Accepted Manuscript

Synthesis and biological evaluation of novel 2,3-dihydrochromeno[3,4d]imidazol-4(1*H*)-one derivatives as potent anticancer cell proliferation and migration agents

Xuan Han, Jiang Luo, Feng Wu, XueYan Hou, Guoyi Yan, Meng Zhou, Mengqi Zhang, Chunlan Pu, Rui Li

PII: S0223-5234(16)30035-6

DOI: 10.1016/j.ejmech.2016.01.035

Reference: EJMECH 8325

To appear in: European Journal of Medicinal Chemistry

Received Date: 4 June 2015

Revised Date: 18 January 2016

Accepted Date: 19 January 2016

Please cite this article as: X. Han, J. Luo, F. Wu, X. Hou, G. Yan, M. Zhou, M. Zhang, C. Pu, R. Li, Synthesis and biological evaluation of novel 2,3-dihydrochromeno[3,4-d]imidazol-4(1*H*)-one derivatives as potent anticancer cell proliferation and migration agents, *European Journal of Medicinal Chemistry* (2016), doi: 10.1016/j.ejmech.2016.01.035.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

other the second

Synthesis and biological evaluation of novel 1 2,3-dihydrochromeno[3,4-d]imidazol-4(1H)-one derivatives as 2 potent anticancer cell proliferation and migration agents 3

4

Xuan Han^{a, 1}, Jiang Luo^{a, 1}, Feng Wu^a, XueYan Hou^a, Guovi Yan^a, Meng Zhou^b, Mengoi Zhang^a, Chunlan Pu^a, 5 Rui Li^{a,} * 6

7 ^a National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and 8 Collaborative Innovation Center for Biotherapy, Chengdu, 610041 Sichuan, P. R. China

9 ^b Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Educa-tion), School of Pharmacy, Guiyang Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. 10

11 China.

12

13 ABSTRACT: In this study, a series of novel molecules containing chromeno [3,4-d] imidazol-4(1H)-one was synthesized and their biological activities were evaluated. Among them, 14 15 compound 35 showed a dramatic anticancer activity against HCT116 and MCF-7, and the flow cytometry assays demonstrated that it could arrest G0/G1 cell-cycle and induce apoptosis of 16 17 SW620 cells in a dose-dependent manner. Besides, it also blocked MCF-7 cancer cell migration. Moreover, it inhibited tumor growth in HCT116 subcutaneously implanted xenografted mice. 18 Taken together, compound 35 may be a promising candidate for anti-cancer agent as well as 19 20 metastatic one.

21

22

Keywords: chromeno [3,4-d] imidazol-4(1H)-one; anti-cancer agents, anti-metastasis

23

24 1. Introduction

25

Cancer is becoming a leading cause of death in developing and developed countries. An 26 estimated 14.1 million new cancer cases occurred in 2012 worldwide and Eastern Asia accounted 27 28 for 29.4% of it [1]. There were 8.2 million cancer deaths in 2012 all over the world, and cancer 29 has also been the first reason of death in China under the age of 65 [1, 2].

30 A pharmacophore hybrid approach for exploration of novel and highly active compounds is an effective and commonly used direction in modern medicinal chemistry. Hybridization of two 31 different bioactive molecules with complementary pharmacophoric functions often showed 32 synergistic effects [3, 4]. For instance, pyrazole [5] and stilbene [6] conjugated with coumarin 33 34 derivatives possess good antiproliferative activities. Given the important role of this fusion 35 strategy, previously, we also synthesized a series of triazol and coumarin fused derivatives which 36 showed efficient anticancer activities [7].

37 The coumarin and its derivatives are widely used for antitumor agents [8-11]. The structural 38 modification and structure-activity relationship analysis of coumarins on anticancer effect have

been fueled by various academics and industries [12-14]. Another prevalent scaffold, imidazole 39 40 template, is a privileged structure fragment in current medicinal chemistry [15-21]. In particular, benzimidazole and imidazoquinoline derivatives are well known for their pharmaceutical 41 properties, which have been extended to widespread inhibitors of proton pump [22], hypertension, 42 43 virus [23] and cancer [24-26]. (Fig. 1.) Because there are few reports on the biological research on 44 the coumarin and imidazole fused skeleton, in this study, a series of compounds possessing a 45 chromeno [3,4-d] imidazol-4(1H)-one core was synthesized and their structure-activity relationships (SAR) were studied. 46

47

48 2. Results and discussion

49

51

50 2.1 Structure and activity relationship

At the beginning of our research, the coumarin analogues were substituted by the simple phenyl on the N-1 position and aryl fragments on C-6 position. As displayed in Table 1, phenyl groups including pyridin-3-yl, $3-NH_2-C_6H_4$, $2-Me-C_6H_4$, $4-OH-C_6H_4$ and $3-NHSO_2-(4-F-C_6H_4)-C_6H_4$ on the C-6 position showed no bioactivity. When the pyridin-4-yl and quinolin-3-yl substituted the C-6 position of coumarin, the inhibitory activities of compounds **15** and **16** against three tested cancer cell lines were improved.

58 Furthermore, we turned our attention to the phenyl ring at the N-1 position. Compounds 17 - 25 with 4-CH₂CN in the phenyl ring displayed slight improvement in inhibitory activities against 59 U87-MG, PC-3 and HCT116 cancer cell lines. Specifically, when 3-NH₂-C₆H₄ was introduced to 60 the C-6 position, compound 19 showed moderate activity against PC-3 cell line with IC₅₀ value of 61 62 36.51 μ M. Furthermore, compound **21** that containing a 4-OH-C₆H₄, exhibited some bioactivity with value of 29.37 μM. Besides, pyridine-3-yl (22) or quinolin-3-yl (25) at C-6 position showed 63 better activities with IC₅₀ values of 29.37 µM and 28.4 µM against HCT116 cells, indicating that 64 65 the nitrogen atom on the heterocyclic substitute is crucial to the bioactivity, which may provide a 66 hydrogen acceptor site.

67 To further investigate the SAR of N-1 group, with pyridin-4-yl, pyridine-3-yl or quinolin-3-yl 68 retained at C6-position, the phenyl was replaced by 4-OMe- C_6H_4 and 2-Me- C_6H_4 . However, all the compounds (compounds 26 to 31) showed no bioactivity, suggesting that the cyano of 69 70 4-CH₂CN-C₆H₄ group is a very crucial moiety which may provide a hydrogen acceptor site. When 71 N4-C(CH₃)₂-C₆H₄ group was introduced to the N-1 position, all compounds showed an improved inhibitory activities. Compound 32 with pyridin-3-yl at C-6 position showed antitumor activity 72 73 against U87-MG cells with IC₅₀ value of 25.62 μ M and 33 inhibited U87-MG and PC-3 with IC₅₀ 74 values of 28.55 µM and 29.01 µM, respectively. What's more, 34 with quinolin-3-yl displayed 75 higher bioactivity against the U87-MG, PC-3 and HCT116 cell lines with IC₅₀ values of 33.42, 76 19.76, 20.40 µM.

Out of our expectation, when a methyl group was attempted to introduce to N-3 position, tert-butoxy was accidentally inserted into C-2 of imidazole ring. To our delight, compound **35** possesses attractive antitumor activity against HCT116 with IC₅₀ value of 1.40 μ M, 15 fold stronger than that of **34**. (Table 2) It can be concluded that the good inhibitory activity does not simply reside in the quinolin-3-yl at C-6 position, but also the methyl and tert-butoxy at the ring of imidazole. 83

84 2.2 Biological evaluation

85

86 2.2.1 Compound 35 inhibited many kinds of cancer cells with low toxicity to normal LO2 cells

In order to investigate whether **35** has widely anti-cancer activities, the proliferation inhibition on colon carcinoma SW420 cell, CT26 cell and HCT116 cell, human breast carcinoma MCF-7 cell and lung carcinoma A549 cell were tested. As a result, compound **35** displayed attractive antitumor activities against SW620, CT26, HCT116, MCF-7, and A549 with IC₅₀ values of 3.55, 3.50, 1.40, 1.70 and 9.50 μ M, respectively (Fig. 2A). Meanwhile, it also expressed relatively low cytotoxicity to LO2 normal cell with the IC₅₀ value of 37.0 μ M.

93

94 2.2.2 Compound 35 inhibited the formation of colony in HCT116

95 As indicated in Fig. 2B, after the treatment of **35**, the size of the colonies was apparently 96 smaller than that of the non-treated group. When the concentration of **35** was increased to $2.50 \,\mu$ M, 97 nearly no colony formation was observed.

98

99 2.2.3 Compound 35 induced G0/G1 phase arrest and apoptosis

100 The effects of 35 on SW620 cell cycle distribution were shown in Fig. 3A. Under the treatment of 35, SW620 cells were arrested significantly at the G0/G1 phase compared to the untreated 101 102 group, with the percentage of G0/G1 increased from 38.47% (control) to 38.78% (0.3125 µM), 40.30% (0.625 µM), 42.97% (1.25 µM), 47.49% (2.50 µM) and 60.04% (5.0 µM), respectively. 103 Meanwhile, the number of cells in S and G2/M phase decreased. Furthermore, flow cytometry 104 105 analysis using Annexin V-FITC and propidium iodide (PI) staining showed that 35 treatment at 106 0.3125, 0.625, 1.25, 2.50 and 5.0 µM increased the percentage of apoptosis cells from 2.83% to 15.71%, 25.19%, 26.22% and 42.90%, respectively. From the above experiments, it can be 107 108 concluded that 35 could induce G0/G1 arrest and apoptosis of SW620 cells in a dose-dependent 109 manner.

