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SUMMARY

There is a growing recognition of the importance of
protein kinases in the control of alternative splicing.
To define the underlying regulatory mechanisms,
highly selective inhibitors are needed. Here, we
report the discovery and characterization of the
dichloroindolyl enaminonitrile KH-CB19, a potent
and highly specific inhibitor of the CDC2-like kinase
isoforms 1 and 4 (CLK1/CLK4). Cocrystal structures
of KH-CB19 with CLK1 and CLK3 revealed a non-
ATP mimetic binding mode, conformational changes
in helix aC and the phosphate binding loop and
halogen bonding to the kinase hinge region. KH-
CB19 effectively suppressed phosphorylation of SR
(serine/arginine) proteins in cells, consistent with its
expected mechanism of action. Chemical inhibition
of CLK1/CLK4 generated a unique pattern of splicing
factor dephosphorylation and had at low nM concen-
tration a profound effect on splicing of the two tissue
factor isoforms flTF (full-length TF) and asHTF (alter-
natively spliced human TF).

INTRODUCTION

There are about 23,000 protein-coding genes in the human

genome. However, the human proteome consists of a far larger

number of unique protein sequences. In fact, some 90% of all

transcribed genes may undergo alternative splicing and more

than 80% may have at least 15% abundance of minor splicing

forms (Shi et al., 2008). In many cases, alternative splicing leads

to the expression of several protein isoforms with different and

sometimes antagonistic functions (Pajares et al., 2007). Notable

examples include pro- and antiapoptotic isoforms of Bcl-2 family

members (Akgul et al., 2004) and pro- and antiangiogenic forms
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of VEGFA (Harper and Bates, 2008). This plasticity plays a funda-

mental role in tissue development and the cellular response to

external stimuli, for example in the control of blood clotting

(Eisenreich et al., 2009) and insulin action (Jiang et al., 2009).

Not surprisingly, the deregulation of alternative splicing has

also been linked to numerous human pathologies (Ward and

Cooper, 2010).

The regulation of alternative splicing is highly complex. In addi-

tion to the essential enzymatic step of RNA breakage and liga-

tion, the spliceosome must recognize the exon and intron

boundaries precisely and in a controlled fashion. Not surpris-

ingly, the splicing machinery involves hundreds of auxiliary

factors that control splice site selection, spliceosome assembly

and the splice reaction (Wahl et al., 2009; Bourgeois et al., 2004).

Indeed, the spliceosome alone rivals the ribosome and chro-

matin remodeling complexes in its complexity (Ritchie et al.,

2009). But what distinguishes the spliceosome is its very

dynamic nature. During the different stages of the splicing

process, dozens of proteins get recruited or dissociated from

the spliceosomal complex (Wahl et al., 2009). The availability

and posttranslational modification status of these regulatory

proteins define the outcome of the splicing reaction and link it

to extracellular signaling (Blaustein et al., 2007). One group of

proteins regulating the selection of alternatively spliced exonic

or intronic premessenger (mRNA) sequences in response to

environmental changes are serine/arginine-rich (SR) proteins

(Bourgeois et al., 2004). The group name relates to the serine/

arginine-rich sequences present in these proteins (Long and

Caceres, 2009). The serine residues in these sequence patches

are phosphorylated by several protein kinase families, most

notably the serine/arginine-rich protein kinases (SRPKs) and

the CDC2-like kinase family (CLKs) (Colwill et al., 1996; Gui

et al., 1994). The phosphorylation status of SR proteins regulates

in turn their cellular localization and activity (Stamm, 2008).

The phosphorylation-dependent signal transduction is a

recurrent theme in cell signaling and the control of alternative

splicing appears to be no exception. Given the recent success

in designing selective kinase inhibitors, several efforts have
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Figure 1. Synthetic Route

(A) Lead alkaloid Bauerine C.

(B) Synthetic route for the preparation of the studied inhibitors.
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been made to target CLKs. Muraki et al. (2004) reported a cell

permeable benzothiazole compound (TG003) with 20 nM and

15 nM potency for CLK1 and CLK4, respectively. However,

more comprehensive profiling of this compound revealed strong

inhibition of TG003 for all CLK family members except for CLK3

but also cross reactivity with casein kinase (CK1d and CK13),

dual-specificity tyrosine phosphorylation-regulated kinase

(DYRK1B), Yeast Sps1/Ste20-related kinase (YSK4) and proviral

insertion site in Moloney Murine Leukemia Virus (PIM) kinase

isoforms (Mott et al., 2009). The latter paper reported also

a series of substituted 6-arylquinazolines with low nM potencies

inhibiting all CLKs as well as DYRK1A and DYRK1B and the tyro-

sine kinase EGFR. In addition, a number of nonselective inhibi-

tors have been reported together with the crystal structures of

CLK1 and CLK3 (Bullock et al., 2009). However, to date there

are still no potent and highly selective CLK inhibitors with the

submicromolar cellular activity available that would be required

for use in in vivo experiments. Chemical probes with such char-

acteristics may help to decipher the role of CLKs not only in

splicing regulation, but also in the control of viral infections

(Karlas et al., 2010) as well as cellular metabolism (Rodgers

et al., 2010).

Here, we describe a novel class of CLK inhibitors (dichloroin-

dolyl enaminonitriles), with high specificity for CLK1/CLK4

isoforms and a unique binding mode to the kinase hinge region.

The lead compound shows single-digit nanomolar activity in

modulating alternative splicing in human endothelial cells.

