DOI: 10.1002/adsc.200700516

Palladium-Catalyzed Cyclization of Enediynes to Benzopyranones

Wei-Ren Chang,^a Yu-Hsiang Lo,^a Chia-Ying Lee,^a and Ming-Jung Wu^{a,*}

Supporting information for this article is available on the WWW under http://asc.wiley-vch.de/home/.

^a Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C. Fax: (+886)-7-312-5339; e-mail: mijuwu@kmu.edu.tw

Received: October 30, 2007; Revised: April 1, 2008; Published online: May 16, 2008

vields.

Abstract: Treatment of methyl 2-[6-substituted-3(Z)-hexen-1,5-diynyl]benzoates (1) with five mol% of palladium chloride and three equivalents of cupric chloride in refluxing acetonitrile gave dibenzo[b,d]pyran-6-ones (2) in modest to good

Keywords: alkynes; cyclization; dibenzo-[*b*,*d*]pyranones; enediynes; heterocycles; palladium

-SiMe CO₂Me CO₂Me R = SiMe iii R = HCO₂Me **6a**, R = $(CH_2)_4CH_3$ 1a, 69% **6b**, $R = (CH_2)_5CH_3$ **6c**, $R = CH_2CH(CH_3)_2$ 1b, 59% 1c, 67% **6d**, $R = C(CH_3)_3$ 1d, 62% 6e, R = (CH₂)₄OH 1e. 89% 6f, R = CH₂OH 1f, 86%

Reagents and conditions: (i) Pd(PPh₃)₄, Cul, *n*-BuNH₂, Et₂O, r.t., 6 h, 78% (ii) K₂CO₃, MeOH, 86% (iii) **6**, Pd(PPh₃)₄, Cul, *n*-BuNH₂, Et₂O, r.t., 6 h, 69%.

Scheme 1. Preparation of 1a-f.

of **4** with methanol in the presence of potassium carbonate to give **5** in 85% yield. Compound **5** was then coupled with various vinyl chlorides **6a–f** under the Sonogashira coupling reaction conditions to give the desired products **1a–f** in 59–89% yields, respectively. The synthesis of methyl 2-[6-aryl-3(*Z*)-hexen-1,5-diynyl]benzoates (**1g–n**) is outlined in Scheme 2. Compound **5** was coupled with vinyl chloride **6g** using Pd(PPh₃)₄ as the catalyst to give enediyne **7** in 76% yield. Compound **7** was then treated with various aryl iodides in the presence of a catalytic amount of Pd-(PPh₃)₄ in methanol to give **1g–n** in 50–90% yields.

Treatment of compound **1a** with five mol% of PdCl₂ and three equivalents of CuCl₂ in various organic solvents gave cyclization adduct **2a** in 3–65% yields. It was found that compound **2a** could be obtained in the highest yield (65%) in refluxing acetonitrile. The results are summarized in Table 1 and the structure of compound **2a** was unambiguously determined by X-ray crystallography^[9] (Figure 1).

Other methyl 2-[6-substituted-3(Z)-hexen-1,5-diynyl]benzoates **1b-i** bearing different substituents on the

Many biologically active natural products and pharmaceutically important compounds contain a dibenzo-[b,d]pyran-6-one skeleton. Thus, the development of syntheses of functionalized dibenzo [b,d] pyran-6-ones has attracted much attention from organic chemists.^[1] Palladium-catalyzed cyclization reactions are very powerful methods for the construction of heterocyclic compounds.^[2] Ma reported the use of a catalytic amount of PdCl₂ and equivalents of CuCl₂ for the carbonylation of propargyl alcohols and amines to give β -lactones^[3] and β -lactams,^[4] respectively. Similar reaction conditions have been applied to the carbonylation of terminal alkynes^[5] and the synthesis of 3-halobenzo[b]furans by Li.^[6] Recently, we found that treatment of 1,2-dialkynylbenzenes with five mol% of PdCl₂ and two equivalents of CuCl₂ gave benzofulvenes in good chemical yields.^[7] Our continued interest in the cyclization reactions of enediynes for the synthesis of heterocycles^[8] encouraged us to investigate the cyclization reaction of methyl 2-[6-substituted-3(Z)-hexen-1,5-divnyl]benzoates (1) in the presence of catalytic amount of PdCl₂ and three equivalents of CuCl₂ to give functionalized dibenzo-[b,d]pyran-6-ones (2).