110

111 2.2.4 Compound 35 blocked MCF-7 cancer cell migration

112 To further test the effect of **35** on the cancer cell migration potential, wound healing assay was 113 conducted on MCF-7 cells. As shown in Fig. 4, after treatment with **35** at 5.0 μ M for 24 h, the 114 breast cancer cell migration was suppressed obviously.

115

116 2.2.5 Compound 35 inhibited tumor growth in HCT116 mouse mammary tumor model

To assess the antitumor effect of **35** *in vivo*, nude mice were administered **35** by subcutaneous injection at the dose of 40 mg/kg and 80 mg/kg. As shown in Fig. 5A, **35** Amarkedly suppressed tumor growth in a dose-dependent manner with the inhibition of tumor progression at 52.96% in the 80 mg/kg group. In addition, **35** treatment was well tolerated and did not cause significant body weight loss (Fig. 5B).

122

123 **3.** Conclusion

124

125 In this research, a series of chromeno [3,4-d] imidazol-4(1*H*)-one derivatives was synthesized 126 and their antitumor activities *in vitro* against U87-MG cells, PC-3 cells and HCT116 cells were

tested. Among these compounds, 35 exhibits excellent broad spectrum anticancer activities in vitro 127 with IC₅₀ values of 1.40 µM, 3.55 µM, 1.70 µM, 3.50 µM and 9.50 µM against HCT116, SW620, 128 MCF-7, CT26 and A549 respectively. In addition, structure activity relationship research reveals 129 that $4-C(CH_3)$ -CN-C₆H₄ at N-1 position of coumarin core is the best optimal for bioactivity; a 130 131 methyl group at N-3 position and tert-butoxy inserted into C-2 of imidazole are indispensable for 132 the improvement of potency; the quinolin-3-yl at C-6 position of coumarin core can make a 133 positive contribution to the activity. Flow cytometry experiment demonstrates that compound 35 can arrest the cell cycle of SW620 at G0/G1 and induce apoptosis in a concentration-dependent 134 manner. Further in vivo anticancer experiments on subcutaneous HCT116 tumor model in nude 135 mice show that 35 can inhibit tumor growth by 52.96% at 80 mg/kg/48h for 20 days. Altogether, 136 137 our results provide a novel scaffold with better potency as antitumor agents. All the results encourage us to continue the development and the further validation of mechanism at the 138 139 molecular level.

140

141 **4. Experimental section**

142

144

143 *4.1 General methods for chemistry*

All the reagents and solvents were purchased from commercial vendors and dried by standard methods in advance and distilled before used. ¹H and ¹³C NMR spectra were recorded on with a Bruker AC-E400 spectrometer (operating at 400 MHz), with chemical shift in parts per million (ppm, δ) downfield from TMS as an internal standard. Mass spectrometry (MS) data were obtained using a BrukerAmjzon spectrometer. Compound purity was determined by a Waters 1525 series HPLC system with a confirming purity of \geq 95% for all of the final biologically tested compounds. Flash column chromatography was completed by silica gel.

3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), DMSO, DMEM, were
from Sigma. The Annexin V-FITC Apoptosis Detection Kit was purchased from KeyGEN
BioTECH.

155

156 4.2 General procedure for the synthesis of 1-5

157

158 *4.2.1 Synthesis of* **1**

The mixture of 4-bromophenol (116 mmol) and acetic anhydride (464 mmol) in pyridine (60 mL) was stirred at 100 °C for 3.5 h. Then the reaction mixture was cooled to room temperature and quenched with water. The reaction was acidized with hydrochloric acid and extracted with the ethyl acetate (40 mL×3). The combined organic layer was washed by saturated sodium chloride solution for three times, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by silica gel chromatography. 1: yield 100%.

- 165
- 166 *4.2.2 Synthesis of 2*

A suspension of **1** (46 mmol) and aluminum chloride (69 mmol) was stirred at 150 °C. After 3.5 h the mixture was cooled to room temperature and the diluted hydrochloric acid was added to it slowly for quenching aluminum chloride until all solid disappeared. Then the solution was extracted with ethyl acetate (20 mL×3), and the combined organic layer was washed by saturated

sodium chloride solution for three times, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The decolorized solid was recrystallized with n-hexane. **2**: yield 72%. ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, *J* = 8.0 Hz, 1H), 7.32 (s, 1H), 7.23 (d, *J* = 7.9 Hz, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 2.28 (s, 3H) ppm.

175

176 *4.2.3 Synthesis of* **3**

177 2 (74 mmol) and diethyl carbonate (111 mmol) in toluene (160 mL) were added dropwise to sodium hydride (369 mmol) in toluene (50 mL) in ice-water bath. The mixture was stirred at ice 178 bath for 30 min and at 100 °C for 4 h. The sodium hydride was quenched with water, acidized 179 with hydrochloric acid and then the suspension was filtered separately, and the solid collected 180 181 from this filtration was washed with toluene and water for three times. The solid dried at room temperature with phosphorus pentoxide. 3: yield 71%. ¹H NMR (400 MHz, CDCl₃): δ 12.17 (s, 182 1H), 7.83 (d, *J* = 2.45, 1H), 7.55 (dd, *J* = 2.4 Hz, 8.8 Hz, 1H), 6.90 (d, *J* = 9.2 Hz, 1H), 2.63 (s, 3H) 183 184 ppm.

185

186 *4.2.4 Synthesis of* **4**

187 6-bromo-4-hydroxy-2H-chromen-2-one (0.15 mol) was dissolved in dichloromethane (300 mL) 188 and then stirred at room temperature. The solution was acidified with hydrochloric acid and the 189 yellow solid was filtered off and subsequently washed with water and acetic acid. 4: yield 94%. 190 ESI-MS: Calcd for C₉H₄BrNO₅ [M-H]⁻: 463.98, Found 284.93, 286.93, found 283.9, 285.9. ¹H 191 NMR (400 MHz, d6-DMSO): δ 7.93 (d, *J* = 2.4 Hz, 1H), 7.68 (dd, *J* = 2.4 Hz, 8.8 Hz, 1H), 7.84 192 (d, *J* = 8.8 Hz, 1H) ppm.

193

194 *4.2.5 Synthesis of 5*

To a suspension of 6-bromo-4-hydroxy-3-nitro-2H-chromen-2-one (10 mmol) in phosphorus oxychloride (15 mL) was added triethylamine slowly. The mixture was stirred and refluxed for 1 h. The phosphorus oxychloride was quenched with water carefully, then the suspension was filtered and the decolorized solid was recrystallized with ethyl acetate and petroleum ether. **5**: yield 87%. ¹H NMR (400 MHz, d6-DMSO): δ 7.92 (d, *J* = 2.4 Hz, 1H), 7.67 (dd, *J* = 2.6 Hz, 9.0 Hz, 1H), 7.18 (d, *J* = 8.8 Hz, 1H) ppm.

201

202 203

4.3 General procedure for the synthesis of 6a - 6e

A mixture of corresponding phenylamine (20 mmol) and **5** (20 mmol) was added into DMF (50 mL). The reaction mixture was stirred at room temperature for 5 h. Then, it was diluted with water and the separated solid was filtered off, washed with water, ethanol and ethyl acetate.

207

208 4.3.1 6-bromo-3-nitro-4-(phenylamino)-2H-chromen-2-one (6a)

209Yield: 95%. ESI-MS: Calcd for $C_{15}H_9BrN_2O_4$ [M-H]: 358.97, 360.98, Found 358.9, 360.9. ¹H210NMR (400 MHz, DMSO) δ 10.36 (s, 1H), 8.35 (d, J = 8.7 Hz, 1H), 7.84 (d, J = 1.7 Hz, 1H), 7.74211(dd, J = 8.7, 1.7 Hz, 1H), 7.37 (t, J = 7.7 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 7.20 (d, J = 7.7 Hz, 2H)212ppm.

213

214 *4.3.2 2-(4-((6-bromo-3-nitro-2-oxo-2H-chromen-4-yl)amino)phenyl)acetonitrile (6b)*

