v(PO) at 1177 cm⁻¹, and the simple diatomic oscillator model predicts the effect of ¹⁸O substitution will lower this vibration to 1133 cm⁻¹. Coupling with the v(PC) mode at ~1120 cm⁻¹ probably causes the higher frequency observed experimentally.17 Thus, like SnX4,5,17 GeF4 Published on 19 March 2008. Downloaded by McMaster University on 24/10/2014 15:29:30.

promotes air/dioxygen oxidation of phosphanes, although the reaction is considerably slower with germanium.

GeX_4 -PMe₃ (X = Cl or Br) systems

Following the successful characterisation of the phosphane adducts of GeF4, we re-examined the GeCl4-PMe3 reaction in an attempt to elucidate the apparently contradictory literature,⁶⁻⁹ and found that the reports from Beattie⁶ and Godfrey⁹ and coworkers are both valid, and that the species formed are extremely dependent upon the conditions. We distilled GeCl₄ onto neat PMe₃ at 77 K and allowed the mixture to thaw slowly. On melting, a vigorous reaction occurred which was moderated by judicious cooling, resulting in formation of a white powder. The Raman spectrum of this product (Fig. 3, top) was in excellent agreement with that reported by Beattie with a very strong feature at 267 cm⁻¹ assigned as the a_{1g} vibration of *trans*-[GeCl₄(PMe₃)₂] (lit.,⁶ 268 cm⁻¹)—compare also the values of the corresponding vibration in the crystallographically characterised *trans*-[GeCl₄(AsR₃)₂] (vide infra). The sample was then dissolved in rigorously dried CH₂Cl₂ and the mixture immediately pumped to dryness. The Raman spectrum of this sample showed the features of the initial spectrum and some new bands in the region >350 cm⁻¹. The sample was redissolved in CH₂Cl₂, allowed to stand for 3 h and then taken to dryness. The Raman spectrum of this sample (Fig. 3, bottom) showed loss of the 267 cm⁻¹

Fig. 3 Raman spectrum of $[GeCl_4(PMe_3)_2]$ (above) and of $[PMe_3Cl][GeCl_3]$ (below). From comparison of the intensities in the ligand modes (not shown) the features in the upper spectrum are ~ 10 times more intense than those in the lower.

feature, but new medium intensity bands at 314 and 260 cm⁻¹ which correspond to [GeCl₃]⁻ ([NBu₄][GeCl₃] has features at 320, 255 cm⁻¹). The reactions can also be monitored by NMR spectroscopy. The initial solid, dissolved in CH₂Cl₂ at 273 K and immediately cooled to 200 K, does not show a ${}^{31}P{}^{1}H{}$ NMR resonance from the initial complex, but on standing a new feature at $\delta = +92$ attributable[‡] to [PMe₃Cl]⁺ appeared. The absence of a phosphorus resonance for the Ge^{IV} complex is consistent with extensive dissociation/fast exchange even at low temperatures. This explanation is supported by the ¹H NMR spectrum of *trans*-[GeCl₄(PMe₃)₂] obtained immediately after dissolution in CDCl₃, which shows a doublet at $\delta = 2.75$, ${}^{2}J_{PH} =$ 13.5 Hz (assigned to [PMe₃Cl]⁺) and a doublet at $\delta = 1.8$, ${}^{2}J_{\rm PH} =$ 13 Hz for the Ge^{IV} complex. Trace hydrolysis of the solution also produces [PMe₃H][GeCl₃], δ (³¹P) = -4.9, and from such a hydrolysed sample we obtained crystals identified by their unit cell as [PMe₃H][GeCl₃].¹⁹ Hence, as described by Beattie and Ozin,⁶ the reaction of $GeCl_4$ with PMe₃ in the absence of a solvent does indeed give trans-[GeCl₄(PMe₃)₂], but this rapidly rearranges in solution in chlorocarbons or ethers to [PMe₃Cl][GeCl₃], and the latter is obtained when the reaction is performed in solution (Scheme 1).^{8,9} The recrystallisation of [GeCl₄(PMe₃)₂] from hot $GeCl_4$ was reported to give $[GeCl_4(PMe_3)]$, believed to be an axially-substituted trigonal bipyramid molecule,7 however the reported Raman spectrum is very similar to that of [PMe₃Cl][GeCl₃] and we suggest the latter is the correct formulation. We also reacted GeBr₄ and PMe₃ in the absence of solvent and obtained a cream powder with a Raman spectrum identical to that reported⁷ for $[GeBr_4(PMe_3)]$. In this case also, the strongest features in the low energy region correspond to [GeBr₃]⁻, and on dissolution in dry CH_2Cl_2 the ³¹P{¹H} NMR resonance is found at $\delta = +68$, probably corresponding to [PMe₃Br]⁺.

