

Available online at www.sciencedirect.com

European Journal of Medicinal Chemistry 43 (2008) 1123-1151

http://www.elsevier.com/locate/ejmech

Synthesis and biological activity of imidazopyridine anticoccidial agents: Part II

Original article

Andrew Scribner ^{a,*}, Richard Dennis ^a, Shuliang Lee ^a, Gilles Ouvry ^a, David Perrey ^a, Michael Fisher ^b, Matthew Wyvratt ^b, Penny Leavitt ^c, Paul Liberator ^c, Anne Gurnett ^c, Chris Brown ^c, John Mathew ^c, Donald Thompson ^c, Dennis Schmatz ^c, Tesfaye Biftu ^b

^a SCYNEXIS, Inc., Discovery Chemistry, P.O. Box 12878, Research Triangle Park, NC 27709-2878, USA

^b Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ 07065, USA

^c Department of Human and Animal Infectious Disease Research, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ 07065, USA

Received 9 July 2007; received in revised form 15 September 2007; accepted 18 September 2007 Available online 26 September 2007

Abstract

Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus *Eimeria* invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against *Eimeria*. Recently, we reported the synthesis and biological activity of potent imidazo[1,2-*a*]pyridine anticoccidial agents. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we report the synthesis and anticoccidial activity of a second set of such compounds, focusing on derivatization of the amine side chain at the imidazopyridine 7-position. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.

© 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Coccidiosis; Antiparasitic; Antiprotozoal; Kinase; Imidazopyridine

1. Introduction

Coccidiosis is a parasitic disease which is the major cause of morbidity and mortality in the poultry industry. It is a disease of the avian intestinal lining due to invasion by protozoan parasites of the genus *Eimeria* [1]. Some of the most significant *Eimeria* species in poultry are *Eimeria tenella*, *Eimeria acervulina*, *Eimeria necartrix*, *Eimeria brunetti*, *Eimeria mitis*, and *Eimeria maxima*. Over 35 billion chickens are raised annually worldwide, and all major poultry operations use anticoccidial agents prophylactically. Resistance to current coccidiostats is becoming widespread, and new broad spectrum drugs directed at novel biochemical targets are needed. Genetic studies in Toxoplasma gondii, a protozoan parasite closely related to Eimeria, demonstrate that cGMP-dependent protein kinase (PKG) is essential for survival and represents a desirable therapeutic target [2]. It was reported recently that inhibition of a novel PKG, isolated from these parasites, stops the parasite proliferation by blocking parasite invasion [2,3]. High throughput screening of known kinase inhibitors resulted in the discovery of imidazopyridine analogs as PKG inhibitors and broad spectrum anticoccidial agents [4]. Recently, we reported the synthesis and biological activity of imidazo[1,2-a]pyridines with diversity introduced at the 2-aryl and 3-aryl rings [4,5]. Herein, we report PKG inhibition, synthesis, evaluation, optimization, and in vivo anticoccidial activities of imidazopyridines possessing optimal functionality at the 2-aryl and 3-aryl rings, and with diversity introduced at the amine side chain of the imidazopyridine 7-position.

^{*} Corresponding author. Tel.: +919 544 8610; fax: +919 544 8697. *E-mail address:* andrew.scribner@scynexis.com (A. Scribner).

2. Results and discussions

2.1. Chemistry

Introduction of functionality on a benzylic amine nitrogen at the imidazopyridine 7-position was accomplished as shown in Scheme 1. The synthesis of sulfide 1 is presented in a companion publication [5]. Oxidation of sulfide 1 with OXONE[®] gave sulfone 2. Subsequent treatment with ammonia afforded 2-aminopyrimidine 3. Oxidation of the benzylic alcohol with manganese(IV) oxide yielded aldehyde 4 [6]. Treatment of 4 with various amines and sodium triacetoxyborohydride ultimately yielded benzylic amines 5a-g [7].

Syntheses of compounds bearing a carbonyl group bridging the imidazopyridine 7-position to the benzylic amine are shown in Schemes 2 and 3. In Scheme 2, treatment of aldehyde **4** with hydroxylamine and trifluoroacetic acid gave nitrile **6** [8], which was hydrolyzed with potassium hydroxide to yield amide **7** [9]. Alternatively, nitrile **6** was converted to imidate **8** when treated with ethanol and hydrochloric acid [10]. Subsequent treatment of imidate **8** with dimethylamine gave amidine **9** [10]. An unexpected byproduct of this reaction was *N*,*N*-dimethylaniline **10**, which presumably resulted from elimination of ethanol from imidate **8** to give a 7-cyanoimidazopyridine, followed by dimethylamine displacement of the cyano group.