RESULTS

Natural compounds provide a rich source for novel chemical

scaffolds which offer an excellent foundation for rational struc-

ture-based design. Recently, we reported a novel class of potent

and selective class III histone deacetylase (sirtuin) inhibitors,

which are structural hybrids between a common kinase inhibitor

scaffold and the b-carboline alkaloid bauerine C (Figure 1A),

having a unique 7,8-dichloro substitution pattern (Huber et al.,
68 Chemistry & Biology 18, 67–76, January 28, 2011 ª2011 Elsevier
2010a). Bauerine C was originally isolated from the blue-green

algaDichothrix baueriana and has been reported to have antipro-

liferative as well as antiviral properties (Larsen et al., 1994). In this

study, we envisaged to prepare a library of novel bioactive

compounds using 4-cyano-bauerine C (3), an easy-to-function-

alize derivative of the alkaloid bauerine C, as a basis for structural

diversification (Figure 1B).

For the preparation of 4-cyano-bauerine C (3) we started

from ethyl 3-cyanomethyl-6,7-dichloro-1-methyl-1H-indole-2-

carboxylate (1) (Huber et al., 2010b), which was reacted with

Bredereck’s reagent (tert-butoxy-bis(dimethylamino)methane)

to give the tertiary enaminonitrile 2 as a mixture of E/Z isomers.

This intermediate was then heated with ammonium acetate

and glacial acetic acid in a microwave reactor to give 4-cyano-

bauerine C (3). Both 3 and the intermediate tertiary enaminonitrile

2 were screened against a panel of 106 kinases using a thermal

shift assay and showed only interaction with CLK family

members (see Table S1 available online). Primary enaminonitrile

KH-CB20 (as an E/Z mixture) was originally isolated as a side

product in the synthesis of 3 and also screened against the

kinase panel. Serendipitously, the kinase assay revealed

KH-CB20 to be a potent and selective inhibitor of CLK1 and

the closely related isoform CLK4, with significantly reduced

affinity to CLK2 and CLK3 (Figure 2; Table S1). Thus the proce-

dure for the synthesis of KH-CB20 was optimized. Addition of

sulfuric acid to the reaction mixture and shorter reaction time

largely prevented cyclisation to 4-cyano-bauerine C (3) and led

to predominant formation of the primary enaminonitrile

KH-CB20 as a 71:29 mixture of E- and Z-isomers. Separation

of the E-isomer KH-CB19 could be achieved by selective

recrystallization from toluene. The pure E-isomer KH-CB19

and the E/Z-mixtureKH-CB20 had similar kinase binding activity

(Table S1).

Direct measurements of kinase inhibition in enzymatic assays

revealed low nM potencies. Both KH-CB20 and KH-CB19

showed potent inhibition of CLK1 with an IC50 of 20 nM, and

for the pure isomer KH-CB19, almost 100-fold selectivity
Ltd All rights reserved



Figure 2. Activity and selectivity of KH-CB19

(A) Binding of KH-CB19 to kinase catalytic domains as assessed in thermal shift assays against 129 human protein kinases (see Table S1 for screened targets).

Targets that showed significant temperature shifts are highlighted by blue spheres.

(B) Chemical structures for KH-CB19 and KH-CB20.

(C) Correlation between binding constants determined by AMBIT and temperature shift data. The correlation of the linear least-squares fit was 0.95. One outlier is

highlighted (red circle) which corresponds toBIRB-796, a potent p38 inhibitor. This compound showed only weak association in the AMBIT assay possibly due to

slow binding kinetics, but gave a high Tm shift as expected for this potent inhibitor. The kinome phylogenetic tree has been used and modified with permission of

Cell Signaling Technology.

Chemistry & Biology

Novel Specific CLK Inhibitors
against the CLK3 isoform (Figure 2 and Table 1). Using temper-

ature shift assays, cross-screening against 129 kinases revealed

only strong interaction with CLK family members, in particular

CLK1 and CLK4. We were interested to assess how temperature

shift data across such a wide and diverse panel of kinases corre-

late with binding affinities. To do this, we used the large panel of

binding data that has been made available by AMBIT (Fabian

et al., 2005; Karaman et al., 2008) and temperature shift data

that have been published previously by our laboratory (Fedorov

et al., 2007). As shown in Figure 2C, the thermal shift data

showed good overall correlation (R = 0.95) with published

AMBIT binding constants. However, weaker hits identified in

temperature shift assays sometimes still correspond to potent

inhibitors in enzyme kinetic assays. Unfortunately, this was

also the case for DYRK1A which showed a temperature shift

of 5.4�C that corresponded to an IC50 of 55 ± 6 nM in enzyme

kinetic assays (Table 1). To further confirm specificity,

KH-CB19 was profiled against a panel of 71 protein kinases

(see Manley et al. [2010] for panel members) using an enzymatic

activity assay. No additional kinases from the panel were

inhibited confirming the inhibitor selectivity for CLKs. The excep-

tionally specific activity and unique chemical structure, which

does not resemble any known kinase inhibitor, prompted us to

determine the crystal structure of KH-CB19 complexes with

both CLK1 and CLK3. In addition, we determined the cocrystal

structure of CLK3 with a typical ATP mimetic triazole diamine

inhibitor, K00546 (5-amino-3-[{4-aminosulfonyl}phenylamino]-

N-2,6-difluorophenyl)-1H-1,2,4-triazole-1-carbothiamide), which
Chemistry & Biology 18,
has been published as a potent CDK1 and CDK2 inhibitor (Lin

et al., 2005) (for refinement and data collection statistics, see

Table 2). The cocrystal structure with KH-CB19 revealed that

the inhibitor bound to the ATP binding site in CLK1 and CLK3

(Figure 3A). However, due to the lack of hydrogen bond donors

or acceptors at the carbocyclic ring, KH-CB19 did not interact

with the hinge region with a canonical ATP mimetic binding

mode (Figure 3B). Instead, KH-CB19 formed a halogen bond

with the main chain carbonyl of Glu242. The Cl/O distance

was 2.9 Å, below the sum of van der Waals radii (3.3 Å) of

carbon-bound chlorine and sp2-hybridized oxygen. The linear

C-Cl/Ogeometry also fulfilled the geometrical criteria for a chlo-

rine halogen bond to the kinase backbone (Voth and Ho, 2007).

