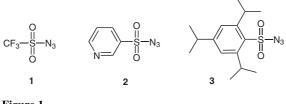
Synthesis of Sulfonyl Azides

Alan Katritzky,** Khalid Widyan,** Kapil Gyanda*

^a Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA Fax +1(352)3929199; E-mail: katritzky@chem.ufl.edu

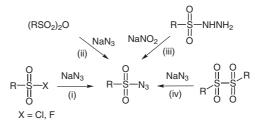

^b Department of Chemistry, Tafila Technical University, Tafila 66110, Jordan

Received 1 August 2007; revised 4 January 2008

Abstract: 1-(Alkylsulfonyl)- and 1-(arylsulfonyl)benzotriazoles react with sodium azide in acetonitrile to give the corresponding alkanesulfonyl and arenesulfonyl azides.

Key words: synthesis, 1-sulfonylbenzotriazoles, sulfonyl azides, sodium azide, Grignard reagent

Sulfonyl azides (RSO₂N₃) are valuable reagents for diazo transfer to the α -methylene position of carbonyl compounds such as β -oxo esters and oxo sulfones.^{1,2} Charette and co-workers reported trifluoromethanesulfonyl azide (triflyl azide, **1**), a highly electrophilic diazo-transfer reagent, gives good results with activated acetic acid esters and ketones (Figure 1).^{3,4} 3-Pyridinesulfonyl azide (**2**) appears to be more efficient for radical azidating than 4-(methoxycarbonyl)benzenesulfonyl azide and 3- and 4-carboxybenzenesulfonyl azides.^{5,6} Sulfonyl azides [especially 2,4,6-triisopropylbenzenesulfonyl azide (**3**)] have been used in the α -azidation of amide enolates and ester enolates in the synthesis of α -amino acid derivatives.⁷



The reaction of sodium azide with a sulfonyl halide is the most direct synthetic approach to sulfonyl azides (Scheme 1).^{6,8–10} Less common approaches include reactions of sulfonyl anhydrides and α -disulfones with sodium azide.^{11–13} Diazotization of sulfonyl hydrazides with NO⁺ has also been employed but requires the availability of the hydrazides.^{14,15} All these procedures may suffer from the unavailability of starting materials or their difficulty in preparation, thus a new and convenient method for the preparation of sulfonyl azides would be advantageous.

Recently, we developed a general and facile method for the preparation of 1-sulfonylbenzotriazoles **4** as a practical alternative to the frequently labile and often difficult to access sulfonyl halides.¹⁶ 1-Sulfonylbenzotriazoles **4** pro-

SYNTHESIS 2008, No. 8, pp 1201–1204 Advanced online publication: 27.03.2008 DOI: 10.1055/s-2008-1072568; Art ID: M05707SS © Georg Thieme Verlag Stuttgart · New York vide efficient N-sulfonylation of amines and C-sulfonylation of nitriles, heteroaromatics, sulfones and esters to produce α -cyanoalkyl sulfones, sulfonylheteroaromatics, α -sulfonylalkyl sulfones and esters of α -sulfonyl acids, respectively.¹⁷ They are also useful in the synthesis of *N*-acylbenzotriazole from the corresponding carboxylic acid.^{18–20} Herein we report the application of 1-sulfonylbenzotriazoles to the preparation of sulfonyl azides.

Scheme 1 Survey of various syntheses of sulfonyl azides

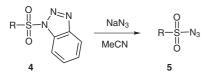
1-Sulfonylbenzotriazoles **4** are accessible from aryl- and alkyllithium or Grignard reagents by reaction with sulfur dioxide and 1-chlorobenzotriazole (Table 1).¹⁶

Treatment of **4** with sodium azide (1.5 equiv) in acetonitrile for 3–10 hours under reflux gave the sulfonyl azides **5** in synthetically useful yields (Table 2). This approach affords a variety of novel alkanesulfonyl and heteroarenesulfonyl azides (compounds **5b**, **5e**, **5f**, **5h**, **5i** and **5k–n**) and improved the yields for compounds **5a** and **5g** (the yield for compound **5a** is not reported in the literature). An advantage of our procedure is the use of 1-sulfonylbenzotriazoles which are crystalline compounds, easily accessible, and stable to storage over years. Furthermore, this approach avoids the use of hydrazides and NO⁺ equivalents, and multistep syntheses.