Synthesis of the corresponding 7-carboxylic acid methyl amide (17) is shown in Scheme 3. The synthesis of bromide 11 is presented in a companion publication [5]. Subsequent cyclization with 2-(amino)isonicotinic acid ethyl ester yielded imidazopyridine 12 [11], which upon treatment with N,O-dimethylhydroxylamine hydrochloride and isopropylmagnesium

chloride gave Weinreb amide **13** [12]. Oxidation of the sulfide group of **13** with OXONE[®] afforded sulfone **14**, which was treated with ammonia to give 2-aminopyrimidine **15** [13]. The reaction of Weinreb amide **15** with ethylmagnesium bromide gave both the expected ethyl ketone **16** [12], and 7-carboxylic acid methyl amide **17**, which likely arises from deprotonation of the Weinreb amide methoxy group by the Grignard reagent followed by E2 elimination of formaldehyde [14].

Different pathways were used to introduce one or two alkyl substituents at the benzylic carbon of a 7-(dimethylaminomethyl)imidazopyridine, shown in Schemes 4 and 5. Synthesis of analogs in which this alkyl group is a single methyl or ethyl is shown in Scheme 4. Oxidation of alcohol 1 with manganese(IV) oxide gave aldehyde 18 [6], which was treated with methylmagnesium bromide to give secondary alcohol 20a. Similarly, treatment of Weinreb amide 13 with ethylmagnesium bromide gave ethyl ketone 19 [12], which was reduced with sodium borohydride to give alcohol 20b. Esterification of alcohols 20a and 20b with methanesulfonyl chloride and triethylamine yielded methanesulfonate esters 21a and 21b, which was followed by treatment with dimethylamine and diisopropylethylamine to give benzylic dimethylamines 22a and 22b. Oxidation of sulfides 22a and 22b to sulfones 23a and 23b was performed with either OXONE[®] or peracetic acid and catalytic sodium tungstate hydrate, followed by treatment with sulfur dioxide to reduce any tertiary amine oxide back to the tertiary amine [15]. Subsequent displacement of sulfone by ammonia then followed to ultimately vield 2-aminopyrimidines [13] 24a and 24b. HPLC separation of enantiomers of 24a was conducted on a Chiralcel OJ (Diacel) column.

A slightly different approach was used to introduce either an *n*-propyl chain or two geminal methyl groups onto the benzylic

Scheme 1. Reagents: (a) $OXONE^{\circledast}$; (b) NH_3 ; (c) MnO_2 ; (d) HNR'R'', $NaB(OAc)_3H$ where R' and R'' are defined as part of the R substituent of compounds **5a**-**g** in Table 1.

Scheme 2. Reagents: (a) NH₂OH, CF₃CO₂H; (b) KOH; (c) EtOH, HCl; (d) HNMe₂.

carbon (Scheme 5). Methanesulfonate 25 (prepared in a companion publication) [5] was treated with tetra-n-butylammonium cyanide to yield nitrile 26 [16], which was then alkylated with 1-bromopropane to give α -*n*-propylnitrile **27a** [17], or excess iodomethane to give gem-dimethylnitrile 27b [18]. Subsequent hydrolysis with concentrated sulfuric acid yielded amides 28a and 28b, which underwent Hofmann rearrangement with bis(trifluoroacetoxy)iodobenzene to afford primary amines 29a and **29b** [19]. Reductive amination with formaldehyde and sodium cyanoborohydride with catalytic acetic acid afforded dimethylamines 30a and 30b [20]. Functionalization of the pyrimidine 2position ensued as described earlier, entailing oxidation of sulfides 30a and 30b to sulfone 31a and 31b with OXONE[®] followed by back-reduction of any N-oxide with sulfur dioxide [15], and ammonia displacement of this sulfone to ultimately yield 2-aminopyrimidines 32a and 32b [13].