We have not examined other tertiary phosphanes, but is seems likely that similar reactions would occur with initial formation of a tetrachlorogermanium(IV) adduct which then (especially in solution) undergoes a redox reaction to form [PR₃Cl][GeCl₃]—in some cases the rearrangement may be so rapid that the Ge(IV) species is only a transient intermediate. The GeBr₄–PMe₃ reaction appears to give [PMe₃Br][GeBr₃] without any evidence that a Ge(IV) complex is isolable. In contrast, the silicon(IV) and tin(IV) complexes are stable (although very moisture sensitive) and *trans*-[SiCl₄(PMe₃)₂]²⁰ and several SnX₄–phosphane complexes^{4,5} have been authenticated by X-ray crystal structures.

In the hope of obtaining more stable Ge(IV) complexes, we examined the reaction of the bidentate $Me_2P(CH_2)_2PMe_2$ with GeCl₄ under a variety of reaction conditions (mixed in the absence of solvent, in solution in CH_2Cl_2 or Et_2O , at room or low temperatures) and monitored reactions by *in situ* ³¹P{¹H} NMR spectroscopy. The reactions are very sensitive to the conditions, and resonances due to mono- and di-chlorinated and -protonated phosphane groups could be identified, the relative amounts varying with conditions and reaction times, and with trace hydrolysis in some samples. We were unable to unequivocally identify resonances in the ¹H or ³¹P{¹H} NMR spectra due

[‡] The observed ³¹P chemical shift of "[PMe₃Cl]⁺" seems to vary with solvent, concentration and anion, probably due to subtle speciation involving [PMe₃Cl]⁺, Me₃PCl₂ and Me₃PCl···Cl forms (see reference 18 and references therein).

to $[GeCl_4\{Me_2P(CH_2)_2PMe_2\}]$, although this may be due to fast dissociative ligand exchange even at low temperature. The only species identified crystallographically were $[GeCl_3]^-$ salts with $[Me_2PH(CH_2)_2PHMe_2]^{2+}$ or $[Me_2P(O)(CH_2)_2P(O)Me_2H]^+$ deposited over several days or weeks (see ESI†). We conclude that the reactions of the diphosphane with GeCl₄ are similar to those

with PMe₃, with the trichlorogermanate(II) as the final product. The reason for the easier reduction of GeX₄ (X = Cl or Br) by phosphanes compared with SnX₄ or SiX₄ (or the relative instability of the [GeX₄(PR₃)₂]), may be an example in germanium chemistry of the lower stability of the element of period 4 in the group oxidation state compared with analogues in periods 3 or 5. This effect is well known for As^v, Se^{vI} and Br^{vII} and is usually rationalised as the result of increased nuclear charge from the 3d transition metals not completely balanced by screening from the 3d electrons.²¹

Germanium(IV) arsanes

The reactions of $[GeF_4(MeCN)_2]$ with $o-C_6H_4(AsMe_2)_2$ or AsMe₃ in CH₂Cl₂ afford unstable, very moisture sensitive white solids, with IR and Raman spectra which show the presence of the appropriate ligand and Ge-F bonds and no MeCN. The ¹H NMR spectra in CD_2Cl_2 show the arsane resonances shifted to high frequency from those of the "free" ligands. None of the samples showed ${}^{19}F{}^{1}H$ NMR resonances at room temperature, but on cooling to < 220 K two triplets of equal intensity appear in regions typical of "cis"-GeF4 units. However, microanalytical data obtained from different samples were always significantly low in C and H compared with expectation for $[GeF_4]$ $C_6H_4(AsMe_2)_2$], and the microanalytical data on the GeF₄-AsR₃ systems reproducibly approximate to 1:1 compounds. In the latter case, the spectroscopic data (see Experimental section) would be consistent with either a cis disubstituted octahedron or an equatorially substituted trigonal bipyramid. We have been unable to obtain crystals of these complexes for X-ray studies and their precise nature remains unclear. There appeared to be no complex formation between GeF₄ and the weaker σ donor Ph₂As(CH₂)₂AsPh₂. Thus, although GeF₄ appears to form adducts with some arsane ligands, these appear to be extensively dissociated in solution and far less stable than the phosphane analogues—a pattern also observed in the SnF₄ systems.⁵ Isolation of pure complexes in the tin systems is complicated by the "SnF₄" formed on dissociation, precipitating as polymeric $[SnF_4]_n$, but in the germanium systems dissociation simply forms GeF₄ monomer, and the instability is therefore a direct result of the low affinity of the hard germanium Lewis acid for the soft arsenic centre.

The reaction of GeCl₄ with AsMe₃ in CH₂Cl₂ or Et₂O at ambient temperatures, produced colourless crystals of *trans*-[GeCl₄(AsMe₃)₂] which were identified by comparison of their unit cell with the literature data.⁹ A similar reaction using AsEt₃ in CH₂Cl₂ followed by rapid isolation of the product gave white *trans*-[GeCl₄(AsEt₃)₂] and crystals obtained from CH₂Cl₂ showed a similar structure (Fig. 4, Table 4). The centrosymmetric molecule has Ge–As = 2.490(1) Å, slightly longer than that in *trans*-[GeCl₄(AsMe₃)₂] (2.472(1) Å). If the solution was allowed to stand for a few days very pale yellow crystals were deposited which were identified by their IR and Raman spectra as Et₃AsCl₂²² The identity was confirmed by the crystal structure (Fig. 5, **Table 4** Selected bond lengths (Å) and angles (°) for *trans*- $[GeCl_4(AsEt_3)_2]$