Interestingly, superimposition with the triazole diamine cocrystal

structure revealedoneCl atom in the samepositionas theprimary

amine nitrogen that forms a hydrogen bond with the hinge

backbone. Similarly, the role and geometry of this halogen bond

for KH-CB19 kinase interaction was evident from superimposi-

tion with the CLK1/hymenialdisine (K0010) cocrystal structure

(Bullock et al., 2009) (Figure 3C). In both cases, the chlorine

atom occupied the position of the hydrogen bond donor of

common kinase inhibitors, mimicking the NH2 group of ATP.

Thecontribution of halogenbonds to ligandaffinity and specificity

has not been fully determined andmayvary (Bissantz et al., 2010).

The second chlorine atomofKH-CB19was positioned outside of

halogen bond range and formedmore common lipophilic interac-

tions. Overall, the inhibitor was well defined by electron density

(Figure 3D).
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Table 1. Effect of the Studied Inhibitors on Enzymatic Activity

Inhibitor CLK1 [nM] CLK3 [nM] DYRK1A [nM]

KH-CB19 19.7 ± 6 530 ± 140 55.2 ± 6

KH-CB20 16.5 ± 3 488 ± 120 57.8 ± 2

TG003 48.6 ± 16 >4000 156.1 ± 23.0

K00546 8.9 ± 3 29.2 ± 8 ND

IC50 values are shown in nM and values were average from three inde-

pendent experiments. Literature values for TG003 according to Muraki

et al. (2004): CLK1, 20 nM, CLK4 15 nM, CLK3 >10 mM. ND, not deter-

mined.
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Instead of the canonical polar interactions of ATP-mimetic

inhibitors with the kinase hinge, the hydrophilic groups of

KH-CB19 were oriented toward the back of ATP pocket (Fig-

ure 3). In particular, the cyano moiety formed a hydrogen bond

with the catalytic residue Lys191 (CLK1 numbering), while the

amino group made bidentate bonds to the backbone of Glu292

and side chain of Asn293. Cyano moieties that interact with the

catalytic lysine are also present in the non-ATP competitive

MEK inhibitor U0126, but since this compound does not occupy

the ATP site it coordinates the lysine u-NH2 group from the allo-

steric binding pocket adjacent to the MEK ATP site (Fischmann

et al., 2009). The CLK binding geometry packed the N- and C-

terminal kinase lobes tightly, making a critical contribution to

the overall binding affinity. Another interesting feature of the

complex was the wedge-like contact between Phe172 (CLK1)

and the inhibitor. Conserved aromatic residues in the Phe172
Table 2. Data Collection and Refinement Statistics

Data Collection

PDB ID 2VAG

Target CLK1

Inhibitor KH-CB19

Space group C2

Cell dimensions: a, b, c (Å) 90.95, 64.11, 78.89

a, b, g (deg) 90.00, 118.17, 90.00

Resolutiona (Å) 1.80 (1.92–1.80)

Unique observationsa 36,979 (5380)

Completenessa (%) 99.9 (99.9)

Redundancya 3.8 (3.0)

Rmerge
a 0.090 (0.613)

I/ sIa 11.6 (1.8)

Refinement

Resolution (Å) 1.80

Rwork / Rfree (%) 18.2/22.5

Number of atoms(protein/other/water) 2645/22/230

B factors (Å2)(protein/other/water) 20.66/13.71/25.45

Rmsd bonds (Å) 0.013

Rmsd angles (o) 1.404

Ramachandran favored (%) 96.04

Allowed (%) 2.74

Disallowed (%) 1.22
a Values in parentheses correspond to the highest resolution shell.
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position on the tip of the phosphate binding loop (P loop) have

been proposed to contribute to kinase inhibitor binding (Pogacic

et al., 2007; Yamaguchi et al., 2006). For example, the loop

dynamics have been postulated to determine kinase isoform

selectivity (Doudou et al., 2010). Comparison of the CLK1 and

CLK3 structures further supported this hypothesis. The confor-

mation of the P loop was identical in the two CLK1 structures,

the complex with KH-CB19 (Figure 4) and the structurally

different and nonselective kinase inhibitor hymenialdisine. The

CLK3-KH-CB19 complex also superimposed well, suggesting

that the CLK1 P loop conformation was optimal for KH-CB19

binding. In contrast, superimposition of the two CLK3

complexes, with KH-CB19 (Figure 4) and CDK1/2 inhibitor,

revealed the preference for CLK3 to adopt a more open confor-

mation with the P loop moving away from the ATP binding site.

Therefore, the markedly decreased affinity of KH-CB19 for

CLK3 may reflect the energetic penalty associated with its

induced fit.
Effects of CLK Inhibition on SR Protein Phosphorylation
To assess the phosphorylation state of SR proteins, western

blotting was performed 2 min poststimulation of human micro-

vascular endothelial cells (HMEC-1) with TNF-a (Figure 5A).

SRp75, SRp55, SRp40, SC35, SF2/ASF, and SRp20 were de-

tected in HMEC-1 using antibodies that selectively recognize

phosphorylated variants of these proteins (Figure 5A, lane 1).

Treatment of nonstimulated cells with 10 mM KH-CB19 led to

a reduced phosphorylation of SRp75, SRp55, and SRp20
2WU6 2WU7

CLK3 CLK3

K00546 KH-CB19

C2 C2

89.15, 62.33, 74.15 87.58, 62.03, 75.08

90.0, 96.04, 90.0 90.0, 98.05, 90.0

1.92 (2.02–1.92) 2.23 (2.28–2.23)

30,158 (4343) 19,441(861)

97.1 (96.2) 99.9 (97.8)

4.3 (4.4) 6.59 (4.45)

0.132 (0.761) 0.058 (0.581)

7.3 (2.0) 7.26 (2.1)

1.92 2.23

16.9/21.4 19.1/27.2

2853/55/305 2796/52/110

23.80/23.38/21.08 17.70/25.46/8.66

0.016 0.016

1.555 1.570

97.09 96.24

2.33 2.31

0.58 1.45

Ltd All rights reserved



Figure 3. Binding Mode of CLK Inhibitors

(A) Overview of the CLK cocrystal structure. The CLK1 catalytic domain is shown as a ribbon diagram and the ATP binding site has been highlighted in surface

representation. Details of the interaction of KH-CB19 with the kinase active site are shown in the detailed view on the right.