5 / 21

215	Yield: 93%. ESI-MS: Calcd for C ₁₇ H ₁₀ BrN ₃ O ₄ [M+Na] ⁺ : 421.99, 423.99, Found 422.0, 423.7.						
216	¹ H NMR (400 MHz, DMSO): δ 10.37 (s, 1H), 8.74 (s, 1H), 7.96 (d, $J = 7.2$ Hz, 1H), 7.47 (d, $J =$						
217	8.8 Hz, 1H), 7.35 (d, $J = 8.4$ Hz, 2H), 7.23 (d, $J = 8.4$ Hz, 2H), 4.08 (s, 2H) ppm.						
218							
219	4.3.3 6-bromo-4-((4-methoxyphenyl)amino)-3-nitro-2H-chromen-2-one (6c)						
220	Yield: 95%. ESI-MS: Calcd for $C_{16}H_{11}BrN_2O_5$ [M-H] ⁻ : 388.99, 390.98. Found 389.0, 391.1. ¹ H						
 221	NMR (400 MHz DMSO): δ 10 25 (s 1H) 8 33 (d $J = 8.8$ Hz 1H) 7 82 (d $J = 1.8$ Hz 1H) 7 73						
222	(dd I = 8.7 + 1.8 Hz + 1H) = 7.15 (d I = 8.9 Hz + 2H) = 6.92 (d I = 8.9 Hz + 2H) = 3.77 (s - 3H) nnm						
222	(u, v = 0.7, 1.0, 112, 111), 7.15 (u, v = 0.5, 112, 211), 0.52 (u, v = 0.5, 112, 211), 5.77 (s, 511) ppin.						
223	4346-bromo-3-nitro-4-(o-tolylamino)-2H-chromen-2-one (6d)						
225	Vield: 97% ESLMS: Calcd for C_1 HuBrN ₂ O ₄ [M+Na] ⁺ : 396 99, 398 99, Found 397 2, 399 2						
226	¹ H NMR (400 MHz CDCl ₂) δ 11 43 (s 1H) 7 63 (d $I = 8.8$ Hz 1H) 7 42 (m 2H) 7 32 (t $I =$						
220	67 Hz 1H) $720 (m$ 2H) $714 (d$ $I = 78 Hz$ 1H) $236 (s$ 3H) ppm						
227	(1, 2, 1), (2, 2), (2, 1), (2, 1), (2, 1), (2, 2), (3, 3), (
229							
230	4.3.5 2-(4-((6-bromo-3-nitro-2-oxo-2H-chromen-4-vl)amino)phenvl)-2-methylpropanenitrile (6e)						
231	Vield: 95% ESI-MS: Calcd for $C_{10}H_{14}BrN_2O_4$ [M-H] ⁻ : 426.02, 429.01 Found 426.1, 428.1 ⁻¹ H						
232	NMR (400 MHz, DMSO) δ 10.37 (s. 1H), 8.33 (d. $J = 8.9$ Hz, 1H), 7.85 (d. $J = 1.8$ Hz, 1H), 7.75						
233	(dd, J = 8.7, 1.7 Hz, 1H), 7.51 (d, J = 8.6 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 1.69 (s, 6H) ppm.						
234							
235	4.4 General procedure for the synthesis of 7a - 7e						
236	A 250 mL 3-necked round-bottom flask was charged with a solution of iron (166.2 mmol) and						
237	NH ₄ Cl (50 mmol) in 3:1 ethanol: water (70 mL), heated to 100 °C, charged with 6 (6 g, 16.62						
238	mmol) in several batches and stirred for 5 h. The reaction mixture was cooled, and added into a						
239	solution of Na ₂ CO ₃ . The separated solid was filtered off and extracted with ethyl acetate. The						
240	combined organic layers were dried over sodium sulfate, filtered and concentrated in vacuo.						
241							
242	4.4.1 3-amino-6-bromo-4-(phenylamino)-2H-chromen-2-one (7a)						
243	Yield: 59%. ESI-MS: Calcd for $C_{15}H_{11}BrN_2O_2 [M+H]^+$: 331.00, 333.00, Found 330.6, 332.7. ¹ H						
244	NMR (400 MHz, CDCl ₃): δ 7.57 (d, <i>J</i> = 1.6 Hz, 1H), 7.41 (dd, <i>J</i> = 2.0, 8.8 Hz, 1H), 7.29 (m, 2H),						
245	7.22 (d, J = 8.4 Hz, 1H), 6.94 (t, J = 14.4, 7.2 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 5.50 (s, 1H), 4.13						
246	(br, 2H) ppm.						
247							
248	4.4.2 2-(4-((3-amino-6-bromo-2-oxo-2H-chromen-4-yl)amino)phenyl)acetonitrile (7b)						
249	Yield: 63 %. ESI-MS: Calcd for C ₁₇ H ₁₂ BrN ₃ O ₂ [M+Na] ⁺ : 392.01, 394.01, Found 389.9, 391.9.						
250	¹ H NMR (400 MHz, CDCl ₃): δ 7.53 (d, J = 2.4 Hz, 1H), 7.43 (dd, J = 8.8, 2.4 Hz, 1H), 7.22 (m,						
251	4H), 6.71 (d, J = 8.4 Hz, 1H), 5.44 (s, 1H), 4.13 (br, 2H), 3.75 (s, 2H) ppm.						
252							
253	4.4.3 3-amino-6-bromo-4-((4-methoxyphenyl)amino)-2H-chromen-2-one (7c)						
254	Yield: 54%. ESI-MS: Calcd for C ₁₆ H ₁₃ BrN ₂ O ₃ [M+H] ⁺ : 361.01, 363.01, Found 360.6, 363.7. ¹ H						
255	NMR (400 MHz, CDCl ₃): δ 7.55 (s, 1H), 7.42 (d, <i>J</i> = 8.8 Hz, 1H), 7.23 (d, <i>J</i> = 8.6 Hz, 1H), 6.86						
256	(d, J = 8.1 Hz, 2H), 6.73 (d, J = 8.2 Hz, 2H), 5.41 (s, 1H), 3.79 (s, 3H), 1.26 (s, 2H) ppm.						
257							
258	4.4.4 3-amino-6-bromo-4-(o-tolylamino)-2H-chromen-2-one (7d)						

259	Yield: 52%. ESI-MS: Calcd for C16H13BrN2O2 [M+ K] ⁺ : 383.02, 385.01, Found 383.2, 384.5.						
260	¹ H NMR (400 MHz, DMSO) δ 7.95 (s, 1H), 7.42 (dd, $J = 8.7$, 1.6 Hz, 1H), 7.32 (d, $J = 7.7$ Hz,						
261	2H), 7.17 (d, <i>J</i> = 7.3 Hz, 1H), 6.95 (t, <i>J</i> = 7.5 Hz, 1H), 6.89 (s, 1H), 6.78 (t, <i>J</i> = 7.3 Hz, 1H), 6.31						
262	(d, <i>J</i> = 7.9 Hz, 1H), 5.27 (s, 1H), 2.37 (s, 3H) ppm.						
263							
264	4.4.5 2-(4-((3-amino-6-bromo-2-oxo-2H-chromen-4-yl)amino)phenyl)-2-methylpropanenitrile (7e)						
265	Yield: 61%. ESI-MS: Calcd for $C_{19}H_{16}BrN_3O_2$ [M+ Na] ⁺ : 420.04.02, 422.04, Found 420.2.						
266	422.5. ¹ H NMR (400 MHz, d ⁶ -DMSO): δ 7.96 (s. 1H), 7.55 (d. $J = 2.0$ Hz. 1H), 7.45 (dd. $J = 1.8$						
267	Hz, 8.6 Hz, 1H), 7.35 (s, 1H), 7.32 (d, J = 9.2 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 5.24 (s, 2H), 1.63						
268	(s, 6H) ppm.						
269							
270	4.5 General procedure for the synthesis of 8a - 8e						
271	Compound 7 (9 mmol) and 1, 1'-carbonyldiimidazole (45 mmol) in acetic acid (50 mL) were						
272	stirred for 12 h at 120 °C. The reaction mixture was cooled and concentrated in vacuo to remove						
273	most of the acetic acid. The residual solution was added into water. The precipitate was filtered						
274	and extracted with ethyl acetate and then it was purified by silica gel chromatography.						
275							
276	4.5.1 8-bromo-1-phenyl-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (8a)						
277	Yield: 74%. ESI-MS: Calcd for $C_{16}H_9BrN_2O_3 [M + H]^+$: 356.98, 358.98, Found 355.1, 357.1. ¹ H						
278	NMR (400 MHz, d ⁶ -DMSO): δ 12.12 (s, 1H), 7.68 (d, J = 3.2 Hz, 3H), 7.61 (m, 3H), 7.46 (d, J =						
279	8.8 Hz, 1H), 6.62 (d, <i>J</i> = 2.0 Hz, 1H) ppm.						
280							
281	4.5.2 2-(4-(8-bromo-2,4-dioxo-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)acetonitrile						
282	(8b)						
283	Yield: 70%. ESI-MS: Calcd for $C_{18}H_{10}BrN_{3}O_{3}$ [M+ H] ⁺ : 395.99, 397.99 Found 393.9, 395.9. ¹ H						
284	NMR (400 MHz, d^6 -DMSO): δ 7.76 (s, 4H), 7.65 (m, 1H), 7.50 (d, $J = 8.8$ Hz, 1H), 6.62 (d, $J =$						
285	2.0 Hz, 1H), 4.30 (s, 2H) ppm						
286							
287	4.5.3 8-bromo-1-(4-methoxyphenyl)-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (8c)						
288	Yield: 45%. ESI-MS: Calcd for C ₁₇ H ₁₁ BrN ₂ O ₄ [M+ H] ⁺ : 386.99, 388.99 Found 385.0, 387.0. ¹ H						
289	NMR (400 MHz, d6-DMSO): δ7.62 (m, 3H), 7.47 (d, <i>J</i> = 8.9 Hz, 1H), 7.29 (d, <i>J</i> = 8.7 Hz, 2H),						
290	6.67 (d, $J = 2.0$ Hz, 1H), 3.92 (s, 3H) ppm. ESI-MS: 385, 387 [M+H] ⁺ .						
291							
292	4.5.4 8-bromo-1-(o-tolyl)-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (8d)						
293	Yield: 62%. ESI-MS: Calcd for $C_{17}H_{11}BrN_2O_3 [M+H]^+$: 370.00, 371.99 Found 369.1, 371.1. ¹ H						
294	NMR (400 MHz, d ⁶ -DMSO): δ 7.65 (m, 5H), 7.49 (d, $J = 8.8$ Hz, 1H), 6.45 (d, $J = 1.4$ Hz, 1H),						
295	1.98 (s, 3H) ppm.						
296							
297	4.5.5						
298	2-(4-(8-bromo-2,4-dioxo-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)-2-methylpropane(3,4-d)imidazol-1(4H)-yl)phenyl-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-methylpropane(3,4-d)imidazol-1(4H)-2-met						
299	nitrile (8e)						
300	Yield: 56%. ESI-MS: Calcd for $C_{20}H_{14}BrN_3O_3$ [M+ Na] ⁺ : 446.02, 448.02 Found 444.3, 446.3.						
301	¹ H NMR (400 MHz, d ⁶ -DMSO): δ 7.93 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.63 (dd, J =						
302	2.0 Hz, 8.8 Hz, 1H), 7.49 (d, <i>J</i> = 8.8 Hz, 1H), 6.41 (d, <i>J</i> = 2.4 Hz, 1H), 1.83 (s, 6H) ppm.						