The synthesis of methyl 2-[6-alkyl-3(Z)-hexen-1,5diynyl]benzoates (**1a-f**) starting from methyl 2-iodobenzoate (**3**) is outlined in Scheme 1. A Sonogashira coupling reaction of **3** with trimethylsilylacetylene using Pd(PPh₃)₄ as the catalyst gave compound **4** in 91% yield. The silyl group was removed by treatment

1248

Reagents and conditions: (i) **6g**, Pd(PPh₃)₄, Cul, *n*-BuNH₂, Et₂O, r.t., 6 h, 76% (ii) Arl, Pd(PPh₃)₄, Cul, K₂CO₃, MeOH, r.t., 4 h.

Scheme 2. Preparation of 1g–n.

Table 1. Solvent effects on the cyclization reactions.

Solvent	Temp [°C]	Time [h]	Yield [%]
CH ₃ CN	reflux	1	65
THF	reflux	1	45
Et ₂ O	reflux	12	30
Toluene	80	24	24
DMF	80	24	23
Benzene	reflux	24	22
DMSO	80	24	9
CH ₂ Cl ₂	reflux	24	9
CH ₃ OH	reflux	24	3

Figure 1. ORTEP plot of the X-ray crystal structure of 2a.

Adv. Synth. Catal. 2008, 350, 1248-1252

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

R CO ₂ Me	5 mol% PdCl ₂ 3 equiv. CuCl ₂ CH ₃ CN, reflux 1 h		
Compounds	R	Products	(Yield [%])
1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 1k	$\begin{array}{c} (CH_2)_4CH_3 \\ (CH_2)_5CH_3 \\ CH_2CH(CH_3)_2 \\ C(CH_3)_3 \\ (CH_2)_4OH \\ CH_2OH \\ C_6H_5 \\ 4-CH_3OC_6H_4 \\ 4-CF_3C_6H_4 \\ 2-CH_3C_6H_4 \\ 4-CH_3C_6H_4 \\ 2-CF_3C_6H_4 \\ 2-CF_3C_6H_6 $	2a (65) 2b (63) 2c (40) 2d (11) 2e (47) 2f (76) 2g (65) 2h (47) 2i (50) 2j (32) 2k (39) 2l (35)	7c (8) 7d (15) 7g (11) 7h (13) 7j (8) 7k (10)
lm 1n	2-pyridinyl 2-thienyl	2m (42) 2n (28)	7n (trace)

Table 2. Synthesis of various dibenzo[b,d]pyran-6-ones.

terminal alkynes have also been subjected to the cyclization reaction under the optimal reaction conditions. The results are summarized in Table 2. With the exception of compound 1d, these reactions gave the dibenzo[b,d] pyran-6-ones in modest to good yields. The low yield of dibenzo [b,d] pyran-6-one **2d** obtained by cyclization of 1d could be due to steric hinderance caused by the tert-butyl group, which adversely affects the cyclization reaction. It was also found that if a bulky substituent, such as isobutyl, is present at the 6position a small amount (8%) of an undesired product (7c) was obtained. The structure of 7c was unambiguously determined by X-ray crystallography^[9] (Figure 2). Similar results were observed in the reactions of 1d, 1g and 1h. Compounds 2d, 2g and 2h were obtained in 11%, 65% and 45% yields along with 7d, 7g and 7h in 15%, 11% and 13% yields, respectively. Reaction of 1i under the same reaction conditions gave cyclization adduct 2i in 50% yield, however no five-membered ring adduct of the type 7 was observed. Compounds 1g, 1h and 1i all have an aryl group at the alkyne terminus, but only 1i bearing an electron-withdrawing group at the *para* position of the aryl ring did not give the five-membered ring adduct 7. This observation led us to explore substituent effects upon this cyclization reaction. Accordingly, compounds 1j-n were prepared and subjected to the cyclization reaction conditions. The results show that compounds bearing an electron-donating group on the aryl ring, such as 1j and 1k, gave dibenzo-[b,d] pyran-6-ones 2j and 2k as the major products along with the minor adducts 7j and 7k in 8% and

Figure 2. ORTEP plot of the X-ray crystal structure of 7c.

10% yields, respectively. Compound 11 bearing a trifluoromethyl group at the 2-position of the phenyl ring gave only the dibenzo[b,d]pyran-6-one 21 albeit in lower yield (35%). The low yield of this reaction could be due to steric hinderance caused by the *ortho* substituent. The electron-deficient pyridinyl ring has also been employed in this cyclization reaction. Cyclization of compound 1m gave compound 2m as the only product. Compound 1n containing a more electron-rich thienyl group gave 2n in 28% yield and a trace amount of the five-membered ring adduct 7 could be observed in the ¹H NMR spectrum of the crude reaction mixture.