(B) Superimposition of the CLK3 cocrystal structure with KH-CB19 and the triazole diamine K00546.

(C) Superimposition of CLK1 complexes with KH-CB19 and hymenialdisine (K0010).

(D) Electron density (2Fc-2Fo) map of KH-CB19 in the CLK1 complex. The map has been contoured using a 2 sigma cutoff.
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compared with nonstimulated controls, whereas the phos-

phorylation of SRp40, SC35, and SF2/ASFwas unaffected under

basal conditions (lane 2). Pretreatment of HMEC-1 with 10 mM

TG003, a previously identified CLK inhibitor, only reduced the

phosphorylation of SRp20, but had no effect on the phosphory-

lation state of other SR proteins under normal conditions (lane 3).

Stimulation of HMEC-1 with TNF-a led to an increase in the

phosphorylation of all detected SR proteins only 2 min post

induction (lane 4). Pretreatment of cells with KH-CB19 or

TG003 led to a reduction of the TNF-a-induced increase in phos-

phorylation of all analyzed SR proteins (lanes 5 and 6) compared

with TNF-a-stimulated controls (lane 3). However, the effect of

10 mM KH-CB19 was far greater under both normal and proin-

flammatory conditions as compared to cells treated with

10 mM TG003. Dose response of KH-CB19 was tested using

SRp75 and SRp55. As shown in Figure 5C phosphorylation

levels of these two proteins in TNF-a�stimulated cells were

significantly reduced at increasing concentration of the inhibitor.

In contrast, TG003 had little effect on SRp75 and SRp55 phos-

phorylation at the tested concentrations.

Effect of KH-CB19 and TG003 on Alternative Tissue
Factor pre-mRNA Splicing in Human Endothelial Cells
Unstimulated HMEC-1 constitutively express both tissue factor

(TF) isoforms, the soluble asHTF as well as the membrane bound

full-length TF (flTF) at the mRNA level (Figure 5B, lane 2). Stimula-
Chemistry & Biology 18,
tion of HMEC-1 with 10 ng/ml TNF-a led to an increased mRNA

expression of both TF isoforms compared with nontreated

controls (lane 3). Treatment of resting cells with 10 mM KH-CB19

significantly reduced the basal expressionof flTF aswell as asHTF

(lane 4). Pharmacologic inhibition of CLKs using KH-CB19 also

lowered TNF-a-induced expression of both TF mRNA splice vari-

ants to baseline (lane 5). Treatment of HMEC-1 cells with 10 mM

TG003 also reduced the basal expression of flTF and asHTF

mRNA (lane 6), and showed only slightly reduced mRNA expres-

sion in TNF-a-induced cells 1 hr post stimulation (lane 7).

DISCUSSION

Despite the substantial effort in developing targeted kinase

inhibitors, the task of selective inhibitor design remains highly

challenging (Morphy, 2010). As a result, only a handful of re-

ported kinase inhibitors can be classified as truly specific agents

(Smyth and Collins, 2009; Karaman et al., 2008). One, albeit not

insurmountable challenge, is the overreliance on ATP-mimetic

hydrogen bonding to the kinase hinge region. Few kinases

have been successfully targeted by other binding mechanisms.

A prominent example is PIM1, which has a unique proline residue

in the +3 hinge donor position which breaks the classical

hydrogen bonding pattern leading to reorientation of inhibitors

and formation of polar contacts with the opposing face of the

ATP binding pocket (Bullock et al., 2005; Jacobs et al., 2005).
67–76, January 28, 2011 ª2011 Elsevier Ltd All rights reserved 71



Figure 4. Induced Fit of the P Loop upon Inhibitor Binding

Shown are superimpositions of CLK1 (A) and CLK3 (B) inhibitor complexes. The different cocrystallized ligands are indicated in the figure. Inhibitor molecules and

the P loop phenylalanine (F172 and F167 in CLK1 and CLK3, respectively) are shown in stick representation. The induced structural changes are indicated by an

arrow.
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These unusual binding modes have been associated with the

unique PIM hinge region which does not allow formation of

a second hydrogen bond with ATP or ATP mimetic ligands.

Here, we report that CDC2-like kinases, which have seemingly

nondistinguished and standard sequence around the ATP

binding site can be successfully targeted by inhibitors that

do not mimic the canonical hydrogen bond pattern of ATP

mimetic inhibitors. Crystal structures suggest that this binding

mode is optimally satisfied by an inward conformation of the P

loop which provides additional interaction through CLK1

Phe172. This work highlights the opportunity to develop very

potent and specific inhibitors with new chemical profiles.

Comparisons of inhibitor cross reactivity revealed a very favor-

able selectivity profile for KH-CB19when compared with typical

ATP mimetic ligands.

An interesting feature of the KH-CB19 binding mode is the

presence of a halogen bond formed with one CLK hinge region

backbone carbonyl. Halogen bonds are short-range molecular

interactions involving polarized halogens. Such contacts occur

frequently in inhibitor target complexes but have only recently

been recognized as intermolecular interactions that may favor-

ably contribute to ligand affinity (Hernandes et al., 2010). Well-

known examples are halogen bonds that have been described

in tetrabromobenzimidazole casein kinase 2 (CK2) complexes

(Battistutta et al., 2005). However, more theoretical and experi-

mental studies are needed to understand the biophysical nature

of halogen bonding and how these interactions can be exploited

in structure based drug design.