The present procedure requires only simple manipulations and low-priced reagents; thus, it should be appropriate for providing highly demanded derivatives. The present work provides additional evidence for the good leaving ability of a benzotriazole group.

In conclusion, a new method for the synthesis of a variety of alkanesulfonyl, arenesulfonyl and heteroarenesulfonyl azides has been developed using 1-sulfonylbenzotriazoles. This approach broadens the range of available sulfonyl azides, which are compounds of major synthetic importance.

 $\label{eq:able_1} Table \ 1 \quad \mbox{Preparation of 1-(Alkylsulfonyl)- and 1-(Arylsulfonyl)benzotriazoles 4}$


R−−M + SO₂ BtCl, Et₃N R-

4	R	М	Yield ^a (%)	Mp (°C)	Lit. mp (°C)	Ref.
a	<i>n</i> -butyl	Li	68	oil	oil	16
b	cyclohexyl	MgCl	74	118–119	117–119	16
c	4-tolyl	MgBr	90	131–132	133–134	16
d	2-thienyl	Li	80	142–144	143–144	16
e	1-methyl-1 <i>H</i> -indol-2-yl	Li	22	131–133	131–132	16
f	2-furyl	Li	85	108–109	107–109	16
g	2-pyridyl	Li	73	130–132	132–135	16
h	1-methyl-1H-imidazol-2-yl	Li	82	146–149	147–150	16
i	2-benzofuryl	Li	75	147–148	147–148	17
j	3-pyridyl	Li	50	128–130	128–129	16
k	5-ethyl-2-furyl	Li	60	96–97	147–148	17
1	2-thiazolyl	Li	11	114–116	_b	-
m	5-methyl-2-thienyl	Li	45	104–106	_ ^b	-
n	5-methyl-2-furyl	Li	35	114–116	_b	_

^a Isolated yields.

^b Novel compound.

 Table 2
 Preparation of Alkanesulfonyl and Arenesulfonyl Azides 5

		This work			Literature			
5	R	Time (h)	Yield ^a (%)	Mp (°C)	Method ^b	Yield (%)	Mp (°C)	Ref.
a	<i>n</i> -butyl	3	86	oil	(i)	_c	oil	21
b	cyclohexyl	6	55	oil	-	-	d	_
c	4-tolyl	4	88	oil	(iii)	96	22–25	14
d	2-thienyl	4	70	30-32	(i)	85	31–33	22
e	1-methyl-1H-indol-2-yl	6	30	oil	-	-	d	_
f	2-furyl	6	68	oil	-	-	_d	_
g	2-pyridyl	3	90	oil	(i)	66	-	23
h	1-methyl-1H-imidazol-2-yl	7	45	39–41	-	-	_d	_
i	2-benzofuryl	7	23	58-60	-	-	d	_
j	3-pyridyl	6	45	oil	(i)	80	oil	24
k	5-ethyl-2-furyl	10	40	oil	-	-	d	-
1	2-thiazolyl	8	25	oil	_	_	d	-
m	5-methyl-2-thienyl	10	30	oil	-	-	_d	_
n	5-methyl-2-furyl	10	40	oil	-	-	_d	-

^a Isolated yields.

^b See Scheme 1.

^c Yield not reported.

^d Novel compound.

Synthesis 2008, No. 8, 1201–1204 $\hfill {\ensuremath{\mathbb C}}$ Thieme Stuttgart \cdot New York

Melting points are uncorrected. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded on a Varian 300 MHz spectrometer in CDCl₃ solution with TMS as internal standard. THF was distilled from sodium benzophenone ketyl prior to use. All reactions were performed under a nitrogen atmosphere and in oven-dried glassware. Column chromatography was performed on silica gel, 200–425 mesh. HRMS were recorded with a Thermoscientific DSQ mass spectrometer in CI mode.

1-Sulfonylbenzotriazoles 4a-k were prepared according to previously published procedures.^{16,17}

1-Sulfonylbenzotriazoles 41-n; General Procedure

SO₂ was bubbled into a soln of an organometallic reagent (14 mmol) in anhyd THF (50 mL) at -78 °C under N₂ atmosphere until a sample of the soln no longer gave a basic pH test. 1-Chlorobenzo-triazole (2.14 g, 14 mmol) was added in one portion at r.t., and the mixture was stirred for 2 h. Et₃N (1.84 mL, 14 mmol) was added, followed by stirring at r.t. for 16 h. H₂O (ca. 150 mL) was added to the reaction mixture and the product was extracted with EtOAc (3 × 100 mL). The combined organic layers were washed with H₂O (2 × 50 mL) and brine (2 × 50 mL), then dried (MgSO₄) and filtered. After concentration, the residue was purified either by recrystallization or by column chromatography over silica gel (200–425 mesh).