Compound **10** has also been prepared by the palladium-catalyzed coupling reaction of **5** with 2-(1-heptynyl)-1-iodobenzene (**8**). Treatment of **10** with five mol% of PdCl₂ and three equivalents of CuCl₂ under optimal reaction conditions gave the 6Hbenzo[*d*]naphthol[1,2-*b*]pyran-6-one product **20** in 63% yield. (Scheme 3) Finally, compound **2f** was converted to the seven-membered ring lactone **9f** in 82% yield by treatment with methanol in the presence of potassium carbonate [Eq. (1)].

Reagents and conditions: (i) Pd(PPh₃)₄, Cul, *n*-BuNH₂, Et₂O, r.t., 6 h, 78% (ii) PdCl₂, CuCl₂, CH₃CN, reflux, 1 h, 63%.

Scheme 3. Synthesis of compound 20.

We have also carried out control experiments by simply treating **1a** with three equivalents of CuCl₂ in the absence of PdCl₂ in refluxing CH₃CN for 1 h. The monocyclized product **10a** was obtained in 64% yield along with **10b** in 32% yield [Eq. (2)]. However,

treatment of 1a with one equivalent of PdCl₂ under the same reaction conditions, gave compound 2a in 61% yield as the only product. As a result of these control experiments, we find that PdCl₂ is required for the formation of the dibenzo [b,d] pyran-6-ones. The proposed mechanism for the formation of products 2 and 7 is outlined in Scheme 4. Initially, palladium(II) coordinates with the triple bond of the substrate (1) to form complex 10. The carbonyl oxygen of the ester functionality then attacks C-2 of the alkyne to form oxonium ion 11. This vinyl palladium intermediate may then undergo either 6-endo or 5exo cyclization to form intermediate 12 or 14, respectively. In the presence of CuCl₂, the C-Pd bond would be cleaved to form a C-Cl bond to provide intermediate 13. Finally, the methyl group of 13 is then removed by nucleophilic attack of chloride to give compounds 2. On the other hand, cleavage of the C-Pd bond of intermediate 14 by CuCl₂, followed by removing the methyl group of 15 by nucleophilic attack

Scheme 4. The proposed mechanism for the formation of compounds 2 and 7.

of chloride would give fulvene **16**. Compound **16** may react with $CuCl_2$ to give trichloro products **7**. Basically, the second cyclization step favors the 6-*endo* pathway to provide the aromatized product. However, when the substituent on the terminal alkyne is a more sterically hindered alkyl group or a more electronrich aryl ring, the 5-*exo* adducts are obtained as minor products.

In conclusion, we have developed an efficient synthetic method for the construction of the dibenzo-[b,d]pyran-6-one ring system. This method involves a one-step palladium-catalyzed tandem cyclization reaction of enediynes. Yields are from modest to good. We have also observed substituent effects on this cyclization reaction. The application of this methodology to the synthesis of natural products is currently under investigation.

Experimental Section

Coupling Reaction of Methyl 2-Ethynylbenzoate (5) with Vinyl Chloride (6) (Method A)

To a stirred solution of vinyl chloride (7.5 mmol) in anhydrous ether (20 mL) in the presence of Pd(PPh₃)₄ (5 mol%) was added a solution of methyl 2-ethynylbenzoate (1.2 g, 7.5 mmol), CuI (5 mol%) and *n*-butylamine (0.5 mL) in anhydrous ether (20 mL). The resulting solution was stirred at room temperature for 6 h, quenched with saturated NH₄Cl

solution and extracted with EtOAc ($60 \text{ mL} \times 3$). The combined organic extracts were washed with saturated Na₂CO₃ solution and dried over anhydrous MgSO₄. After filtration and removal of solvent, the residue was purified by column chromatography (silica gel 400 mesh, 1:30 EtOAc:hexane as eluent) to give the products.

Cyclization of Methyl 2-[6-Substituted-3(Z)-hexen-1,5-diynyl]benzoate (Method B)

The reaction mixture of methyl 2-[6-substituted 3(Z)-hexen-1,5-diynyl]benzoate (0.36 mmol), PdCl₂ (3.16 mg, 5 mol%) and CuCl₂ (145 mg, 1.08 mmol) in CH₃CN (5 mL) was heated to reflux and stirred at this temperature for 1 h. After cooling to room temperature, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc (30 mL×2). The combined organic extracts were dried over anhydrous MgSO₄. After filtration and removal of solvent, the residue was purified by column chromatography (silica gel 400 mesh, 1:30 EtOAc:hexane as eluent) to give the products.