Alternative splicing is an essential regulatory process influ-

encing the functional diversity and plasticity of the proteome in

response to environmental changes (Black, 2003). CLKs regulate

alternative splicing by phosphorylating SR proteins, thereby

modulating their cellular localization and splicing activity (Prasad

et al., 1999; Tardos et al., 2008; Bourgeois et al., 2004; Eisen-

reich et al., 2008). The pharmacological inhibition of CLKs is

feasible (Muraki et al., 2004) and has been shown to influence

alternative splicing of important vascular proteins, such as TF

and VEGF (Eisenreich et al., 2009; Nowak et al., 2008). Here,

we show that KH-CB19 suppresses SR protein phosphorylation
72 Chemistry & Biology 18, 67–76, January 28, 2011 ª2011 Elsevier
by CLKs under proinflammatory conditions and that this inhibi-

tion is sufficient to modulate the differential expression of the

TF isoforms, asHTF and flTF in human endothelial cells. The

pharmacologic inhibition of CLKs by TG003 was also shown

previously to reduce the expression of both TF isoforms and to

reduce phosphorylation of SRp75, SRp55 and SF2/ASF (Eisen-

reich et al., 2009). The selectivity of this pharmacologic inhibition

to the CLK family was verified by specific siRNA-mediated

inhibition of CLK1 as well as CLK4. Here, we demonstrate that

the inhibitory effect of KH-CB19 is more selective and effica-

cious in cellular assays than inhibitors that have been reported

previously (Eisenreich et al., 2009). Thus, KH-CB19 represents

an excellent tool compound for examining the role of CLKs,

especially in their regulation of alternative splicing and for further

development as a lead compound in drug discovery.

SIGNIFICANCE

Kinases have been in the focus of drug discovery for more

than two decades. Despite the large effort in this target

area, only a few highly selective inhibitors have been

described. In this study, we identified the dichloroindolyl

enaminonitrile KH-CB19 as highly selective inhibitor for

CLK kinases. Methylation of the indole nitrogen precluded

the canonical ATP mimetic binding mode. Cocrystal struc-

tures revealed that hinge interaction of KH-CB19 is medi-

ated by halogen bonding.

CLK kinases are key regulators of protein splicing.

Consistent with its expected mechanism of action,

KH-CB19 effectively suppressed phosphorylation of SR

(serine/arginine) splicing factors in cells and significantly

altered splicing of the two tissue factor isoforms flTF (full-

length TF) and asHTF (alternatively spliced human TF). The

discovered inhibitor class is therefore a useful model and

an excellent probe compound for the development of inhib-

itors that target protein splicing. Furthermore, the described

binding mode of the discovered dichloroindolyl enaminoni-

trile inhibitors may serve as a template for the development

of selective inhibitors for other kinase targets that explore
Ltd All rights reserved



Figure 5. Influence of CLK Inhibitors on the Phosphorylation State of SR Proteins and mRNA Expression of flTF and asHTF in HMEC-1 Cells

(A) SR protein phosphorylation is shown in resting or TNF-a-induced HMEC-1 cells 2 min post TNF-a stimulation. SR protein family members SRp75 (75 kDa),

SRp55 (55 kDa), SRp40 (40 kDa), SC35 (35 kDa), SF2/ASF (30 kDa), and SRp20 (20 kDa) were detected using phosphorylation-dependent anti-SR protein anti-

bodies. Displayed are nonstimulated cells with or without pretreatment withKH-CB19 (10 mM) or TG003 (10 mM) and TNF-a-stimulated cells (10 ng/ml) pretreated

with the same CLK inhibitors. The results are representative of at least three independent experiments.

(B) Expression of mRNA encoding flTF (931 bp) and asHTF (771 bp) in untreated cells (control), TNF-a�induced HMEC-1 (TNF-a), and cells pretreated with 10 mM

compound KH-CB19 or TG003 with or without TNF-a 1 hr post stimulation. GAPDH was used as a loading control. A 100 bp DNA ladder was used as a marker.

The panel shown is representative of at least three independent experiments.

(C) Dose-dependent reduction of phosphorylation of SRp75 and SRp55 and quantitation of the detected phosphorylation (lower panels). GAPDH was used as

a loading control. Data were expressed as mean ± SEM using three independent experiments.
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non-ATPmimetic interactionswith the kinase active site and

halogen bonding with the hinge backbone.
EXPERIMENTAL PROCEDURES

Protein Expression and Purification

CLK1 and CLK3 were prepared as described (Bullock et al., 2009). In brief, the

kinase domains of human CLK1 (residues: 148–484 (C terminus) and CLK3

(residues 275–632) were subcloned by ligation independent cloning into

a pET-derived expression vector, pLIC, and expression performed in BL21

(DE3) with 1 mM IPTG induction for 4 hr at 18�C. Cells were lysed using

a high-pressure homogenizer and cleared by centrifugation and the lysates

were purified by Ni-NTA chromatography. The eluted proteins were treated

with lambda phosphatase together with TEV protease overnight to remove

phosphorylation and the hexahistidine tag, respectively. The proteins were

further purified by size exclusion chromatography using a S75 16/60 HiLoad

column.

Thermal Stability Shift Assay

Thermal denaturation experiments were carried out in an Mx3005p real-time

PCR machine (Agilent) using a protein concentration of 2 mM and an inhibitor

concentration of 10 mM. Samples were buffered in 10 mM HEPES (pH 7.5),
Chemistry & Biology 18,
500 mM NaCl and a 1:1000 dilution of SyproOrange (Invitrogen). The assay

and data evaluation were carried out as described (Bullock et al., 2005)
Kinase Inhibition Assay

Phosphorylation reactions were monitored using a coupled-enzyme assay in

which ADP production is coupled to NADH oxidation by pyruvate kinase (PK)

and lactate dehydrogenase (LDH) as described (Bullock et al., 2009). The reac-

tion was started by addition of 0.1 mM ATP after a 10 min preincubation of the

reaction mixture at 25�C. The consensus peptide for CLK1 (AFRREWSPGK

EAKK) and the DYRK1A substrate peptide (YRASPSRPESPRPPA-amide)

were used as substrates at a concentration of 100 mM. Inhibitors, dissolved

in DMSO, were added at the beginning of the preincubation period resulting

in a final DMSO concentration of 2% in the assay. Kinetic analysis was per-

formed by nonlinear regression fitting using GraphPad Prism 5 and least-

squares fits to sigmoidal dose response curves with variable slope equation:

Y =min+
max �min

1+ 10ðlogEC50�xÞHillslope ;

where max and min corresponds to maximal and minimal absorbance value.