1-(2-Thiazolylsulfonyl)-1H-1,2,3-benzotriazole (4l) White solid; yield: 11%; mp 114–116 °C.

¹H NMR (300 MHz, CDCl₃): δ = 7.55 (t, *J* = 7.5 Hz, 1 H), 7.74 (t, *J* = 7.5 Hz, 1 H), 7.82 (d, *J* = 2.9 Hz, 1 H), 7.96 (d, *J* = 2.9 Hz, 1 H), 8.13 (d, *J* = 8.2 Hz, 1 H), 8.20 (d, *J* = 8.2 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 103.3, 112.5, 120.7, 126.4, 128.0, 130.9, 131.9, 145.6.

Anal. Calcd for $C_9H_6N_4O_2S_2\!\!:$ C, 40.59; H, 2.27; N, 21.04. Found: C, 40.92; H, 2.08; N, 20.77.

1-(5-Methyl-2-thienylsulfonyl)-1*H*-1,2,3-benzotriazole (4m) White solid; yield: 45%; mp 104–106 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.50 (s, 3 H), 6.79 (d, *J* = 3.2 Hz, 1 H), 7.50 (t, *J* = 8.1 Hz, 1 H), 7.68 (t, *J* = 8.0 Hz, 1 H), 7.77 (d, *J* = 3.8 Hz, 1 H), 8.06–8.13 (m, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 15.8, 112.0, 120.5, 125.9, 126.8, 130.2, 131.2, 132.8, 136.4, 145.4, 152.9.

Anal. Calcd for $C_{11}H_9N_3O_2S_2$: C, 47.30; H, 3.25; N, 15.04. Found: C, 47.67; H, 3.16; N, 14.87.

1-(5-Methyl-2-furanylsulfonyl)-1*H***-1,2,3-benzotriazole (4n)** White solid; yield: 35%; mp 114–116 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.32 (s, 3 H), 6.21 (d, *J* = 3.4 Hz, 1 H), 7.42 (d, *J* = 3.5 Hz, 1 H), 7.52 (t, *J* = 7.9 Hz, 1 H), 7.69 (t, *J* = 7.8 Hz, 1 H), 8.08 (d, *J* = 8.4 Hz, 1 H), 8.13 (d, *J* = 8.4 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 109.0, 112.1, 120.5, 123.0, 125.9, 130.3, 131.5, 142.5, 145.4, 160.9.

Anal. Calcd for $C_{11}H_9N_3O_3S:$ C, 50.18; H, 3.45; N, 15.96. Found: C, 50.29; H, 3.39; N, 15.85.

Sulfonyl Azides 5a-n; General Procedure

Warning: Due to the explosive character of sulfonyl azides, all work should be performed in a fume hood, and drying of these compounds should be performed at room temperature.

NaN₃ (97 mg, 1.5 mmol) was added to a soln of a 1-sulfonylbenzotriazole **4a–n** (1 mmol) in MeCN (10 mL). One drop of H₂O was added and the mixture was heated under reflux for the time indicated in Table 2. The solvent was evaporated and the residue was dissolved in Et₂O (100 mL), then washed with dilute aq Na₂CO₃ (2 × 50 mL) and H₂O (2 × 50 mL). The organic layer was dried (MgSO₄) and filtered. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (hexane–Et₂O, 2:1) to give the sulfonyl azide.

1-Butanesulfonyl Azide (5a)²¹

Pale yellow oil; yield: 86%.

¹H NMR (300 MHz, CDCl₃): δ = 0.99 (t, *J* = 7.3 Hz, 3 H), 1.45–1.55 (m, 2 H), 1.85–1.97 (m, 2 H), 3.28–3.36 (m, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 13.4, 21.2, 25.2, 55.7.

Cyclohexanesulfonyl Azide (5b)

Colorless oil; yield: 55%.

¹H NMR (300 MHz, CDCl₃): δ = 1.19–1.43 (m, 3 H), 1.52–1.86 (m, 3 H), 1.87–2.01 (m, 2 H), 2.21–2.39 (m, 2 H), 3.16–3.28 (m, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 24.7, 24.9, 26.2, 65.6.