Ge1–Cl1 Ge1–As1	2.3296(19) 2.4904(9)	Ge1–Cl2 As1–C	2.3233(19) 1.930(8)–1.944(8)
Cl2–Ge1–Cl1 Cl2–Ge1–As1 Cl1–Ge1–As1	90.67(7) 87.03(5) 88.29(5)	Gel–As1–C C–As1–C	110.9(2)–116.0(2) 105.1(4)–106.4(4)

Fig. 4 Structure of the centrosymmetric *trans*-[GeCl₄(AsEt₃)₂] with the atom numbering scheme adopted. H atoms are omitted for clarity and displacement ellipsoids are shown at the 50% probability level. Symmetry operation: a = -x, -y, -z.

Fig. 5 Structure of Et₃AsCl₂ with the atom numbering scheme adopted. H atoms are omitted for clarity and displacement ellipsoids are shown at the 50% probability level. There are two molecules in the asymmetric unit. The second has the same symmetry and similar bond lengths and angles (see Table 5). Symmetry operations: a = 1 - y, x - y, z; b = 1 - x + y, 1 - x, z; c = x, y, -z.

Table 5) which showed the expected trigonal bipyramid geometry with similar As–Cl and As–C bond lengths to those in related compounds such as Me₃AsCl₂ and Cy₃AsCl₂.^{23,24} The *trans*-[GeCl₄(AsR₃)₂] were also made by reaction of GeCl₄ with the ligands in the absence of a solvent (*cf.* the GeCl₄–PMe₃ reactions *vide supra*) and had identical Raman spectra to samples obtained using CH₂Cl₂ as solvent.

The Raman spectra obtained from solid *trans*-[GeCl₄(AsR₃)₂] ($\mathbf{R} = \mathbf{M}\mathbf{e}$ or Et) show very strong bands at 266 cm⁻¹ (Me) or

Table 5	Selected bond lengths (Å) a	and angles (°) for Et_3As	sCl_2
As1–Cl1	2.382(4)	As2–Cl2	2.362(4)
As1–Cl	1.927(6)	As2–C3	1.918(7)
C1–C2	1.604(13)	C3–C4	1.637(12)
C–As1–C	120.0	C-As2-C	120.0
C–As1–C	90.0	C-As2-Cl	90.0
As1–C1–C	C2 105.4(5)	As2-C3-C4	105.9(6)

259 cm⁻¹ (Et) which are assigned as the a_{1g} modes, but in Nujol mulls (the solids dissolve in the Nujol), the strongest band in each far-IR spectrum is at 456 cm⁻¹ which corresponds to the t₂ mode of tetrahedral GeCl₄,²⁵ showing that they are substantially dissociated even in this medium. The ¹H NMR spectra of both complexes are little different to those of the ligands and do not change even on cooling to 190 K, again consistent with extensive dissociation. Upon standing, the solution of *trans*-[GeCl₄(AsEt₃)₂] in CD₂Cl₂ develops new features at $\delta = 1.60$ (t, ${}^{3}J_{\rm HH} = 7.5$ Hz) and 3.06 (q), which correspond to Et₃AsCl₂²² confirming the slow decomposition. We confirm the previous report⁹ that no reaction occurs between GeCl₄ and AsPh₃ in either CH₂Cl₂ or Et₂O at ambient temperatures. No reaction occurred with GeCl₄ and the diarsane Ph₂As(CH₂)₂AsPh₂, or (very surprisingly) with $o-C_6H_4(AsMe_2)_2$, which suggests that the stereochemistry at germanium also plays a role (i.e. cis isomers are even less favoured than the trans and the normally expected greater stability of chelate complexes is not found here). The reaction of GeBr₄ and AsEt₃ in the absence of solvent gave a clear viscous yellow liquid with strong bands in the Raman spectrum at 311, 267, 240 and 205 cm⁻¹ which do not correspond with tetrahedral GeBr₄ (328, 234 cm⁻¹) or to Et₃AsBr₂,²² and when dissolved in CD₂Cl₂ the ¹H NMR spectrum is little different to that of AsEt₃. This suggests that the oil may be trans-[GeBr₄(AsEt₃)₂], again extensively dissociated in solution; extrapolation from the chloride suggests the Raman active a_{1g} Ge–Br vibration will be ~180 cm⁻¹, below the limit of the instrument.

These results show that weak adducts form between GeCl₄ and AsR₃ (R = alkyl), but these are highly dissociated in solution, and slowly convert into R₃AsCl₂. The slower reduction by AsR₃ than by PR₃ reflects the relatively weaker reducing power of the arsanes.