K00546 is CDK1/2 inhibitor III purchased from Merck Biosciences (cat. #

217714). TG003 was purchased from Merck Biosciences (cat. #219479).

Enzymatic kinase selectivity screening was carried out using the Caliper

mobility shift assay which is based on the difference in capillary
67–76, January 28, 2011 ª2011 Elsevier Ltd All rights reserved 73
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electrophoresis mobility of a fluorescent tagged peptide as a result of the addi-

tion of a phosphate moiety by the studied kinase. The kinase reactions were

started by addition of 4.5 ml substrate mix consisting of ATP and peptide

substrate in assay buffer (50 mM HEPES [pH 7.5], 0.02% bovine serum

albumin, 1 mM DTT, 0.02% Tween 20, 0.01 mM Na3VO4, 10 mM beta-glycer-

ophosphate) and 4.5 ml enzyme solution in assay buffer. The peptide concen-

tration was 2 mM. Concentrations for the enzyme, as well as for MgCl2 and

MnCl2 were adjusted specifically to the requirements of the individual enzyme.

ATP concentrations were adjusted to the KM values of the specific enzyme.

After incubation for 60min at 30�C the kinase reactions were stopped by addi-

tion of 16 ml stop solution (100 mM HEPES [pH 7.5], 5% DMSO, 0.1% coating

reagent [Caliper Lifescience] 10 mM EDTA [pH 8.0], 0.015% BRIJ35). Stopped

kinase reactions were analyzed in a LC3000 reader (Caliper Lifescience).

Compounds were tested from 0.1 nM to 10 mM in eight steps.

Crystallization

Aliquots of the purified proteins were set up for crystallization using aMosquito

crystallization robot (TTP Labtech, Royston UK). Coarse screens were

prepared in Greiner 3-well plates using three different drop ratios of precipitant

to protein per condition (100 + 50 nl, 75 + 75 nl, and 50 + 100 nl). Initial hits were

optimized usingGreiner 1-well plates with an increase in the drop size. All crys-

tallizations were carried out using the sitting drop vapor diffusion method at

4�C. CLK1 crystals with KH-CB19 (1 mM final concentration) were grown by

mixing 100 nl protein (8.0 mg/ml) with 50 nl reservoir solution containing

2.1 M sodium malate pH 7.0. CLK3 crystals with K00546 or KH-CB19 were

grown by mixing 75 nl of protein (11.4 mg/ml and 1 mM final ligand concentra-

tion) with an equal volume of reservoir solution containing 0.2 M (NH4)2SO4,

0.1 M Bis-Tris (pH 5.5), and 25% PEG3350.

Data Collection and Structure Solution

Crystals were cryoprotected using the well solution supplemented with addi-

tional ethylene glycol and were flash frozen in liquid nitrogen in all cases.

Data were collected at the Swiss Light Source on beamline X10SA using

a MAR225 detector at 1.006029 Å (CLK1/KH-CB19), at the Diamond Light

Source on beamline I02 using a ADSC Q315 detector at 0.9050 Å (CLK3/

K00546), or in-house on a Bruker system equipped with a Microstar generator

and a Pt135 detector at 1.54 Å. Indexing and integration was carried out using

MOSFLM (Leslie and Powell, 2007) (CLK1/KH-CB19, CLK3/K00546) or

XPREP (Sheldrick, 2008) (CLK3/K01762) and scaling was performed with

SCALA (Evans, 2007). Initial phaseswere calculated bymolecular replacement

with PHASER (McCoy et al., 2005) using the known model of CLK1 (PDB ID

1Z57). Initial models were built by ARP/wARP (Perrakis et al., 1999) and

building was completed manually with COOT (Emsley and Cowtan, 2004).

Refinement was carried out in REFMAC5 (Murshudov et al., 1997) or BUSTER

(Bricogne, 1993). In all cases, thermal motions were analyzed using TLSMD

(Painter and Merritt, 2006) and hydrogen atoms were included in late refine-

ment cycles. Data collection and refinement statistics can be found in Table 2.

Chemical Synthesis

General Information

NMR spectra were recorded using a Jeol JNMR-GSX 400 and Jeol JNMR-

GSX 500 (Jeol, Peabody, MA). E/Z ratios were determined by integration of

the corresponding peaks in the 1H NMR spectra, chemical shifts are given in

Hertz. Mass spectra (electronic ionization, EI, 70 eV) were recorded using

a Hewlett Packard 5989 A Mass Spectrometer with a 59980 B Particle Beam

LC/MS-interface (Agilent Technologies, Palo Alto, CA). High-resolution mass

spectra were obtained using a Jeol Mstation 700. Melting points were deter-

mined with a Büchi B-540 apparatus (Büchi, Flawil, Switzerland) and are

uncorrected. Microwave reactor: CEM Discover (CEM, Matthews, NC). Purifi-

cation by flash column chromatography (FCC) was done using Silica gel 60

(Merck, Darmstadt, Germany). All solvents and chemicals were purchased

from Sigma-Aldrich, Fluka, and Acros.