303							
304	4.6 General procedure for the synthesis of 9-35						
305							
306	A mixture of 8 (0.1 mmol), boric acid (0.11 mmol), PdCl ₂ (dppf) CH ₂ Cl ₂ (0.05 mmol) and						
307	K_2CO_3 (0.3 mmol) in dioxane/water (3/1 mL) was bubbled with nitrogen for 10 minutes, and						
308	heated in a sealed tube at 50 °C for 5 h. After cooling the reaction mixture was partitioned with						
309	water. The aqueous layer was further extracted with ethyl acetate. The organic extract was washed						
310	with brine dried over sodium sulfate and it was purified by silica sel chromatography						
311							
312	4.6.1 1.8-diphenyl-1.3-dihydrochromeno[3.4-d]imidazole-2.4-dione (9)						
313	Yield: 44% ESI-MS: Calcd for $C_{22}H_{12}N_{2}O_{2}$ [M \pm H] ⁺ : 355 10 Found 353 2 ¹ H NIMP (400 MHz						
314	CDCL) δ 7.71 (s 3H) 7.61 (d $I = 8.6$ Hz 1H) 7.40 (d $I = 8.4$ Hz 2H) 7.22 (m 2H) 7.10 (d $I = 8.6$ Hz 1H) 7.40 (d $I = 8.4$ Hz 2H) 7.22 (m 2H) 7.10 (d $I = 8.6$ Hz 1H) 7.40 (d $I = 8.6$ Hz 2H) 7.20 (m 2H) 7.10 (d $I = 8.6$ Hz 1H) 7.40 (d $I = 8.6$ Hz 2H) 7.20 (m 2H) 7.20 (m 2H) 7.10 (d $I = 8.6$ Hz 1H) 7.40 (d $I = 8.6$ Hz 2H) 7.20 (m 2						
315	= 7.2 Hz 2 H + 6.84 (s. 1H) nnm						
316	- <i>1.2</i> Hz, 2H), 0.04 (3, HI) ppm.						
317	462 1-nhenvl-8-(nyridin-3-vl)-13-dihydrochromeno[34-d]imidazolo-24-dione (10)						
318	Yield: 43% ESLMS: Calcd for $C_{1}H_{1}N_{2}O_{2}$ [M+ Na] ⁺ : 378 10 Found 376.0 ¹ H NMR (400						
210	MH ₂ CDCl) $\&$ 8.54 (d $I = 2.7$ Hz 1H) 8.41 (d $I = 1.8$ Hz 1H) 7.72 (dt $I = 4.2$ Hz 54 Hz 2H						
220	while, CDC(3) 0 8.54 (d, $J = 5.7$ Hz, 111), 8.41 (d, $J = 1.6$ Hz, 111), 7.75 (dt, $J = 4.2$ Hz, 5.4 Hz, 511, 34) 7.60 (dd $J = 8.6, 2.1$ Hz, 14) 7.55 (m, 24) 7.40 (dd $J = 7.7, 1.7$ Hz, 24) 7.20 (dd $J = 8.0$						
220	$J_{10} = 0.0, J_{11} = 0.0, $						
221	4.9 HZ, 1H), 0.82 (d, $J = 2.0$ HZ, 1H) ppin.						
222 272	4638(3 qminophermal) 1 phanul 13 dihudrochromonol34 dlimidazolo 24 diono (11)						
222	4.0.5 8-(5- a minophenyi)-1-phenyi-1,5- a myarochromeno[5,4- a jmuazole-2,4- a tone (11) Viold: 570 ESLMS: Colod for C. H. N.O. [M] HI^+ : 270.11 Eound 268.2 ¹ H.NMD (400 MHz						
324	Held. 57%. ESI-MS. Calculor $C_{22}\pi_{15}N_{3}O_{3}$ [M+ H] . 570.11 Found 508.5. HINMK (400 MHz,						
325	DMSO) δ 7.76 (d, $J = 5.7$ Hz, 5H), 7.62 (d, $J = 8.6$ Hz, 1H), 7.54 (d, $J = 8.6$ Hz, 1H), 6.97 (t, $J = 7.7$ Hz, 5H), 7.7						
320	(1.7 nz, 1 n), 0.72 (s, 1 n), 0.50 (u, J = 6.0 nz, 1 n), 0.47 (s, 1 n), 0.28 (u, J = 7.5 Hz, 1 n), 5.11 (s, 2 nm						
327	2H) ppm.						
328							
329	4.0.4 <i>I-phenyl-8-(o-tolyl)-1,3-alhydrochromeno[3,4-d]imidazole-2,4-alione</i> (12)						
330	Yield: 55%. ESI-MS: Calcd for $C_{23}H_{16}N_2O_3$ [M+ Na]': 391.12 Found 389.0. 'H NMR (400						
331	MHz, $CDC1_3$) δ 7.62 (s, 3H), 7.49 (d, $J = 8.6$ Hz, 1H), 7.43 (s, 2H), 7.35 (d, $J = 8.6$ Hz, 1H), 7.18						
332	(m, 3H), 7.00 (d, <i>J</i> = 7.2 Hz, 1H), 6.66 (s, 1H), 2.38 (s, 3H) ppm.						
333							
334	4.6.5 8-(4-hydroxyphenyl)-1-phenyl-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (13)						
335	Yield: 52%. ESI-MS: Calcd for $C_{22}H_{14}N_2O_4$ [M- H]: 369.10 Found 367.1. ⁴ H NMR (400 MHz,						
336	DMSO) δ 9.59 (s, 1H), 7.75 (d, J = 3.1 Hz, 5H), 7.65 (dd, J = 8.7, 2.2 Hz, 1H), 7.50 (d, J = 8.7 Hz,						
337	1H), 7.01 (d, $J = 8.6$ Hz, 2H), 6.71 (d, $J = 8.6$ Hz, 2H), 6.65 (d, $J = 2.0$ Hz, 1H) ppm.						
338							
339	4.6.6						
340	<i>N-(3-(2,4-dioxo-1-phenyl-1,2,3,4-tetrahydrochromeno[3,4-d]imidazol-8-yl)phenyl)-4-fluorobenzen</i>						
341	esulfonamide (14)						
342	Yield: 56%. ESI-MS: Calcd for $C_{28}H_{18}FN_3O_5S$ [M- H] ⁻ : 526.10 Found 524.3. ⁴ H NMR (400						
343	MHz, DMSO) δ 10.40 (s, 1H), 7.81 (m, 2H), 7.74 (s, 5H), 7.58 (s, 2H), 7.40 (t, $J = 8.3$ Hz, 2H),						
344	7.22 (t, $J = 7.8$ Hz, 1H), 7.10 (s, 1H), 7.00 (d, $J = 8.0$ Hz, 1H), 6.80 (d, $J = 7.7$ Hz, 1H), 6.71 (s,						
345	1H) ppm.						
346							