HRMS: m/z [M + H]⁺ calcd for C₆H₁₂N₃O₂S: 190.0645; found: 190.0661.

4-Toluenesulfonyl Azide (5c)¹⁴

Colorless oil; yield: 88%.

¹H NMR (300 MHz, CDCl₃): δ = 2.49 (s, 3 H), 7.41 (d, *J* = 8.1 Hz, 2 H), 7.85 (d, *J* = 8.4 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 21.7, 127.5, 130.3, 135.4, 146.2.

2-Thiophenesulfonyl Azide (5d)

Pale yellow microcrystals; yield: 70%; mp 30–32 °C (Lit.²² 31–33 °C).

¹H NMR (300 MHz, CDCl₃): δ = 7.20–7.24 (m, 1 H), 7.78–7.86 (m, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 128.0, 134.7, 135.1, 138.1.

1-Methyl-1*H*-indole-2-sulfonyl Azide (5e)

Pale yellow oil; yield: 30%.

¹H NMR (300 MHz, CDCl₃): δ = 3.99 (s, 3 H), 7.21–7.30 (m, 1 H), 7.40–7.54 (m, 3 H), 7.76 (d, *J* = 8.1 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 31.3, 110.5, 112.2, 121.7, 123.2, 124.5, 126.9, 130.8, 139.7.

HRMS: *m*/*z* [M]⁺ calcd for C₉H₈N₄O₂S: 236.0362; found: 236.0357.

2-Furansulfonyl Azide (5f)

Pale yellow oil; yield: 68%.

¹H NMR (300 MHz, CDCl₃): δ = 6.62–6.64 (m, 1 H), 7.26–7.28 (m, 1 H), 7.70 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 111.9, 119.4, 146.3, 148.2.

HRMS: *m*/*z* [M]⁺ calcd for C₄H₃N₃O₃S: 172.9895; found: 172.9887.

2-Pyridinesulfonyl Azide (5g)²³

Pale yellow oil; yield: 90%.

¹H NMR (300 MHz, CDCl₃): δ = 7.60–7.70 (m, 1 H), 8.00–8.04 (m, 2 H), 8.80 (d, *J* = 4.5 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 122.0, 128.3, 138.5, 150.6, 156.9.

1-Methyl-1*H*-imidazole-2-sulfonyl Azide (5h)

Colorless solid; yield: 45%; mp 39-41 °C.

¹H NMR (300 MHz, CDCl₃): δ = 3.97 (s, 3 H), 7.12 (s, 1 H), 7.23 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 35.4, 126.5, 129.9, 140.7.

HRMS: m/z [M + H]⁺ calcd for C₄H₆N₅O₂S: 188.0237; found: 188.0238.

2-Benzofuransulfonyl Azide (5i)

Pale yellow solid; yield: 23%; mp 58-60 °C.

¹H NMR (300 MHz, CDCl₃): δ = 7.42 (td, *J* = 7.0, 1.0 Hz, 1 H), 7.55–7.68 (m, 3 H), 7.76 (d, *J* = 8.1 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 112.7, 115.1, 123.5, 124.9, 125.2, 129.2, 147.8, 156.2.

Anal. Calcd for $C_8H_5N_3O_3S$: C, 43.05; H, 2.26; N, 18.83. Found: C, 43.45; H, 2.05; N, 18.47.

3-Pyridinesulfonyl Azide (5j)²⁴

Pale yellow oil; yield: 45%.

¹H NMR (300 MHz, CDCl₃): δ = 7.61 (dd, *J* = 8.1, 4.9 Hz, 1 H), 8.24–8.27 (m, 1 H), 8.95–8.97 (dd, *J* = 4.8, 1.1 Hz, 1 H), 9.20 (d, *J* = 2.0 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 124.1, 135.0, 135.3, 148.0, 155.1.

5-Ethyl-2-furansulfonyl Azide (5k)

Pale yellow oil; yield: 40%.

¹H NMR (300 MHz, CDCl₃): δ = 1.31 (t, *J* = 7.6 Hz, 3 H), 2.74–2.80 (q, *J* = 7.6 Hz, 2 H), 6.24 (d, *J* = 3.6 Hz, 1 H), 7.19 (d, *J* = 3.6 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 11.4, 21.7, 106.9, 120.9, 143.9, 165.1.

HRMS: $m/z [M + H]^+$ calcd for C₆H₈N₃O₃S: 202.0281; found: 202.0307.