Conclusions

The work has resulted in characterisation of the first phosphane adducts of GeF₄ and has shown that while GeCl₄ forms (unstable) complexes with some arsanes (but not others), these slowly convert into R₃AsCl₂. With phosphanes the reduction to Ge^{II} is usually rapid and $[GeCl_4(PR_3)_2]$ complexes can only be obtained in the absence of solvents. The stability of Lewis acid-base complexes depends upon two major factors-the strength of the donoracceptor bond and the energy needed to reorganise the tetrahedral GeX₄ unit into the four-coordinate fragment of the octahedron. The latter is constant for fixed X, and thus the relative affinity for PR₃ vs. AsR₃ which is $GeF_4 > GeCl_4$ for the phosphanes, but appears to be reversed for the arsane compounds, must mainly reflect the difference in orbital energies and donor atom 'softness' between P and As. The reduction of Ge^{IV} to Ge^{II} is not evident in the fluoride systems, but is favoured for the $GeCl_4$ (and $GeBr_4$) reactions. This contrasts with the chemistry of SnX_4 (X = F, Cl,

Br or I) all of which form phosphane adducts, although again the affinity of SnF_4 for arsanes is much less than for phosphanes. The chemistry observed with GeX_4 also seems to differ from the limited data reported for the SiX_4 systems, but we reserve detailed comparisons here until much more complete data are available. Studies are underway on the silicon tetrahalide complexes.

Experimental

GeF₄ was obtained from Aldrich and used as received. GeCl₄ (Aldrich) was distilled from a mixture of CaCl₂–Na₂CO₃, which removes traces of water and HCl. MeCN and CH₂Cl₂ were dried by distillation from CaH₂, and diethyl ether from sodium benzophenone ketyl. Ligands were obtained from Aldrich or Strem: PMe₃, PPh₃, PCy₃, AsMe₃, AsEt₃, Me₂P(CH₂)₂PMe₂, $Et_2P(CH_2)_2PEt_2$, $Cy_2P(CH_2)_2PCy_2$, or were made by literature methods: o-C₆H₄(PPh₂)₂, Ph₂P(CH₂)₂PPh₂, o-C₆H₄(PMe₂)₂, o-C₆H₄(AsMe₂)₂.²⁶⁻²⁹ All reactions were conducted using Schlenk, vacuum line and glove-box techniques and under a dry dinitrogen atmosphere. IR spectra were recorded from Nujol mulls on a Perkin Elmer PE 983G spectrometer, Raman spectra using a Perkin Elmer FT Raman 2000R with a Nd:YAG laser. ¹H NMR spectra were from CDCl₃ or CD₂Cl₂ solutions on a Bruker AV300, ${}^{19}F{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra on a Bruker DPX400 and referenced to CFCl₃ and 85% H₃PO₄ respectively. Microanalytical measurements on new complexes were performed by the microanalytical service at Strathclyde University. [GeF₄(MeCN)₂] was made as described.11

$[GeF_{4}{o-C_{6}H_{4}(PMe_{2})_{2}}]$

[GeF₄(MeCN)₂] (0.23 g, 1.0 mmol) was dissolved in CH₂Cl₂ (10 mL) and *o*-C₆H₄(PMe₂)₂ (0.198 g, 1.0 mmol) added dropwise; the mixture was stirred for 4 h at ambient temperatures. Most of the solvent was removed *in vacuo* and the white powder produced was filtered off and dried *in vacuo*. Yield 0.32 g, 92%. Required for C₁₀H₁₆F₄GeP₂ (346.8): C, 34.6; H, 4.7. Found: C, 34.9; H, 4.9%. ¹H NMR (300 MHz, CDCl₃, 295 K): $\delta = 1.81$ (t, ²*J* + ⁵*J*_{PH} = 4.5 Hz, 12H, Me), 7.73–7.83 (m, 4H, C₆H₄). IR (Nujol): 607(br), 580(sh), 567(br) *v*(GeF) cm⁻¹.

$[GeF_4{Ph_2P(CH_2)_2PPh_2}]$

[GeF₄(MeCN)₂] (0.23 g, 1.0 mmol) was dissolved in CH₂Cl₂ (10 mL), Ph₂P(CH₂)₂PPh₂ (0.40 g, 1.0 mmol) in CH₂Cl₂ (5 mL) was added and the mixture stirred for 3 h. Most of the solvent was removed *in vacuo* and the white precipitate was washed with hexane (10 mL), filtered off and dried *in vacuo*. Yield 0.37 g, 68%. Required for C₂₆H₂₄F₄GeP₂ (547.0): C, 57.1; H, 4.4. Found: C, 56.2; H, 4.5%. ¹H NMR (300 MHz, CDCl₃, 298 K): $\delta = 2.71$ (s, br, H, CH₂), 7.79–7.38 (m, 5H, Ph). IR (Nujol): 603(s), 586(br) ν (GeF) cm⁻¹.

$[GeF_4{o-C_6H_4(PPh_2)_2}]$

 $[GeF_4(MeCN)_2]$ (0.23 g, 1.0 mmol) and $o-C_6H_4(PPh_2)_2$ (0.45 g, 1.0 mmol) were weighed out and CH_2Cl_2 (10 mL) added, the solution was stirred for 4 h, during which the solution began to turn cloudy and a white precipitate formed. The precipitate was filtered off and dried *in vacuo*. Yield 0.25 g, 42%. Required for

 $C_{30}H_{24}F_4GeP_2$. $\frac{1}{3}CH_2Cl_2$ (623.4): C, 58.5; H, 4.0. Found: C, 58.7; H, 3.8%. ¹H NMR (300 MHz, CDCl₃, 298 K): $\delta = 7.2-7.65$ (m, Ph). IR (Nujol): 619(s), 607(vs, br) ν (GeF) cm⁻¹.