An alternative pathway to introduce two geminal methyl groups onto the benzylic carbon is shown in Scheme 6. Treatment of ester 12 with excess methylmagnesium bromide gave tertiary alcohol 33 [21]. Functionalization of the pyrimidine 2-position followed, as treatment of sulfide 33 with OXONE[®] gave sulfone 34, which was then treated with ammonia to yield 2-aminopyrimidine 35 [13]. Treatment of tertiary alcohol 35 with Ritter conditions (sodium cyanide, acetic acid, and sulfuric acid) gave a mixture of formamides 36a and 36b, which was hydrolyzed with sodium hydroxide to ultimately yield gem-dimethyl primary amine 37 [22].

The synthesis of 7-(dimethylamino)ethylimidazopyridines is shown in Schemes 7 and 8. Scheme 7 shows the synthesis of 7-(dimethylamino)ethylimidazopyridines 42a-c. Alkylation of nitrile 26 with ethyl bromide and sodium hydride yielded α -ethylnitrile 38 [17]. Oxidation of sulfides 26, 38, and 27b to sulfones 39a-c, respectively, was achieved with OXONE[®]. At this point, different routes and reagents were explored for each substrate. Nitriles **39a** and **39b** were first reduced via hydrogenation with catalytic platinum(IV) oxide [23] to give primary amines **40a** and **40b**. Displacement of the sulfones with ammonia gave 2-aminopyrimidines **41a** and **41b** [13]. Alternatively, sulfone **39c** was first treated with ammonia to give 2-aminopyrimidine **40c**, whose nitrile was then reduced via lithium aluminum hydride [24] to give primary amine **41c**; both of these routes towards intermediates **41a–c** proved viable. Subsequent reductive amination with formaldehyde, sodium cyanoborohydride, and catalytic acetic acid ultimately yielded 7-(dimethylamino)ethylimidazopyridines **42a–c** [20].

The synthesis of a 7-(dimethylamino)ethylimidazopyridine bearing a fluorine at the benzylic carbon is shown in Scheme 8. Refluxing aldehyde **18** with sarcosine and paraformaldehyde resulted in a [3 + 2] cycloaddition to give aminal **43**, which was then cleaved open upon treatment with sodium borohydride to give the benzylic alcohol **44** [25]. Subsequent treatment with DAST gave fluoride **45** [26]. Oxidation of sulfide **45** with OXONE[®] followed by back-reduction with sulfur dioxide to give sulfone **46** [15]. Treatment with ammonia ultimately yielded 2-aminopyrimidine **47** [13].

The synthesis of 7-(dimethylamino)-*n*-propylimidazopyridine **55** is shown in Scheme 9. Treatment of 2-chloro-4'-fluoroacetophenone with *O*-methylhydroxylamine hydrochloride gave α -chloro-*O*-methyloxime **48** [27], which upon treatment with lithium bromide yielded α -bromo-*O*-methyloxime **49**. Subsequent reaction of 4-propanolpyridine with **49** under basic conditions afforded imidazopyridine **50** [27]. Esterification with methanesulfonyl chloride gave methanesulfonate ester **51**, and subsequent treatment with dimethylamine and diisopropyle-thylamine yielded dimethylamine **52**. Acylation then occurred with acetic anhydride and catalytic sulfuric acid to give ketone **53** [28], which was activated with *N*,*N*-dimethylformamide

Scheme 3. Reagents: (a) 2-(amino)isonicotinic acid ethyl ester; (b) Me(MeO)NH·HCl, i-PrMgCl; (c) OXONE[®]; (d) NH₃; (e) CH₃CH₂MgBr.

dimethyl acetal (DMFDMA) to afford enone **54** [29]. Treatment with guanidine hydrochloride and sodium methoxide ultimately yielded 2-aminopyrimidine **55** [29].

The pathway used to prepare 7-(piperidinyl)imidazopyridines is shown in Scheme 10. First, protection of the piperidine nitrogen of 4-piperidin-4-ylpyridine occurred with acetic anhydride to give acetamide 56. Subsequent treatment with α -bromo-O-methyloxime 49 followed by base afforded imidazopyridine 57 [27]. Acylation of the imidazopyridine 3-position occurred with acetic anhydride and catalytic sulfuric acid to give ketone 58 [28]. Reaction of this with DMFDMA then afforded enone 59 [29], which upon treatment with guanidine hydrochloride and sodium methoxide yielded 2-aminopyrimidine 60 [29]. Subsequent hydrolysis of the acetamide protecting group with hydrochloric acid gave NHpiperidine 61, which then underwent reductive amination with appropriate aldehyde or alkylation with appropriate alkyl halide under basic conditions to ultimately yield N-alkylpiperidines 62a-k [20].