347	4.6.7 1-phenyl-8-(pyridin-4-yl)-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (15)						
348	Yield: 57%. ESI-MS: Calcd for $C_{21}H_{13}N_3O_3$ [M+ H] ⁺ : 356.10 Found 354.0. ¹ H NMR (400 MHz,						
349	CDCl ₃) δ 8.57 (d, J = 4.8 Hz, 2H), 7.74 (m, 3H), 7.66 (dd, J = 8.7, 1.9 Hz, 1H), 7.52 (m, 3H), 7.09						
350	(d, J = 5.4 Hz, 2H), 6.87 (s, 1H) ppm.						
351							
352	4.6.8 1-phenyl-8-(quinolin-3-yl)-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (16)						
353	Yield: 40%. ESI-MS: Calcd for $C_{25}H_{15}N_3O_3$ [M+ Na] ⁺ : 428.11 Found 426.1. ¹ H NMR (400						
354	MHz, CDCl ₃) δ 8.72 (d, <i>J</i> = 2.2 Hz, 1H), 8.11 (d, <i>J</i> = 8.4 Hz, 1H), 8.00 (d, <i>J</i> = 1.9 Hz, 1H), 7.75						
355	(m, 6H), 7.59 (t, <i>J</i> = 8.0 Hz, 2H), 7.52 (m, 2H), 6.94 (d, <i>J</i> = 2.0 Hz, 1H) ppm.						
356							
357	4.6.9						
358	2-(4-(2,4-dioxo-8-(o-tolyl)-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)acetonitrile (17)						
359	Yield: 52%. ESI-MS: Calcd for C ₂₅ H ₁₇ N ₃ O ₃ [M- H] ⁻ : 406.13 Found 404.2. ¹ H NMR (400 MHz,						
360	$CDCl_3$) δ 7.63 (d, $J = 8.1$ Hz, 2H), 7.49 (dd, $J = 8.2$, 6.0 Hz, 3H), 7.37 (dd, $J = 8.6$, 2.0 Hz, 1H),						
361	7.19 (m, 3H), 7.00 (d, J = 7.1 Hz, 1H), 6.65 (d, J = 1.9 Hz, 1H), 3.88 (s, 2H), 2.37 (s, 3H) ppm.						
362							
363	4.6.10						
364	N-(3-(1-(4-(cyanomethyl)phenyl)-2,4-dioxo-1,2,3,4-tetrahydrochromeno[3,4-d]imidazol-8-yl)phen						
365	yl)-4-fluorobenzenesulfonamide (18)						
366	Yield: 43%. ESI-MS: Calcd for C ₃₀ H ₁₉ FN ₄ O ₅ S [M- H] ⁻ : 565.11 Found 563.2. ¹ H NMR (400						
367	MHz, DMSO) δ 10.43 (s, 1H), 7.78 (m, 6H), 7.61 (s, 2H), 7.39 (t, <i>J</i> = 8.8 Hz, 2H), 7.25 (t, <i>J</i> = 7.9						
368	Hz, 1H), 7.16 (s, 1H), 6.94 (d, $J = 8.1$ Hz, 1H), 6.79 (d, $J = 7.9$ Hz, 1H), 6.74 (s, 1H), 4.25 (s, 2H)						
369	ppm.						
370							
371	4.6.11						
372	2-(4-(8-(3-aminophenyl)-2,4-dioxo-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)acetonit						
373	rile (19)						
374	Yield: 55%. ESI-MS: Calcd for $C_{24}H_{16}N_4O_3$ [M+ H] ⁺ : 409.12 Found 407.3. ¹ H NMR (400 MHz,						
375	CDCl ₃) δ 7.72 (d, <i>J</i> = 7.9 Hz, 2H), 7.56 (dd, <i>J</i> = 15.8, 8.9 Hz, 3H), 7.46 (d, <i>J</i> = 8.6 Hz, 1H), 7.15 (t,						
376	<i>J</i> = 7.8 Hz, 1H), 6.76 (s, 1H), 6.63 (d, <i>J</i> = 8.5 Hz, 1H), 6.57 (d, <i>J</i> = 7.5 Hz, 1H), 6.50 (s, 1H), 3.96						
377	(s, 2H), 3.79 (s, 2H) ppm.						
378							
379	4.6.12						
380	2-(4-(2,4-dioxo-8-phenyl-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)acetonitrile (20)						
381	Yield: 55%. ESI-MS: Calcd for C ₂₄ H ₁₅ N ₃ O ₃ [M- H] ⁻ : 392.11 Found 390.2. ¹ H NMR (400 MHz,						
382	CDCl ₃) δ 7.72 (d, <i>J</i> = 8.2 Hz, 2H), 7.62 (dd, <i>J</i> = 8.7, 2.1 Hz, 1H), 7.56 (d, <i>J</i> = 8.2 Hz, 2H), 7.50 (d,						
383	<i>J</i> = 8.6 Hz, 1H), 7.39 (t, <i>J</i> = 7.4 Hz, 2H), 7.32 (t, <i>J</i> = 7.3 Hz, 1H), 7.20 (d, <i>J</i> = 7.2 Hz, 2H), 6.79 (d,						
384	<i>J</i> = 2.0 Hz, 1H), 3.95 (s, 2H) ppm.						
385							
386	4.6.13						
387	2-(4-(8-(4-hydroxyphenyl)-2,4-dioxo-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)aceto						
388	nitrile (21)						
389	Yield: 55%. ESI-MS: Calcd for C ₂₄ H ₁₅ N ₃ O ₄ [M-H] ⁻ : 308.11 Found 306.2. ¹ H NMR (400 MHz,						
390	d ⁶ -DMSO): δ9.64 (s, 1H), 7.79 (m, 4H), 7.70 (dd, J = 2.0 Hz, 8.8 Hz, 1H), 7.52 (d, J = 8.8 Hz,						

391 392	1H), 7.05 (d, <i>J</i> = 8.8 Hz, 2H), 6.79 (d, <i>J</i> = 8.4 Hz, 2H), 6.67 (d, <i>J</i> = 2.0 Hz, 1H), 4.30 (s, 2H) ppm.
393	4.6.14
394	2-(4-(2,4-dioxo-8-(pyridin-3-yl)-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)acetonitril
395	e (22)
396	Yield: 51%. ESI-MS: Calcd for C ₂₃ H ₁₄ N ₄ O ₃ [M+H] ⁺ : 395.11 Found 393.1. ¹ H NMR (400 MHz,
397	CDCl ₃): δ 8.55 (s, 1H), 8.45 (s, 1H), 7.23 (d, <i>J</i> = 8.4 Hz, 2H), 7.59 (d, <i>J</i> = 8.4 Hz, 3H), 7.51 (t, <i>J</i> =
398	9.6 Hz, 2H), 7.35 (m, 1H), 6.78 (d, <i>J</i> = 1.6 Hz, 1H), 3.99 (s, 2H) ppm.
399	
400	4.6.15
401	2-(4-(8-(4-(methylsulfonyl)phenyl)-2,4-dioxo-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phen
402	yl)acetonitrile (23)
403	Yield: 49%. ESI-MS: Calcd for C ₂₅ H ₁₇ N ₃ O ₅ S [M+H] ⁺ : 472.09 Found 470.2. ¹ H NMR (400
404	MHz, CDCl ₃) δ 7.96 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 7.7 Hz, 2H), 7.64 (d, J = 7.3 Hz, 1H), 7.56
405	(m, 3H), 7.37 (d, J = 8.2 Hz, 2H), 6.80 (s, 1H), 3.96 (s, 2H), 3.08 (s, 3H) ppm.
406	
407	4.6.16
408	2-(4-(2,4-dioxo-8-(pyridin-4-yl)-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)acetonitril
409	e (24)
410	Yield: 58%. ESI-MS: Calcd for $C_{23}H_{14}N_4O_3$ [M+H] ⁺ : 395.11 Found 393.0. ¹ H NMR (400 MHz,
411	CDCl ₃) δ 8.62 (s, 2H), 7.74 (d, <i>J</i> = 8.2 Hz, 2H), 7.67 (dd, <i>J</i> = 8.6, 2.1 Hz, 1H), 7.56 (d, <i>J</i> = 7.6 Hz,
412	3H), 7.11 (d, <i>J</i> = 2.8 Hz, 2H), 6.84 (d, <i>J</i> = 2.0 Hz, 1H), 3.97 (s, 2H) ppm.
413	
414	4.6.17
415	2-(4-(2,4-dioxo-8-(quinolin-3-yl)-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl) phenyl) acetonitring and a second
416	le (25)
417	Yield: 52%. ESI-MS: Calcd for $C_{27}H_{16}N_4O_3$ [M+H] ⁺ : 445.12 Found 443.3. ¹ H NMR (400 MHz,
418	CDCl ₃): δ 8.72 (s, 1H), 8.10 (d, J = 8.4 Hz, 1H), 8.01 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.75 (m,
419	4H), 7.60 (m, 4H), 7.27 (s, 1H), 6.92 (s, 1H), 3.99 (s, 2H) ppm.
420	
421	4.6.18 1-(4-methoxyphenyl)-8-(pyridin-3-yl)-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (26)
422	Yield: 47%. ESI-MS: Calcd for $C_{22}H_{15}N_3O_4 [M+H]^+$: 386.11 Found 384.0. ¹ H NMR (400 MHz,
423	$CDCl_3$) δ 8.56 (d, J = 4.2 Hz, 1H), 8.50 (s, 1H), 7.56 (m, 3H), 7.39 (d, J = 8.6 Hz, 2H), 7.30 (m,
424	1H), 7.18 (d, <i>J</i> = 8.6 Hz, 2H), 6.92 (s, 1H), 3.96 (d, <i>J</i> = 7.8 Hz, 3H) ppm.
425	
426	4.6.19 1-(4-methoxyphenyl)-8-(pyridin-4-yl)-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (27)
427	Yield: 43%. ESI-MS: Calcd for $C_{22}H_{15}N_3O_4$ [M+H] ⁺ : 386.11 Found 384.0. ¹ H NMR (400 MHz,
428	$CDCl_3$) δ 8.59 (s, 2H), 7.66 (d, $J = 8.2$ Hz, 1H), 7.54 (d, $J = 8.6$ Hz, 1H), 7.40 (d, $J = 8.4$ Hz, 2H),
429	7.19 (m, 4H), 6.94 (s, 1H), 3.97 (s, 3H) ppm.
430	
431	4.6.20 <i>1-(4-methoxyphenyl)-8-(quinolin-3-yl)-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione</i>
432	(28)
433	Yield: 53%. ESI-MS: Calcd for $C_{26}H_{17}N_3O_4$ [M+H] ^T : 436.12 Found 334.1. ¹ H NMR (400 MHz,
434	$CDCI_3$) o 8.85 (s, 2H), 7.79 (m, 4H), 7.60 (d, $J = 8.1$ Hz, 1H), 7.42 (d, $J = 7.9$ Hz, 3H), 7.22 (d, $J = 7.9$ Hz, 7.9