(E/Z)-Ethyl 6,7-Dichloro-3-[1-Cyano-2-(Dimethylamino)Vinyl]-1-

Methyl-1H-Indole-2-Carboxylate (2)

Under nitrogen, 2.00 g (11.57 mmol) Bredereck’s reagent (tert-butoxy-bis(di-

methylamino)methane) were added to a solution of 2.00 g (6.43 mmol) ethyl

3-(cyanomethyl)-6,7-dichloro-1-methyl-1H-indole-2-carboxylate (1) (Huber
74 Chemistry & Biology 18, 67–76, January 28, 2011 ª2011 Elsevier
et al., 2010b) in 10 ml anhydrous DMF and the mixture was stirred at 80�C
for 12 hr. The solvent was removed by rotary evaporation and the crude

product recrystallized from toluene to give 1.60 g (69%) of 2 as yellow crystals.

Mp 154�C; 1H NMR (400 MHz, CD2Cl2, TMS) d 7.60 (d, J = 8.6 Hz, 0.823 1 H,

4-H, Z), 7.47 (d, J = 8.6 Hz, 0.183 1 H, 4-H, E), 7.27 (d, J = 8.6 Hz, 0.183 1 H,

5-H, E), 7.24 (d, J = 8.6 Hz, 0.823 1H, 5-H, Z), 6.93 (s, 0.183 1H, 20-H, E), 6.57
(s, 0.82 3 1 H, 20-H, Z), 4.39 (br q, J = 7.1 Hz, 2 H, CH2), 4.35 (s, 0.18 3 3 H,

1-CH3, E), 4.28 (s, 0.82 3 3 H, 1-CH3, Z), 3.21 (s, 6 H, 20-N(CH3)2), 1.42 (t,

J = 7.1 Hz, 3 H, CH2CH3);
13C NMR (100 MHz, CD2Cl2, TMS) d 162.0 (C=O,

Z), 161.7 (C=O, E), 153.6 (C-20, Z), 151.4 (C-20, E), 135.2 (C-7a, Z), 134.9

(C-7a, E), 131.1 (C-6, E), 130.8 (C-6, Z), 130.5 (C-2, E), 129.6 (C-2, Z), 129.4

(C-3a, E), 128.4 (C-3a, Z), 123.7 (CN, E), 123.4 (C-5, E), 122.9 (C-5, Z), 121.5

(CN, Z), 120.9 (C-4, E), 120.6 (C-4, Z), 119.2 (C-3, Z), 116.6 (C-7, E), 116.5

(C-7, Z), 115.7 (C-3, E), 68.2 (C-10, E), 65.5 (C-10, Z), 61.9 (CH2, E), 61.8

(CH2, Z), 42.5 (20-N(CH3)2), 35.6 (1-CH3), 14.4 (CH2CH3); E/Z ratio (%) 18:82;

MS EI m/z (relative intensity, %) 369 [M+d] (10), 367 [M+d] (68), 365 [M+d]

(100), 292 (27).

7,8-Dichloro-9-Methyl-1-Oxo-2,9-Dihydro-1H-Pyrido[3,4-b]Indole-

4-Carbonitrile (3)

890 mg (2.43 mmol) (E/Z)-ethyl 6,7-dichloro-3-[1-cyano-2-(dimethylamino)

vinyl]-1-methyl-1H-indole-2-carboxylate (2), 8.0 g ammonium acetate and

2 ml glacial acetic acid were irradiated in a microwave reactor at 112�C and

150 W power for 45 min. The mixture was poured into ice-water and the

precipitate filtered off. The crude product was resuspended in toluene and

the solvent removed to give 200 mg (28%) as a beige solid. Mp 410�C
(decomp); 1H NMR (500 MHz, DMSO-d6, TMS, 70�C) d 11.97 (br s, 1 H,

N-H), 8.16 (d, J = 8.5 Hz, 1 H, 5-H), 8.01 (s, 1 H, 3-H), 7.52 (d, J = 8.5 Hz, 1

H, 6-H), 4.61 (s, 3 H, N-CH3);
13C NMR (500 MHz, DMSO-d6, TMS, 70�C) d

155.6 (C=O), 136.6 (C-3), 136.6 (C-8a), 131.7 (C-7), 127.4 (C-9a), 122.9

(C-6), 121.2 (C-4b), 120.1 (C-4a), 120.0 (C-6), 116.7 (CN), 115.9 (C-8), 84.0

(C-4), 34.3 (N-CH3); MS EI m/z (relative intensity, %) 295 [M+d] (10), 293

[M+d] (68), 291 [M+d] (100).

(E/Z)-Ethyl 3-(2-Amino-1-Cyanovinyl)-6,7-Dichloro-1-Methyl-1H-

Indole-2-Carboxylate (KH-CB20)

390 mg (1.06 mmol) (E/Z)-ethyl 6,7-dichloro-3-[1-cyano-2-(dimethylamino)