Synthesis of 7-(piperazinyl)imidazopyridine **67** is shown in Scheme 11. Treatment of 2-bromo-4'-fluoroacetophenone with 2-amino-4-chloropyridine [30] afforded 7-chloroimidazopyridine **63** [11] which was acylated to ketone **64** with acetic anhydride and catalytic sulfuric acid [28]. Reaction of this ketone with DMFDMA gave enone **65** [29], which was followed by treatment with guanidine hydrochloride and sodium methoxide to afford 2-aminopyrimidine **66** [29]. Treatment of 7-chloroimidazopyridine **66** with palladium(II) acetate, 2-(di-*tert*-butylphosphino)biphenyl, sodium *tert*-butoxide, and *N*methylpiperazine ultimately yielded 7-(*N*-Me-piperazin-4-yl) imidazopyridine **67** [28,31].

2.2. Biology

The title compounds were tested for in vitro efficacy via the Ten K (Tenella Kinase) assay, and in vivo efficacy via the Ex-MAC (Expanded Mini-Assay Coccidiosis) assay. The Ten K assay measures inhibition of E. tenella PKG enzyme activity, and is reported as the amount of compound required to inhibit activity by 50% (IC₅₀, in nM). The ExMAC assay measures antiparasitic activity after administration of compound to infected chickens (ppm in feed). Birds are infected with E. tenella (E_t), E. acervulina (E_a), E. mitis (E_{mi}), and E. maxima (Ema), and efficacy is reported using a score of 0 through 4 based on percent of oocyte reduction relative to an untreated control. Treatments that provide 100% reduction of oocyte production are scored with a '4', those with 99% reduction are scored '3+', those with 80-98% reduction are scored '3', those with 50-79% reduction are scored '2', and those with <50% reduction are scored '0'. Details of these

procedures were published in earlier work [3]. In some cases, not all four species of *Eimeria* were tested.

The data presented in Table 1 summarize the effect on both in vitro and in vivo activity of modifying substituents on the benzylic amine at the imidazopyridine 7-position relative to our benzylic dimethylamine lead compound (**68**), which we have reported previously [4a]. Other than nitrile **5e** and piperazine **5g**, all compounds from this set showed subnanomolar in vitro activity except for those lacking a basic nitrogen on the side chain of the imidazopyridine 7-position (amides **7** and **17**, and amidine **9**). Likewise, in vivo efficacy was considerably weaker

in these same compounds lacking a basic amine on the side chain. In fact, only dimethylamine **68** and diethylamine **5f** exhibited significant in vivo activity at 12.5 ppm, suggesting that both basicity and minimal steric bulk at the amine nitrogen are crucial for in vivo potency.

Table 2 shows the biological effect of varying the length of the side chain tethering the imidazopyridine 7-postion to the amine nitrogen. The in vitro data suggest that there is considerable tolerance for amine side chains of different lengths, with subnanomolar activity seen in compounds possessing a chain of one, two, or three carbons (compounds **68**, **42a**,

Scheme 5. Reagents: (a) n-Bu₄NCN; (b) CH₃CH₂CH₂Br or CH₃I; NaH; (c) H₂SO₄; (d) PhI(OCO₂CF₃)₂; (e) H₂CO, NaBH₃CN, AcOH; (f) i. OXONE[®]; ii. SO₂; (g) NH₃.

and 55, respectively). The N,N-dimethylaniline 10 may have weaker in vitro activity due to the lack of a basic nitrogen, as discussed for examples 7, 9, and 17 in Table 1. In vivo potency was found to be optimal in the analogs possessing a one or two carbon chain (compounds 68 and 42a).