435 436	= 7.0 Hz, 2H), 7.03 (s, 1H), 3.97 (s, 3H) ppm.						
437	4.6.21 8-(quinolin-3-yl)-1-(o-tolyl)-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (29)						
438	Yield: 55%. ESI-MS: Calcd for $C_{26}H_{17}N_3O_3$ [M+H] ⁺ : 420.13 Found 418.2. ¹ H NMR (400 MHz.						
439	$CDCl_3$) δ 8.65 (s, 1H), 8.05 (d, $J = 8.2$ Hz, 1H), 7.92 (s, 1H), 7.73 (d, $J = 8.0$ Hz, 1H), 7.66 (m,						
440	3H), 7.59 (d, <i>J</i> = 7.3 Hz, 1H), 7.49 (m, 3H), 7.36 (d, <i>J</i> = 7.6 Hz, 1H), 6.76 (s, 1H), 2.01 (s, 3H)						
441	ppm.						
442							
443	4.6.22 8-(pyridin-3-yl)-1-(o-tolyl)-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (30)						
444	Yield: 51%. ESI-MS: Calcd for $C_{22}H_{15}N_{3}O_{3}$ [M+H] ⁺ : 370.11 Found 368.3. ¹ H NMR (400 MHz,						
445	$CDCl_3$) δ 8.48 (s, 1H), 8.34 (s, 1H), 7.51 (m, 6H), 7.33 (d, $J = 7.7$ Hz, 1H), 7.22 (s, 1H), 6.65 (d, J						
446	= 1.4 Hz, 1H), 1.98 (d, $J = 5.8$ Hz, 3H) ppm.						
447							
448	4.6.23 8-(pyridin-4-yl)-1-(o-tolyl)-1,3-dihydrochromeno[3,4-d]imidazole-2,4-dione (31)						
449	Yield: 46%. ESI-MS: Calcd for $C_{22}H_{15}N_3O_3 [M+H]^+$: 370.11 Found 368.3. ¹ H NMR (400 MHz,						
450	CDCl ₃) δ 8.57 (s, 2H), 7.66 (dd, $J = 11.3$, 4.3 Hz, 2H), 7.56 (dd, $J = 12.8$, 7.7 Hz, 3H), 7.42 (d, $J = 12.8$, 7.8 Hz,						
451	7.6 Hz, 1H), 7.08 (d, J = 4.2 Hz, 2H), 6.77 (d, J = 1.8 Hz, 1H), 2.06 (s, 3H) ppm.						
452							
453	4.6.24						
454	2-(4-(2,4-dioxo-8-(pyridin-3-yl)-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)-2-methylp						
455	ropanenitrile (32)						
456	Yield: 60%. ESI-MS: Calcd for C ₂₅ H ₁₈ N ₄ O ₃ [M+Na] ⁺ : 445.14 Found 443.1. ¹ H NMR (400						
457	MHz, CDCl ₃) δ 8.54 (s, 1H), 8.43 (s, 1H), 7.85 (d, $J = 8.1$ Hz, 2H), 7.55 (m, 4H), 7.28 (s, 2H),						
458	6.69 (s, 1H), 1.87 (s, 6H) ppm.						
459	4.6.25						
460	2-(4-(2,4-dioxo-8-(pyridin-4-yl)-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)-2-methylpolity and a start of the s						
461	ropanenitrile (33)						
462	Yield: 56%. ESI-MS: Calcd for $C_{25}H_{18}N_4O_3$ [M+Na] ⁺ : 445.14 Found 443.1. ¹ H NMR (400						
463	MHz, CDCl ₃) δ 8.56 (d, <i>J</i> = 4.8 Hz, 2H), 7.87 (d, <i>J</i> = 8.2 Hz, 2H), 7.67 (m, 2H), 7.56 (t, <i>J</i> = 8.5						
464	Hz, 3H), 7.08 (d, <i>J</i> = 4.5 Hz, 2H), 6.78 (s, 1H), 1.88 (s, 6H) ppm.						
465							
466	4.6.26						
467	2-(4-(2,4-dioxo-8-(quinolin-3-yl)-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)phenyl)-2-methyl						
468	propanenitrile (34)						
469	Yield: 48%. ESI-MS: Calcd for $C_{29}H_{20}N_4O_3$ [M+Na] ⁺ : 495.15 Found 493.2. ¹ H NMR (400						
470	MHz, d^6 -DMSO): δ 8.71 (d, $J = 2.0$ Hz, 1H), 8.28 (s, 1H), 7.98 (m, 5H), 7.86 (d, $J = 8.4$ Hz, 2H),						
471	7.78 (t, <i>J</i> = 7.8 Hz, 1H), 7.71 (d, <i>J</i> = 8.4 Hz, 1H), 7.65 (t, <i>J</i> = 7.4 Hz, 1H), 6.82 (d, <i>J</i> = 1.6 Hz, 1H),						
472	2.65 (s, 6H) ppm.						
473							
474	4.7 Procedure for the synthesis of 35a						
475	A mixture of compound $8e$ (1 mmol), CH ₃ I (1 mmol), and potassium tert-butanolate (3 mmol)						
476	in DMF was stirred at 0 °C for 20 minutes. The reaction mixture was partitioned with water. Then						
477	the aqueous layer was further extracted with ethyl acetate. The organic extract was washed with						
478	brine, dried over sodium sulfate, and it was purified by silica gel chromatography.						

11 / 21

2-(4-(8-bromo-2-(tert-butoxy)-2,3-dimethyl-4-oxo-2,3-dihydrochromeno[3,4-d]imidazol-1(4H)-yl)
phenyl)-2-methylpropanenitrile (35a)
Yield: 7%. ESI-MS: Calcd for C₂₆H₂₈BrN₃O₃ [M+H]⁺: 510.13, 512.13 Found 510.2, 512.2 ¹H
NMR (400 MHz, DMSO): δ 7.55 (d, *J* = 8.3 Hz, 2H), 7.44 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.37 (d, *J* =
2.3 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 2H), 6.84 (d, *J* = 8.9 Hz, 1H), 3.49 (s, 3H), 2.18 (s, 3H), 1.66 (s,
6H), 1.23 (s, 9H) ppm. ESI-MS: 510.2, 512.2 [M+H]⁺.

486 4.7.1

485

487 2-(4-(2-(tert-butoxy)-2,3-dimethyl-4-oxo-8-(quinolin-3-yl)-2,3-dihydrochromeno[3,4-d]imidazol-1
488 (4H)-yl)phenyl)-2-methylpropanenitrile (35)

489 Yield: 55%. ESI-MS: Calcd for $C_{35}H_{34}N_4O_3$ [M+H]⁺: 559.26 Found 559.3. ¹H NMR (400 MHz, 490 CDCl₃): δ 9.03 (s, 1H), 8.16 (s, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.71 (t, *J* = 491 7.6 Hz, 1H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.52 (s, 1H), 7.46 (d, *J* = 8.2 Hz, 492 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 1H), 3.64 (s, 3H), 2.36 (s, 3H), 1.68 (s, 6H), 493 1.36 (s, 9H) ppm. ¹³C NMR (400 MHz, DMSO): δ 161.71, 157.12, 149.03, 146.46, 144.82, 131.86, 494 131.62, 131.21, 130.16, 129.23, 128.86, 128.61, 128.33, 128.17, 127.90, 127.67, 127.01, 125.93, 495 124.27, 119.72, 111.69, 78.85, 55.40, 36.45, 28.05, 27.60, 13.64 ppm. Mp = 205- 207 °C.

496

497 4.8. Biological evaluation

498

499 *4.8.1 Cell Culture and reagents preparation*

Mouse colorectal carcinoma CT26 cell, human colorectal carcinoma HCT116 and SW620 cells,
human breast carcinoma MCF-7 cell, lung carcinoma A549 cell and human hepatocytes LO2 cell
were obtained from the American Type Culture Collection (ATCC, Rockville, MD, USA). Cells
were propagated in DMEM or RPMI 1350 media containing 10% fetal bovine serum (FBS; Gibco,
Auckland, N. Z.) and 1% antibiotics (penicillin and streptomycin) in 5% CO₂ at 37 °C.

- 505
- 506 *4.8.2 MTT Assay*

507 The cell viability was performed by MTT assay. Briefly, cells were seeded in 96-well plates 508 (2000 - 3000 cells/plate). After 24h incubation, the cells were treated with various concentrations 509 of compounds. After treatment for 72 h, a volume of 20 µL of MTT solution (5 mg/mL) was added to each well and incubated for additional 2 - 4 h incubation at 37 °C. Then the medium was 510 511 discarded, and the formazan salt was dissolved with 150 mL DMSO for 15 - 20 minutes. The 512 absorbance of each well was measured at 570 nm using a Spectra MAX M5 microplate spectrophotometer (Molecular Devices, CA, USA), and the median inhibitory concentration (IC_{50}) 513 514 values were calculated. Three replicate wells were used for each analysis. The results were obtained from three separate experiments. 515

516

517 4.8.3 Colony Formation Assay

To test the survival of cells treated with compound **35**, HCT116 cells (500 cells/well) were plated in a 6-well plate and incubated overnight at 37 °C, followed by various concentrations of **35** treatment (0 - 5.0 μ M) for 15 days with fresh medium. Finally, the cells were washed with cold phosphate-buffered saline (PBS) for twice. Colonies were fixed with 4% paraformaldehyde and stained with a 0.5% crystal violet solution for 15 minutes, and the colonies (>50 cells) were

523 counted under microscope. The data are expressed from three independent experiments. The524 number of colonies in treated cultures was expressed as a percentage of the control cultures.

525

526 *4.8.4 Flow Cytometry*

The cell cycle distribution of SW620 cells after 24 h exposure to various concentrations of **35** was monitored by flow cytometric analysis using a FACScan flow cytometer (Becton Dickinson USA). Briefly, SW620 cells (2×10^5 cells/well) were seeded in 6-well plates and incubated overnight at 37 °C. After 24 h treatment, the cells were harvested and washed with cold PBS twice, and fixed with 75% alcohol at 4 °C. 24h later, cells were stained with propidium iodide (PI) and analyzed by flow cytometry. Then data were analyzed with FlowJo software.