$[GeF_4\{Me_2P(CH_2)_2PMe_2\}]$

Me₂P(CH₂)₂PMe₂ (0.15 g, 1.0 mmol) was added dropwise to a solution of [GeF₄(MeCN)₂] (0.23 g, 1.0 mmol) in CH₂Cl₂ (10 mL); the mixture was stirred overnight at room temperature. A white precipitate was filtered off and dried *in vacuo*. Yield 0.29 g, 97%. Required for C₆H₁₆F₄GeP₂· $\frac{1}{2}$ CH₂Cl₂ (341.2): C, 22.9; H, 5.0. Found: C, 22.6; H, 5.2%. ¹H NMR (300 MHz, CDCl₃, 295 K): $\delta = 1.39$ (m, 3H, Me), 2.05 (m, 2H, CH₂). IR (Nujol): 565(vbr) ν (GeF) cm⁻¹.

$[GeF_4\{Et_2P(CH_2)_2PEt_2\}]$

Et₂P(CH₂)₂PEt₂ (0.206 g, 1.0 mmol) was added dropwise to a solution of [GeF₄(MeCN)₂] (0.23 g, 1.0 mmol) in CH₂Cl₂ (10 mL); the mixture was stirred for 4 h. Most of the solvent was removed *in vacuo*, the solid filtered off and dried *in vacuo*. Yield 0.29 g, 82%. Required for C₁₀H₂₄F₄GeP₂· $\frac{1}{2}$ CH₂Cl₂ (397.3): C, 31.7; H, 6.3. Found: C, 31.2; H, 7.0%. ¹H NMR (300 MHz, CDCl₃, 295 K): $\delta = 1.25$ (m, 3H, Me), 1.97 (m, 2H, CH₂), 2.06 (m, 2H, CH₂). IR (Nujol): 605(sh), 577(vbr), 560(sh) v(GeF) cm⁻¹.

$[GeF_4\{Cy_2P(CH_2)_2PCy_2\}]$

1,2-Bis(dicyclohexylphosphino)ethane (0.47 g, 1.1 mmol) in CH₂Cl₂ (5 mL) was added to a stirred solution of [GeF₄(MeCN)₂] (0.28 g, 1.2 mmol) in CH₂Cl₂ (10 mL) and the mixture was stirred for 2 h. The solvent was removed *in vacuo* to give a white solid which was washed with hexane (10 mL), filtered off and dried *in vacuo*. Yield 0.43 g, 68%. Required for C₂₆H₄₈F₄GeP₂· $\frac{1}{2}$ CH₂Cl₂ (613.5): C, 51.8; H, 8.3. Found: C, 52.0; H, 8.5%. ¹H NMR (300 MHz, CDCl₃, 295 K): $\delta = 1.28$ –2.22 (m, CH₂). IR (Nujol): 592(s,vbr) ν (GeF) cm⁻¹.

trans-[GeF4(PMe3)2]

Trimethylphosphine (0.152 g, 2.0 mmol) was added dropwise to a solution of [GeF₄(MeCN)₂] (0.23 g, 1.0 mmol) in CH₂Cl₂ (10 mL); the mixture was stirred for 2 h. Most of the solvent was removed *in vacuo* and then filtered to give a white powder which was dried *in vacuo*. Yield 0.15 g, 48%. Required for C₆H₁₈F₄GeP₂· $\frac{1}{2}$ CH₂Cl₂ (343.5): C, 22.7; H, 5.5. Found: C, 22.7; H, 5.6%. ¹H NMR (300 MHz, CDCl₃, 295 K): $\delta = 1.46$ (d); ²*J*_{PH} = 12 Hz. IR (Nujol): 575(s,vbr). Raman: 508(ms) ν (GeF) cm⁻¹.

trans-[GeF4(PPh3)2]

A solution of triphenylphosphine (0.52 g, 2.0 mmol) in CH₂Cl₂ (5 mL) was added dropwise to a solution of $[GeF_4(MeCN)_2]$ (0.23 g, 1.0 mmol) in CH₂Cl₂ (10 mL); the mixture was stirred for 3 h. A white precipitate was filtered off and dried *in vacuo*. Yield 0.60 g, 89%. Required for C₃₆H₃₀F₄GeP₂· $\frac{1}{4}$ CH₂Cl₂ (694.4): C, 62.7; H, 4.4. Found: C, 63.0; H, 4.4%. ¹H NMR (300 MHz, CDCl₃, 295 K): $\delta = 7.2-7.6$ (m). IR (Nujol): 607(s,vbr) ν (GeF) cm⁻¹.