Acknowledgements

We thank the National Science Counci of the Republic of Chinal for financial support.

References

- [1] a) J. M. Schmidt, G. B. Tremblay, M. Page, J. Mercure, M. Feher, R. Dunn-Dufault, M. G. Peter, P. R. Redden, J. Med. Chem. 2003, 46, 1289; b) X. Wang, K. F. Bastow, C. M. Su, Y. L. Lin, H. J. Yu, M. D. Don, T. S. Wu, S. Nakamura, K. H. Lee, J. Med. Chem. 2004, 47, 5816; c) X. Wang, K. Nakagawa-Goto, K. F. Bastow, M. D. Don, T. S. Wu, K. H. Lee, J. Med. Chem. 2006, 49, 5631; d) T. Kawasaki, Y. Yamamoto, J. Org. Chem. 2002, 67, 5138; e) L. D. Via, E. Uriarte, E. Ouezada, A. Dolmella, M. G. Ferlin, O. Gia, J. Med. Chem. 2003, 46, 3800; f) Q. J. Zhou, K. Worm, R. E. Dolle, J. Org. Chem. 2004, 69, 5147; g) V. T. H. Nguyen, P. Langer, Tetrahedron Lett. 2005, 46, 1013; h) H. Abe, K. Nishioka, S. Takeda, M. Arai, Y. Takeuchi, T. Harayama, Tetrahedron Lett. 2005, 46, 3197; i) R. Girotti, A. Marracchi, L. Minuti, O. Piermatti, F. Pizzo, L. Vaccaro, J. Org. Chem. 2006, 71, 70; j) S. Madan, C. H. Cheng, J. Org. Chem. 2006, 71, 8312.
- [2] a) J. J. Li, G. W. Gribble, Palladium in Heterocyclic Chemistry: A Guide for the Synthetic Chemist, Elsevier Science Ltd., Oxford, 2000; b) J. Tsuji, Palladium Reagents and Catalyst: Innovations in Organic Synthesis, John Wiley & Sons, New York, 1995; c) R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, New York, 1985.
- [3] S. Ma, B. Wu, X. Jiang, S. Zhao, J. Org. Chem. 2005, 70, 2568.
- [4] S. Ma, B. Wu, X. Jiang, J. Org. Chem. 2005, 70, 2588.
- [5] J. H. Li, S. Tang, Y. X. Xie, J. Org. Chem. 2005, 70, 477– 479.
- [6] Y. Ling, S. Tang, X. D. Zhang, L. Q. Mao, Y. X. Xie, J. H. Li, Org. Lett. 2006, 8, 3017.

- [7] C. Y. Lee, M. J. Wu, Eur. J. Org. Chem. 2007, 3463.
- [8] a) M. J. Wu, C. F. Lin, S. H. Chen, Org. Lett. 1999, 1, 767; b) M. J. Wu, C. Y. Lee, C. F. Lin, Angew. Chem. 2002, 114, 4251; Angew. Chem. Int. Ed. 2002, 41, 4077; c) M. J. Wu, C. F. Lin, W. D. Lu, J. Org. Chem. 2002, 67, 5907; d) C. Y. Lee, C. F. Lin, J. L. Lee, C. C. Chiu, W. D. Lu, M. J. Wu, J. Org. Chem. 2004, 69, 2106; e) Z. Y. Chen, M. J. Wu, Org. Lett. 2005, 7, 475.
- [9] Crystal data for **2a**: $C_{18}H_{17}CIO_2$, unit cell parameters: a=10.790 (3), b=12.210 (4), c=13.502 (4), $\alpha=71.731$ (5), $\beta=67.179$ (5), $\gamma=68.035$ (5), space group *P*-1. Crys-

tal data for **7c**: $C_{17}H_{15}Cl_3O_2$, unit cell parameters: a = 7.21130 (10), b = 9.01260 (10), c = 14.2796 (3), a = 105.4050 (10), $\beta = 90.5200$ (10), $\gamma = 112.8580$ (10), space group *P*-1. CCDC 683257 (**2a**) and CCDC 683176 (**7c**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif or CCDC, 12 Union Road, Cambridge CB2 1ED, UK [fax:+44-(1223)-336-033; e-mail deposit@ccdc.cam.ac.uk.