533

534 4.8.5 Apoptotic Assay

To further confirm the apoptosis inducing effect of compound **35**, Annexin V-FITC apoptosis detection kit was used. HCT116 cells $(2 \times 10^5$ cells/well) were seeded in 6-well plates and incubated overnight at 37 °C. After 24 h exposure to various concentrations of **35**, cells were harvested and washed with cold PBS twice. After centrifugation, cells were stained with Annexin V-FITC and PI, and then analyzed with FCM (Becton- Dickinson, USA). Then data were analyzed with FlowJo software.

541

542 4.8.6 Wound-healing migration assay

The inhibition of tumor cell migration by compound **35** was determined by wound-healing migration assay. MCF-7 cells were seeded onto 6-well plates, when grew to 80 - 90% confluence and then the "wound" were scraped by a 0.1 mL sterile pipette tips. Fresh medium containing 10% fetal bovine serum and different concentrations of **35** were added. Cells were photographed after 0, 12, 24 h incubation at 37 °C, respectively.

548

549 *4.8.7 Mice and tumor model*

All animal experiments were approved and conducted by the Institutional Animal Care and 550 Treatment Committee of Sichuan University in China. 100 mL tumor cell (HCT116) suspension 551 containing 1×10^7 cells were injected subcutaneously into the right flank of the seven-week-old 552 female BALB/c athymic nude mice. After one week, when average tumor volume reached 553 approximately 100 mm³, mice were separated into three groups randomly (8 mice per group), and 554 received intraperitoneally injection (i.p.) of 35 at dose of 40 mg/kg, 80 mg/kg or vehicle, 555 556 respectively once two days for 24 days. Tumor growth and body weight were measured every two days during the treatment. The tumor volumes were calculated according to the formula as follow: 557 volume $(mm^3) = (L \times W^2) \times 0.5$, where L is the length and W is the width. Growth inhibition was 558 559 calculated from the start of treatment by comparison of the mean change in tumor volume for 560 vehicle and treated group as before.

561

562 Acknowledgements

563

The authors are grateful for the support from the National Science Foundation of China (81472780)and the National Key Program of China (2012ZX09103101-022).

566

567 Supporting Information

- 568
- 569 Characterization data of compounds.
- 570

571 **Reference**

- 572 [1] L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics,
 573 2012, CA: a cancer journal for clinicians, 65 (2015) 87-108.
- 574 [2] P. Guo, Z.L. Huang, P. Yu, K. Li, Trends in cancer mortality in China: an update, Annals of
 575 oncology : official journal of the European Society for Medical Oncology / ESMO, 23 (2012)
 576 2755-2762.
- 577 [3] B. Meunier, Hybrid molecules with a dual mode of action: dream or reality?, Accounts of chemical
 578 research, 41 (2008) 69-77.
- 579 [4] D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, A. Gzella, R. Lesyk, Synthesis of new
- 4-thiazolidinone-, pyrazoline-, and isatin-based conjugates with promising antitumor activity, J Med
 Chem, 55 (2012) 8630-8641.
- 582 [5] S. Lee, K. Sivakumar, W.S. Shin, F. Xie, Q. Wang, Synthesis and anti-angiogenesis activity of
 coumarin derivatives, Bioorganic & medicinal chemistry letters, 16 (2006) 4596-4599.
- [6] X.H. Liu, H.F. Liu, J. Chen, Y. Yang, B.A. Song, L.S. Bai, J.X. Liu, H.L. Zhu, X.B. Qi, Synthesis
 and molecular docking study of novel coumarin derivatives containing 4,5-dihydropyrazole moiety as
 potential antitumor agents, Bioorganic & medicinal chemistry letters, 20 (2010) 5705-5708.
- [7] W. Zhang, Z. Li, M. Zhou, F. Wu, X. Hou, H. Luo, H. Liu, X. Han, G. Yan, Z. Ding, R. Li,
 Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl)coumarin derivatives as potential antitumor
 agents, Bioorganic & medicinal chemistry letters, 24 (2014) 799-807.
- [8] M.A. Musa, J.S. Cooperwood, M.O.F. Khan, A Review of Coumarin Derivatives in
 Pharmacotherapy of Breast Cancer, Current medicinal chemistry, 15 (2008) 2664-2679.
- [9] S.S. Bhattacharyya, S. Paul, S.K. Mandal, A. Banerjee, N. Boujedaini, A.R. Khuda-Bukhsh, A
 synthetic coumarin (4-Methyl-7 hydroxy coumarin) has anti-cancer potentials against DMBA-induced
 skin cancer in mice, European Journal of Pharmacology, 614 (2009) 128-136.
- [10] M.A. Musa, J.S. Cooperwood, M.O. Khan, A review of coumarin derivatives in pharmacotherapyof breast cancer, Current medicinal chemistry, 15 (2008) 2664-2679.
- [11] A. Lacy, R. O'Kennedy, Studies on coumarins and coumarin-related compounds to determine their
 therapeutic role in the treatment of cancer, Current pharmaceutical design, 10 (2004) 3797-3811.
- 599 [12] M. Baba, Y.R. Jin, A. Mizuno, H. Suzuki, Y. Okada, N. Takasuka, H. Tokuda, H. Nishino, T.
- 600 Okuyama, Studies on cancer chemoprevention by traditional folk medicines XXIV. Inhibitory effect of
- a coumarin derivative, 7-isopentenyloxycoumarin, against tumor-promotion, Biological &
 Pharmaceutical Bulletin, 25 (2002) 244-246.
- [13] N.E.B. Saidu, S. Valente, E. Bana, G. Kirsch, D. Bagrel, M. Montenarh, Coumarin polysulfides
 inhibit cell growth and induce apoptosis in HCT116 colon cancer cells, Bioorganic & Medicinal
 Chemistry, 20 (2012) 1584-1593.
- [14] M.A. Musa, V.L.D. Badisa, L.M. Latinwo, T.A. Patterson, M.A. Owens, Coumarin-based
 Benzopyranone Derivatives Induced Apoptosis in Human Lung (A549) Cancer Cells, Anticancer
 Research, 32 (2012) 4271-4276.
- 609 [15] S.M. Maira, F. Stauffer, J. Brueggen, P. Furet, C. Schnell, C. Fritsch, S. Brachmann, P. Chene, A.
- 610 De Pover, K. Schoemaker, D. Fabbro, D. Gabriel, M. Simonen, L. Murphy, P. Finan, W. Sellers, C.
- 611 Garcia-Echeverria, Identification and characterization of NVP-BEZ235, a new orally available dual
- 612 phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor
- activity, Molecular cancer therapeutics, 7 (2008) 1851-1863.
- 614 [16] M.A. Dawson, R.K. Prinjha, A. Dittmann, G. Giotopoulos, M. Bantscheff, W.I. Chan, S.C. Robson,

- 615 C.W. Chung, C. Hopf, M.M. Savitski, C. Huthmacher, E. Gudgin, D. Lugo, S. Beinke, T.D. Chapman,
- 616 E.J. Roberts, P.E. Soden, K.R. Auger, O. Mirguet, K. Doehner, R. Delwel, A.K. Burnett, P. Jeffrey, G.
- 617 Drewes, K. Lee, B.J. Huntly, T. Kouzarides, Inhibition of BET recruitment to chromatin as an effective
- treatment for MLL-fusion leukaemia, Nature, 478 (2011) 529-533.
- 619 [17] C.A. Bernhart, P.M. Perreaut, B.P. Ferrari, Y.A. Muneaux, J.L. Assens, J. Clement, F. Haudricourt,
- 620 C.F. Muneaux, J.E. Taillades, M.A. Vignal, et al., A new series of imidazolones: highly specific and
- 621 potent nonpeptide AT1 angiotensin II receptor antagonists, J Med Chem, 36 (1993) 3371-3380.
- [18] S.N. Mokale, D. Lokwani, D.B. Shinde, Synthesis, biological activity and docking study of
 imidazol-5-one as novel non-nucleoside HIV-1 reverse transcriptase inhibitors, Bioorg Med Chem, 20
 (2012) 3119-3127.
- 625 [19] A.A. Adjei, R.B. Cohen, W. Franklin, C. Morris, D. Wilson, J.R. Molina, L.J. Hanson, L. Gore, L.
- 626 Chow, S. Leong, L. Maloney, G. Gordon, H. Simmons, A. Marlow, K. Litwiler, S. Brown, G. Poch, K.
- 627 Kane, J. Haney, S.G. Eckhardt, Phase I pharmacokinetic and pharmacodynamic study of the oral,
- 628 small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in
- patients with advanced cancers, Journal of clinical oncology : official journal of the American Society
- 630 of Clinical Oncology, 26 (2008) 2139-2146.
- [20] D.A. Altomare, L.L. Zhang, J. Deng, A. Di Cristofano, A.J. Klein-Szanto, R. Kumar, J.R. Testa,
 GSK690693 Delays Tumor Onset and Progression in Genetically Defined Mouse Models Expressing
 Activated Akt, Clinical Cancer Research, 16 (2010) 486-496.
- [21] El-Nassan, H. B., Recent progress in the identification of BRAF inhibitors as anti-cancer agents.
- European journal of medicinal chemistry, 72(2014) 170-205.
- 636 [22] M. Classen, H.G. Dammann, W. Domschke, K.J. Hengels, W. Huttemann, W. Londong, M. Rehner,
- 637 B. Simon, L. Witzel, J. Berger, Short-Duration Treatment of Duodenal-Ulcer with Omeprazole and
- 638 Ranitidine Results of a Multi-Centre Trial in Germany, Deut Med Wochenschr, 110 (1985) 210-215.
- 639 [23] Y.F. Li, G.F. Wang, P.L. He, W.G. Huang, F.H. Zhu, H.Y. Gao, W. Tang, Y. Luo, C.L. Feng, L.P. Shi,
- Y.D. Ren, W. Lu, J.P. Zuo, Synthesis and anti-hepatitis B virus activity of novel benzimidazole
 derivatives, Journal of Medicinal Chemistry, 49 (2006) 4790-4794.
- 642 [24] K.Y. Chang, S.Y. Tsai, C.M. Wu, C.J. Yen, B.F. Chuang, J.Y. Chang, Novel Phosphoinositide
 643 3-Kinase/mTOR Dual Inhibitor, NVP-BGT226, Displays Potent Growth-Inhibitory Activity against
- Human Head and Neck Cancer Cells In Vitro and In Vivo, Clinical Cancer Research, 17 (2011)7116-7126.
- [25] M.A. Dawson, R. Prinjha, A. Dittman, G. Giotopoulos, M. Bantscheff, W.I. Chan, S. Robson, C.W.
- 647 Chung, C. Hopf, M. Savitski, K. Dohner, A.K. Burnett, R. Delwel, H. Carola, E. Gudgin, D. Lugo, S.
- 648 Beinke, P. Soden, K.R. Auger, O. Mirguet, P. Jeffrey, G. Drewes, K. Lee, T. Kouzarides, B.J.P. Huntly,
- 649 Inhibition of BET Recruitment to Chromatin As An Effective Treatment for MLL-Fusion Leukaemia,
- 650 Blood, 118 (2011) 27-28.
- [26] C.H. Huang, D. Mandelker, O. Schmidt-Kittler, Y. Samuels, V.E. Velculescu, K.W. Kinzler, B.
 Vogelstein, S.B. Gabelli, L.M. Amzel, The structure of a human p110 alpha/p85 alpha complex