Reaction of GeF₄ with *o*-C₆H₄(AsMe₂)₂

o-C₆H₄(AsMe₂)₂ (0.29 g, 1.0 mmol) was added dropwise to a solution of [GeF₄(MeCN)₂] (0.23 g, 1.0 mmol) in CH₂Cl₂ (10 mL). The mixture was stirred for 2 h. The white precipitate was filtered off and dried *in vacuo*. Yield 0.15 g. ¹H NMR (300 MHz, CD₂Cl₂, 295 K): δ = 1.45 (s, 12H, Me), 7.43–7.56 (m, 4H, C₆H₄). ¹⁹F{¹H} NMR (CD₂Cl₂, 220 K): δ = -77.7 (t), -118.1 (t); ²J_{FF} = 66 Hz. IR (Nujol): 657(s), 629(m), 613(m), 595(m) ν(GeF) cm⁻¹. Raman: 664(w), 630(s, br), 602(s, br), ν(GeF) cm⁻¹.

Reaction of GeF₄ with AsMe₃

GeF₄ was bubbled through a stirred solution of trimethylarsine (0.30 g, 2.5 mmol) in hexane (10 mL). A white solid precipitated which was filtered off and dried *in vacuo*. ¹H NMR (300 MHz, CDCl₃, 295 K): $\delta = 1.16$ (s, Me). ¹⁹F{¹H} NMR (CD₂Cl₂, 220 K): $\delta = -127.3$ (t), -149.8 (t); ² $J_{FF} = 80$ Hz. IR (Nujol): 646(s), 635(s), 600(sh) v(GeF) cm⁻¹. Raman: 642(s), 596(s, br), v(GeF) cm⁻¹. The same product was isolated from reaction of AsMe₃ with [GeF₄(MeCN)₂] in CH₂Cl₂ solution.

trans-[GeCl₄(AsMe₃)₂]

Trimethylarsine (0.341 mL, 3.19 mmol) was added to a stirred solution of germanium(IV) chloride (0.343 g, 1.59 mmol) in diethyl ether (10 mL). This was stirred for 2 d before 5 mL of solvent was removed *in vacuo* and a white solid precipitated out. The solid was filtered off and the filtrate was put in a freezer for 5 d. Colourless crystals formed which were identified by a unit cell determination as *trans*-[GeCl₄(AsMe₃)₂].⁹ The crystals and powder were the same spectroscopically. IR (Nujol): 456(s) v_3 (GeCl₄) cm⁻¹. Raman: 266(vs) a_{1g} (GeCl) cm⁻¹.

trans-[GeCl₄(AsEt₃)₂]

Triethylarsine (0.388 mL, 2.76 mmol) was added to a stirred solution of germanium(IV) chloride (0.296 g, 1.38 mmol) in diethyl ether (10 mL). This was stirred overnight before 5 mL of solvent was removed *in vacuo* and was refrigerated when a white solid precipitated, which was filtered off and dried *in vacuo*. Yield 45%. Required for C₁₂H₃₀As₂Cl₄Ge (538.6): C, 26.8; H, 5.6. Found: C, 24.3, H 5.5%. ¹H NMR (300 MHz, CDCl₃, 295 K): δ 1.15 (t, 3H CH₃), 1.42 (q, 2H, CH₂). IR (Nujol): 456(s) ν_3 (GeCl₄) cm⁻¹. Raman: 259(vs) a_{1g} (GeCl) cm⁻¹.

The filtrate was put in a freezer for 5 days before the solvent was removed *in vacuo* which gave pale yellow crystals identified as Et₃AsCl₂ from an X-ray structure determination. ¹H NMR (300 MHz, CDCl₃, 295 K): $\delta = 1.60$ (t, ${}^{3}J_{\rm HH} = 7.5$ Hz, 9H, Me), 3.06 (q, 6H, CH₂). Raman: 611(m), 527(vs), 413(m), 338(m), 254(vs) cm⁻¹.

Oxidation reactions of germanium coordinated phosphanes

A sample of $[GeF_4{Ph_2P(CH_2)_2PPh_2}]$ (0.1 g) was dissolved in degassed anhydrous CH_2Cl_2 under dinitrogen in a small Schlenk tube and the solution frozen solid at 77 K. The system was evacuated and then filled with ¹⁸O₂ to 1 atm and allowed to warm to room temperature. After 2 weeks a sample was removed for ³¹P NMR study, and the remaining solution shaken up with 1 M aqueous NaOH. The organic layer was separated, dried