vinyl]-1-methyl-1H-indole-2-carboxylate (2), 4.0 g (52 mmol) ammonium

acetate, 5 ml glacial acetic acid and 2 ml conc. sulfuric acid were irradiated

in a microwave reactor at 112�C and 150 W power for 15 min. After cooling,

themixture was poured into 100ml cold aqueous ammonia followed by extrac-

tion with ethyl acetate (3 3 50 ml). The organic layer was dried over MgSO4

and the solvent evaporated. The crude product was purified by FSC

(methylene chloride/ethanol 20:1), followed by recrystallization from ethanol

to give 260 mg (72%) as yellowish crystals. Mp 390�C (decomp); 1H NMR

(500 MHz, CD2Cl2, TMS) d 7.53 (d, J = 8.5 Hz, 0.29 3 1 H, 4-H, Z), 7.41

(d, J = 8.5 Hz, 0.71 3 1 H, 4-H, E), 7.28 (d, J = 8.5 Hz, 0.71 3 1 H, 5-H, E),

7.24 (d, J = 8.5 Hz, 0.29 3 1 H, 5-H, Z), 7.17 (t, J = 10.7 Hz, 0.71 3 1 H,

20-H, E), 7.05 (t, J = 10.7 Hz, 0.29 3 1 H, 20-H, Z), 5.02 (d, J = 10.7 Hz,

0.29 3 2 H, NH2, Z), 4.42 (q, J = 7.1 Hz, 0.71 3 2 H, CH2, E), 4.40 (q, J =

7.1 Hz, 0.29 3 2 H, CH2, Z), 4.39-4.37 (m, 0.71 3 2 H, NH2, E), 4.38

(s, 0.71 3 3 H, 1-CH3, E), 4.31 (s, 0.29 3 3 H, 1-CH3, Z), 1.44 (t, J = 7.1 Hz,

0.71 3 3 H, CH2CH3, E), 1.42 (t, J = 7.1 Hz, 0.29 3 3 H, CH2CH3, Z);
13C

NMR (125 MHz, CD2Cl2, TMS) d 161.8 (C=O, Z), 161.6 (C=O, E), 150.4

(C-20, Z), 146.9 (C-20, E), 135.5 (C-7a, E), 135.2 (C-7a, Z), 131.2 (C-6, E),

131.0 (C-6, Z), 130.3 (C-2, E), 129.5 (C-2, Z), 128.2 (C-3a, Z), 126.5 (C-3a, E),

123.5 (C-5, E), 123.1 (C-5, Z), 121.5 (CN, E), 120.6 (C-4, E), 120.3 (C-4, Z),

118.2 (CN, Z), 116.9 (C-7, E), 116.6 (C-7, Z), 115.9 (C-3, Z), 112.3 (C-3, E),

75.0 (C-10, E), 73.0 (C-10, Z), 62.2 (CH2, E), 61.9 (CH2, Z), 35.6 (1-CH3), 14.4

(CH2CH3, Z), 14.3 (CH2CH3, E); E/Z ratio (%) 71:29; MS EI m/z (relative inten-

sity, %) 341 [M+d] (74), 339 [M+d] (47), 337 [M+d] (8), 292 (100), 229 (31).

(E)-Ethyl 3-(2-Amino-1-Cyanovinyl)-6,7-Dichloro-1-Methyl-1H-

Indole-2-Carboxylate (KH-CB19)

Recrystallization of the E/Z-mixture KH-CB20, obtained by FSC as described

above, from toluene gave pure E-isomer in 32% yield as yellowish crystals. Mp

410�C (decomp); 1H NMR (500 MHz, CD2Cl2, TMS) d 7.41 (d, J = 8.5 Hz, 1 H,

4-H), 7.28 (d, J = 8.5 Hz, 1 H, 5-H), 7.17 (t, J = 10.7 Hz, 1 H, 20-H), 4.46-4.41
Ltd All rights reserved
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(m, 2 H, NH2), 4.41 (q, J = 7.1 Hz, 2 H, CH2), 4.38 (s, 3 H, 1-CH3), 1.44 (t, J =

7.1 Hz, 3 H, CH2CH3);
13C NMR (125 MHz, CD2Cl2, TMS) d 161.6 (C=O),

146.9 (C-20), 135.5 (C-7a), 131.1 (C-6), 130.2 (C-2), 126.5 (C-3a), 123.5 (C-5),

121.6 (CN), 120.6 (C-4), 116.9 (C-7), 112.3 (C-3), 74.9 (C-10), 62.2 (CH2), 35.6

(1-CH3), 14.3 (CH2CH3); MS EI m/z (relative intensity, %) 341 [M+d] (7), 339

[M+d] (50), 337 [M+d] (69), 292 (100), 229 (32), 149 (64).

Cell Culture

Human microvascular cells (HMEC-1) were cultured in endothelial cell (EC)

growth medium containing 5% fetal calf serum at 37�C in a humidified incu-

bator (5% CO2, 95% air). Cells from passages 2 to 6 were used. For inhibition

experiments, HMEC-1 endothelial cells were switched to EC basal medium

(without fetal calf serum) for 1 hr. After that, cells were pretreated with the

CLK inhibitorKH-CB19 (1 nM to 100 mM) orTG003 (10 mM;Calbiochem,Darm-

stadt, Germany), respectively, for 1 hr and then stimulatedwith 10 ng/ml TNF-a

(Sigma Aldrich, St Louis, MO). Analysis of the TF isoform mRNA expression

was done 1 hr post stimulation with TNF-a and assessment of the phosphory-

lation state of SR proteins by western blotting was performed 2 min post

induction of the cells. Positive controls were stimulated only with TNF-a, and

negative controls were untreated.

TF Isoform-Specific Real-Time RT-PCR

Real-time PCR employing flTF, asHTF, and GAPDH-specific primers and

probes was performed as described previously (Szotowski et al., 2005).

Semiquantitative RT-PCR

For semiquantitative RT-PCR the following primers were used: hTF_left_1

(50-CGCCGCCAACTGGTAGAC-30), hTF_right_1 (50-TGCAGTAGCTCCAACAG

TGC-30 ), GAPDH_For (50-GAGTCAACGGATTTGGTCGT-30 ) and GAPDH_Rev

(50-GACAAG CTTCCCGTTCTCAG-30). PCR conditions were as follows:

94�C, 2 min, and 36 cycles of 94�C, 30 sec; 58�C, 30 sec; and 72�C, 1 min.

PCR products were separated on 1.5% agarose gels, excised, and purified

and their identity was confirmed by automated sequencing.

Western Blotting

Western blot analysis of samples from cell lysates of inhibited, stimulated, and

unstimulated HMEC-1 cells were performed as previously described (Szotow-

ski et al., 2005). For detection of phosphorylated SR proteins, monoclonal anti-

body mAb1H4 (Invitrogen GmbH, Karlsruhe, Germany) was used.

Statistical Analysis

All data were expressed as mean ± SEM. Data were analyzed by Student’s t

test or 1-way ANOVA. A probability value % 0.05 was deemed significant.
ACCESSION NUMBERS

The models and structure factors have been deposited with PDB accession
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