elucidates the effects of oncogenic PI3K alpha mutations, Science, 318 (2007) 1744-1748.

- 652 653
- 654
- 655
- 656

Fig. 1. A few of benzimidazole and imidazoquinoline derivatives with antitumor activities. 657 658 Fig. 2. The effect of compound 35 on cancer cells viability (A) Proliferation of HCT116, MCF-7, 659 SW620, CT26, A549 and LO2 cells treated with various concentrations (0 - 20 µM) of 35 and 660 Cisplatin for 72 h, respectively. Cell viability was detected by MTT assay. The data are expressed 661 as the means ± SD from three independent experiments. (B) and (C) The colony clusters were 662 detected after a 20-day 35 treatment. Quantification is shown in the right panels. Images shown 663 are representatives of three independent experiments. (**p < 0.01). 664 665

Fig. 3. Compound 35 induced G0/G1 cell-cycle arrest and apoptosis of SW620 cells. (A) SW620 cells were treated with various concentrations of 35 (0, 0.3125, 0.625, 1.25, 5.0 μM) for 24 h. (B)
SW620 cells were exposed to 35 at indicated doses for 24 h, and the level of apoptosis was evaluated using the Annexin V/PI dual-labeling technique, and analyzed by flow cytometry. Data shown are representative of three independent experiments.

671

673

Fig. 4. Compound **35** inhibited breast cancer cell MCF-7 migration *in vitro*.

Fig. 5. Effects of compound 35 on the growth of xenografts in nude mice in vivo. (A) HCT116 tumor-bearing nude mice were treated as described with vehicle, 35 at 40 and 80 mg/kg, the mean tumor volumes \pm SD of five mice per every group. (B) After the tumor cell inoculation, the body weight of the 35 treatment and vehicle groups were counted, and there were no significant difference among the groups.

679

680

681 Tables

- Table 1. *In Vitro* inhibition of tumor cell growth of compounds **9 34**.
- 683

684 685	R^{1} O NH R^{2} O O O						
	Compd	\mathbf{P}^1	\mathbf{p}^2		$IC_{50} (\mu M)^a$		
	Compa.	K	ĸ	U87-MG	PC-3	HCT116	
	9	C_6H_5	C_6H_5	>40	>40		
	10	C_6H_5	pyridin-3-yl	>40	>40		
	11	C_6H_5	C3-NH ₂ -C ₆ H ₄	>40	>40		
	12	C_6H_5	2-Me-C ₆ H ₄	>40			
	13	C_6H_5	4-OH-C ₆ H ₄	>40			
	14	C ₆ H ₅		>40	>40	>40	
	15	C ₆ H ₅	pyridin-4-yl	38.74 ± 1.64	-	-	
	16	C ₆ H ₅	quinolin-3-yl	35.6 ± 2.87	34.05 ± 3.43	31.5 ± 4.89	
	17	4-CH ₂ CN-C ₆ H ₄	2-Me-C ₆ H ₄	>40	>40	>40	
	18	4-CH ₂ CN-C ₆ H ₄	F-C-S=0 0	>40	>40	>40	
	19	4-CH ₂ CN-C ₆ H ₄	3-NH ₂ -C ₆ H ₄	>40	36.51 ± 3.32	-	

20	4-CH ₂ CN-C ₆ H ₄	C_6H_5	31.42 ± 5.46	35.31 ± 2.56	>40
21	4-CH ₂ CN-C ₆ H ₄	4-OH-C ₆ H ₄	29.59 ± 4.30	30.59 ± 3.21	30.13 ± 4.44
22	$\begin{array}{c} \text{4-CH}_2\text{CN-C}_6\\ \text{H}_4 \end{array}$	pyridin-3-yl	>40	>40	29.37 ± 5.56
23	4-CH ₂ CN-C ₆ H ₄	4-(methylsulfo nyl)phenyl	39.72 ± 0.22	29.61 ± 2.32	2
24	4-CH ₂ CN-C ₆ H ₄	pyridin-4-yl	36.42 ± 1.45	37.06 ± 3.50	37.2 ± 2.10
25	4-CH ₂ CN-C ₆ H ₄	quinolin-3-yl	34.9 ± 2.40	30.25 ± 3.60	28.40 ± 2.60
26	4-OMe-C ₆ H ₄	pyridin-3-yl	>40	>40	>40
27	4-OMe-C ₆ H ₄	pyridin-4-yl	>40	>40	>40
28	4-OMe-C ₆ H ₄	quinolin-3-yl	>40	>40	>40
29	2-Me-C ₆ H ₄	quinolin-3-yl	>40	>40	>40
30	2-Me-C ₆ H ₄	pyridin-3-yl	>40	>40	>40
31	2-Me-C ₆ H ₄	pyridin-4-yl	>40	>40	>40
32	4-C(CH ₃) ₂ -C ₆ H ₄	pyridin-3-yl	25.62 ± 3.80	38.20 ± 2.10	-
33	4-C(CH ₃) ₂ -C ₆ H ₄	pyridin-4-yl	28.55 ± 2.30	29.01 ± 4.60	-
34	4-C(CH ₃) ₂ -C ₆ H ₄	quinolin-3-yl	33.42 ± 2.50	19.76 ± 1.60	20.40 ± 3.60
Cisplatin	-	-	>20	>20	12.3

^a Inhibitory activity was assayed by exposure for 72 h to substances and expressed as concentration required to inhibit tumor cell proliferation by 50% (IC₅₀). SD, standard deviation (n = 3).

690 Table 2. *In vitro* Inhibition of tumor cell growth of compound **35.**

691

692 693		NC \downarrow O N V O R^2 \downarrow N \downarrow O O O						
-	Compd.	\mathbf{p}^2		$IC_{50}(\mu M)^a$				
		K	U87-MG	PC-3	HCT116			
•	35	quinolin-3-yl	$> 31.0 \pm 4.50$	18.0 ± 2.40	1.40 ± 0.50			
	Cisplatin	-	>20	>20	12.3			

694 ^{*a*} Inhibitory activity was assayed by exposure for 72 h to substances and expressed as 695 concentration required to inhibit tumor cell proliferation by 50% (IC₅₀). SD, standard deviation (n 696 = 3).

697

698 Schemes

699

700

Scheme 1. Reagents and conditions: (i) acetic anhydride, pyridine, 100 °C, 3.5 h, 92%; (ii) AlCl₃,
150 °C, 3.5 h, 72%; (iii) diethyl carbonate, NaH, Toluene, 100 °C, 4 h, 71%; (iv) HNO₃, DCM,
0 °C, 2 h, 94%; (v) POCl₃, Et₃N, reflux, 1 h, 87%.

704

705 706

507 Scheme 2. Reagents and conditions: (i) DMF, r.t., 2h, 93-97%; (ii) Fe, ethanol, 75%, NH₄Cl, r.t.,

- 708 4-5 h, 52-63 %; (iii) CDI, CH₃COOH, 2 h, 100 °C, 45-74%; (iv) K₂CO₃, PdCl₂ (dppf) CH₂Cl₂,
- 709 1,4-dioxane : $H_2O=3:1$, 65 °C, 4-5 h, 40-60%.
- 710

- 711 712
- Scheme 3. Reagents and conditions: (i) CH_3I , Potassium tert-butanolate, DCM, 0 °C, 1 h, 7%; (ii) K₂CO₃, [PdCl₂(dppf)] CH_2Cl_2 , 1,4-dioxane : H₂O=3 : 1, 65 °C, 4-5 h, 55%.
- 716

Omeprazole

Telmisarta

NVP-BEZ235

ΡI

Annexin V

Compound 35 (µM)

We have found a novel scaffold with better potency as antitumor agents.

Target compound **35** could arrest G0/G1 cell-cycle and induce apoptosis of SW620 cells in a dose-dependent manner.

35 blocked MCF-7 cancer cell migration with low toxicity to normal LO2 cells.

35 inhibited tumor growth by 52.96% at 80 mg/kg/48h for 20 days.