Compound	$[GeF_4\{o-C_6H_4(PMe_2)_2\}]$	$[GeF_4{Ph_2P(CH_2)_2PPh_2}]$	[GeCl ₄ (AsEt ₃) ₂]	Et ₃ AsCl ₂
Formula	$C_{10}H_{16}F_4GeP_2$	$C_{26}H_{24}F_4GeP_2$	$C_{12}H_{30}As_2Cl_4Ge$	C ₆ H ₁₅ AsCl ₂
Μ	346.76	546.98	538.59	233.00
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Hexagonal
Space group (no.)	$Pna2_{1}(33)$	<i>Cc</i> (9)	$P2_1/n$ (14)	P6 (174)
a/Å	12.307(3)	10.6765(12)	7.849(2)	8.354(2)
b/Å	10.1285(10)	16.466(2)	13.643(4)	8.354(2)
c/Å	10.749(3)	14.2710(16)	9.537(3)	8.629(2)
$a/^{\circ}$	90	90	90	90
β/°	90	105.003(8)	93.721(15)	90
y/°	90	90	90	120
$U/Å^3$	1339.9(4)	2423.3(5)	1019.1(5)	521.5(2)
Ζ	4	4	2	2
μ (Mo-K α)/mm ⁻¹	2.547	1.439	5.238	3.702
F(000)	696	1112	536	236
Total no. reflections	8863	12784	9942	7342
Unique reflections	2871	4506	2340	861
R _{int}	0.057	0.024	0.079	0.050
Min., max. transmission	0.742, 1.000	0.886, 1.000	0.713, 1.000	0.721, 1.000
No. of parameters, restraints	158, 1	298, 2	91, 0	36, 2
Goodness-of-fit on F^2	1.04	1.05	1.21	1.02
Resid. electron density/e Å ⁻³	-0.53 to +0.46	-0.26 to +0.29	-0.81 to $+1.00$	-0.47 to $+0.60$
$R_1^{b} \left[I_o > 2\sigma(I_o) \right]$	0.039	0.022	0.067	0.034
R_1 (all data)	0.051	0.023	0.114	0.044
$wR_2^{b}[I_o > 2\sigma(I_o)]$	0.070	0.054	0.109	0.088
wR_2 (all data)	0.074	0.054	0.126	0.093

Table 6 Crystal data and structure refinement details^a

with molecular sieve, and then the solution decanted off and pumped dry. The white solid obtained was used directly for EI mass spectrometry and IR spectroscopy studies (see Results and discussion for spectroscopic data).

The GeCl₄-PMe₃ reaction

In a small Schlenk tube, GeCl_4 (~0.15 g) was distilled *in vacuo* onto PMe₃ (0.105 g, 1.38 mmol) at 77 K. The mixture was cautiously allowed to warm and on melting immediately transformed into a white solid. The Schlenk was briefly evacuated to remove any excess reagent and then filled with dry dinitrogen; the Raman spectrum of the solid was recorded without removing it from the Schlenk. The solid was then dissolved in CH₂Cl₂ (20 mL) and the solution allowed to stand for 3 h and then pumped dry. The solid was identified as [PMe₃Cl][GeCl₃] (see text for spectroscopic data).

X-Ray crystallography

Details of the crystallographic data collection and refinement parameters are given in Table 6. Crystals of $[GeF_4\{o-C_6H_4(PMe_2)_2\}]$ were obtained from a solution in CH_2Cl_2 -n-hexane by slow evaporation; $[GeF_4\{Ph_2P(CH_2)_2PPh_2\}]$ from CH_2Cl_2 -n-hexane cooled in a freezer; and Et_3AsCl_2 and *trans*- $[GeCl_4(AsEt_3)_2]$ from Et_2O solution by slow evaporation under dinitrogen. Data collection used a Nonius Kappa CCD diffractometer using graphite or confocal mirror monochromated Mo-K α X-radiation ($\lambda = 0.71073$ Å). Crystals were held at 120 K in a nitrogen gas stream. Structure solution and refinement were generally routine,³⁰⁻³³ except as described below with hydrogen atoms on C introduced in calculated positions using the default C–H distance.

The data for Et₃AsCl₂ was collected as a monoclinic C lattice using the automated software with β close to 90°, however inspection of the data with Layer³⁴ gave an orthorhombic system as being probable. No satisfactory solution emerged in any of the possible orthorhombic space groups with the initial promising molecules failing to refine. The strategy of trying to solve the structure in P1 was explored and the transformation matrix by good fortune produced a cell that looked remarkably hexagonal. A solution with Z = 2 in P1 readily followed (R1 = 0.042), but with severe correlation problems during refinement. The triclinic coordinates were finally transformed to the correct hexagonal system. The systematic absences for the transformed data gave 0001 = 2n, but it was likely from the As positions that this was not arising from relationships between symmetry related molecules, but rather from the difference in the z coordinates of these two atoms (and the other atoms). The only hexagonal space group that would accommodate the molecular symmetry found in the triclinic model was $P\overline{6}$ (no. 174). This model converged to R1 = 0.034 with 36 refined parameters compared with 164 parameters in the triclinic model. Chemically the two models are the same, but in crystallographic terms the higher symmetry is preferred. Selected bond lengths and angles are given in Tables 2-5.

CCDC reference numbers 665905-665910.

For crystallographic data in CIF or other electronic format see DOI: 10.1039/b716765b

Acknowledgements

We thank the EPSRC (GR/T09613/01) for support and Dr F. Cheng for help in running the Raman spectra.