2-Thiazolesulfonyl Azide (5l)

Pale yellow oil; yield: 25%.

¹H NMR (300 MHz, CDCl₃): δ = 7.83–7.84 (m, 1 H), 8.11 (d, J = 2.6 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 126.8, 145.3, 162.6.

HRMS: m/z [M + H]⁺ calcd for C₃H₃N₄O₂S₂: 190.9692; found: 190.9675.

5-Methyl-2-thiophenesulfonyl Azide (5m)

Pale yellow oil; yield: 30%.

¹H NMR (300 MHz, CDCl₃): δ = 2.60 (s, 3 H), 6.85–6.90 (m, 1 H), 7.63 (d, *J* = 3.8 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 15.8, 126.5, 134.4, 135.3, 151.6.

HRMS: m/z [M]⁺ calcd for C₅H₅N₃O₂S₂: 202.9818; found: 202.9822.

5-Methyl-2-furansulfonyl Azide (5n)

Pale yellow oil; yield: 40%.

¹H NMR (300 MHz, CDCl₃): δ = 2.44 (s, 3 H), 6.22–6.25 (m, 1 H), 7.18 (d, *J* = 3.6 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 108.5, 121.1, 143.9, 160.0.

HRMS: *m*/*z* [M]⁺ calcd for C₅H₅N₃O₃S: 187.0046; found: 187.0054.

References

- (1) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
- (2) Harned, A. H.; Sherrill, W. M.; Flynn, D. L.; Hanson, P. R. *Tetrahedron* **2005**, *61*, 12093.
- (3) Charette, A. B.; Wurz, R. P.; Ollevier, T. J. Org. Chem. 2000, 65, 9252.
- (4) Wurz, R. P.; Lin, W.; Charette, A. B. *Tetrahedron Lett.* 2003, 44, 8845.
- (5) Panchaud, P.; Renaud, P. Adv. Synth. Catal. 2004, 346, 925.
- (6) Panchaud, P.; Chabaud, L.; Landais, Y.; Ollivier, C.; Renaud, P.; Zigmantas, S. *Chem. Eur. J.* 2004, *10*, 3606.
- (7) Erdik, E. *Tetrahedron* **2004**, *60*, 8747.
- (8) Leffler, J. E.; Tsuno, Y. J. Org. Chem. 1963, 28, 902.
- (9) Harmon, R. E.; Wellman, G.; Gupta, S. K. J. Org. Chem. 1973, 38, 11.
- (10) El-Sayed, R. A. *Phosphorus, Sulfur Silicon Relat. Elem.* 2004, *179*, 237; and references cited therein.
- (11) Laurent, N.; Lafont, D.; Boullanger, P.; Mallet, J. M. *Carbohydr. Res.* **2005**, *340*, 1885.
- (12) Liu, Q.; Tor, Y. Org. Lett. 2003, 5, 2571.
- (13) Farng, L.-p. O.; Kice, J. L. J. Am. Chem. Soc. 1981, 103, 1137.
- (14) Stefane, B.; Kocevar, M.; Polanc, S. J. Org. Chem. 1997, 62, 7165.
- (15) Ofitserov, V. I.; Moksushin, V. S.; Pushkareva, Z. V.; Nikiforova, N. N. *Khim. Geterotsikl. Soedin.* **1976**, 8, 1119.
- (16) Katritzky, A. R.; Rodriguez-Garcia, V.; Nair, S. K. J. Org. Chem. **2004**, 69, 1849.
- (17) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Vakulenko, A. V.; Tao, H. J. Org. Chem. 2005, 70, 9191.
- (18) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Akhmedova, R. G. *ARKIVOC* 2005, (vi), 329.
- (19) Katritzky, A. R.; Hoffmann, S.; Suzuki, K. ARKIVOC 2004, (xii), 14.
- (20) Katritzky, A. R.; Wang, M.; Zhang, S. ARKIVOC 2001, (ix), 19.
- (21) Goerdeler, J.; Ullmann, H. Chem. Ber. 1961, 94, 1067.
- (22) Okafemi, C. A. Phosphorus Sulfur Relat. Elem. 1980, 8, 197.
- (23) Buolamwini, J. K.; Knaus, E. E. Eur. J. Med. Chem. 1993, 28, 447.
- (24) Cremlyn, R. J.; Jones, G. P.; Swinbourne, F. J.; Yung, K. Phosphorus Sulfur Relat. Elem. 1980, 8, 189.