References

- 1 W. Levason and C. A. McAuliffe, Coord. Chem. Rev., 1976, 19, 173-185.
- 2 N. C. Norman and N. L. Pickett, Coord. Chem. Rev., 1995, 145, 27-54.
- 3 *Comprehensive Coordination Chemistry II*, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford, 2004, vol. 3.
- 4 A. R. J. Genge, W. Levason and G. Reid, *Inorg. Chim. Acta*, 1999, 288, 142–149; N. Bricklebank, S. M. Godfrey, C. A. McAuliffe and R. G. Pritchard, *J. Chem. Soc., Chem. Commun.*, 1994, 695–696; D. Dakternieks, H. Zhu and E. R. T. Tiekink, *Main Group Met. Chem.*, 1994, 17, 519–535; F. Kunnkel and K. Dehnicke, *Z. Naturforsch., B: Chem. Sci.*, 1995, 50, 848–850.
- 5 M. F. Davis, M. Clarke, W. Levason, G. Reid and M. Webster, Eur. J. Inorg. Chem., 2006, 2773–2782.
- 6 I. R. Beattie and G. A. Ozin, J. Chem. Soc. A, 1970, 370-377.
- 7 D. K. Frieson and G. A. Ozin, *Can. J. Chem.*, 1973, **51**, 2685–2696;
 D. K. Frieson and G. A. Ozin, *Can. J. Chem.*, 1973, **51**, 2697–2709.
- 8 W.-W. Du Mont, H.-J. Kroth and H. Schumann, *Chem. Ber.*, 1976, **109**, 3017–3024; W.-W. Du Mont, *Z. Anorg. Allg. Chem.*, 1979, **458**, 85–88;
 F. Ruthe, W.-W. Du Mont and P. G. Jones, *Chem. Commun.*, 1997, 1947–1948.
- 9 S. M. Godfrey, I. Mushtaq and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1999, 1319–1323.
- 10 L. Apostolico, M. F. Mahon, K. C. Molloy, R. Binions, C. S. Blackman, C. J. Carmalt and I. P. Parkin, *Dalton Trans.*, 2004, 470–475.
- 11 F. Cheng, M. F. Davis, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, *Eur. J. Inorg. Chem.*, 2007, 2488–2495.
- 12 K. O. Christe, C. J. Schack and R. D. Wilson, *Inorg. Chem.*, 1976, 15, 1275–1282; J. E. Griffiths and D. E. Irish, *Inorg. Chem.*, 1964, 3, 1134–1137.
- 13 M. Sigl, A. Schier and H. Schmidbaur, *Eur. J. Inorg. Chem.*, 1998, 203– 210; F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, *Inorg. Chem.*, 2007, **46**, 7215–7223.
- 14 F. Cheng, M. F. Davis, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, *Eur. J. Inorg. Chem.*, 2007, 4897–4905.
- 15 M. F. Davis, W. Levason, G. Reid, M. Webster and W. Zhang, *Dalton Trans.*, 2008, 533–538.

- 16 M. F. Davis, W. Levason, G. Reid and M. Webster, *Polyhedron*, 2006, 25, 930–936.
- 17 W. Levason, R. Patel and G. Reid, J. Organomet. Chem., 2003, 688, 280–282.
- 18 S. M. Godfrey and A. Hinchcliffe, J. Mol. Struct., 2006, 761, 1–5 and references therein.
- 19 G. Kociok-Köhn, J. G. Winter and A. C. Filippou, *Acta Crystallogr.*, *Sect. C*, 1999, **55**, 351–353.
- 20 H. E. Blayden and M. Webster, *Inorg. Nucl. Chem. Lett.*, 1970, 6, 703– 705.
- 21 N. N. Greenwood and A. Earnshaw, *Chemistry of the Elements*, Butterworth, Oxford, 2nd edn, 1997; W. E. Dasent, *Non-existent Compounds*, Dekker, New York, 1965.
- 22 L. Verdonck and G. P. Van der Kelen, *Spectrochim. Acta, Part A*, 1977, **13**, 601–606.
- 23 M. B. Hursthouse and I. A. Steer, J. Organomet. Chem., 1971, 27, C11–12.
- 24 S. Pascu, L. Silaghi-Dumitrescu, A. J. Blake, W.-S. Li, I. Haiduc and D. B. Sowerby, Acta Crystallogr., Sect. C, 1998, 54, 219–221.
- 25 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 2nd edn, 1970.
- 26 R. D. Feltham, R. S. Nyholm and A. Kasenally, J. Organomet. Chem., 1967, 7, 285–288.
- 27 H. C. E. McFarlane and W. McFarlane, *Polyhedron*, 1983, 2, 303– 304.
- 28 A. M. Aguiar and J. Beisler, J. Org. Chem., 1964, 29, 1660-1662.
- 29 E. P. Kyba, S. T. Liu and R. L. Harris, Organometallics, 1983, 2, 1877– 1879.
- 30 G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures, University of Göttingen, Germany, 1997.
- 31 G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997.
- 32 G. M. Sheldrick, SADABS, Bruker-Nonius area detector scaling and absorption correction (V2.10), University of Göttingen, Germany, 2003.
- 33 H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876-881.
- 34 L. J. Barbour, J. Appl. Crystallogr., 1999, 32, 351.