Table 3 shows the effect of substituents on the alkyl chain tethering the imidazopyridine 7-position to the amine nitrogen. Each benzylic amine (24a, 24b, 32a, 37, and 32b) exhibited subnanomolar activity in vitro, and in some cases (24a, 32a) showed an IC₅₀ < 0.1 nM. Introducing one alkyl substituent at the benzylic carbon increased in vivo activity when the substituent was methyl (24a, particularly enantiomer B, active vs. all four *Eimeria* species in vivo down to 2 ppm) and ethyl (24b). The *n*-propyl analog (32a) also showed strong in vitro activity, but weaker in vivo potency. When two geminal methyl groups were introduced at the benzylic carbon (37, 32b), the in vivo activity slightly increased in the case of the tertiary dimethylamine (32b).

Regarding the homobenzylic amines (42a, 42b, 41c, 42c, and 47), in vitro potency remained subnanomolar in each

case. In vivo activity was optimal with the unsubstituted homobenzylic amine **42a** and the fluoride **47**. All other examples with larger substituents on the side chain showed weaker in vivo potency.

After observing promising activity with alkyl branching at the benzylic carbon of the imidazopyridine 7-position, we then explored the effect of combining this branching with an entropically restricted side chain nitrogen. Table 4 shows the effect of having a 6-membered amine-bearing ring (piperidine or piperazine) at the imidazopyridine 7-position. All such compounds tested showed subnanomolar in vitro potency, and in several cases (61, 69, 62b, 62c, 62e, and 62k) showed an $IC_{50} < 0.1$ nM. Although the straight-chain analog possessing a 3-carbon tether (55, described in Table 2) exhibited relatively weak in vivo potency, many of these piperidines showed excellent activity in vivo, especially compounds in which the *N*-substituent was methyl (**69**, previously published) [4], ethyl (62a), hydroxyethyl (62b), isobutyl (62d), and cyclopropylmethyl (62e). Larger, more lipophilic N-substituents decreased in vivo potency. The 7-N-methylpiperazine (67) showed

Scheme 6. Reagents: (a) CH₃MgBr; (b) OXONE[®]; (c) NH₃; (d) NaCN, AcOH, H₂SO₄; (e) NaOH.

Scheme 7. Reagents: (a) NaH, CH₃CH₂Br; (b) OXONE[®]; (c) H₂, PtO₂; (d) NH₃; (e) LiAlH₄; (f) H₂CO, NaBH₃CN, AcOH.

Scheme 8. Reagents: (a) H₃CN(H)CH₂CO₂H, (CH₂O)_n; (b) NaBH₄; (c) DAST; (d) i. OXONE[®]; ii. SO₂; (e) NH₃.

greater in vivo activity that the other dialkylaniline tested (10) which does not possess as basic a nitrogen in the side chain; however, **67** was not as potent as the corresponding *N*-methylpiperidine (**69**).

3. Conclusion

We have prepared several 2-aryl-3-(2-aminopyrimidin-4-yl) imidazopyridines with varying alkyl amine substitution on the imidazopyridine 7-position as anticoccidial agents. We have found that there is considerable tolerance for varying the chain length between the imidazopyridine 7-position and the amine from one to two to three carbons, and for introducing one or two additional alkyl groups on the benzylic carbon. We have also found tolerance in vitro for steric bulk at the 7-position, although in vivo efficacy begins to decrease as the size and lipophilicity of the substituent increases. The most active compounds from this series showing in vivo potency against all four species of Eimeria at or below 12.5 ppm include monoalkylated benzylic amines 24a (enantiomeric mixture and enantiomer B) and 24b, gem-dialkylated benzylic amine 32b, homobenzylic amines 42a and 47, and piperidines 62a, 62b, 62d, and 62e. However, the potential genotoxicity of compounds in this series precluded them from further development [4].

4. Experimental sections

4.1. General

Reactions were monitored by thin-layer chromatography (TLC) on precoated EMD silica gel (60 F_{254}) plates (250 μ m thickness) and visualized using UV light (254 nm), or by LCMS using a ThermoFinnigan AQA spectrometer with UV detection (254 nm). Flash chromatography purification was

performed using Isco RediSep cartridges on an Isco OptiX10 or Companion automated flash chromatography system, or using EMD silica gel (230–400 mesh). HPLC purification was conducted on a Varian Dynamax HPLC Guard Column, 21.4 mm, Compression Module Microsorb Guard-8C-18 (P/N R00083221G). ¹H NMR spectra were recorded on a Varian Unity INOVA 400 MHz spectrometer; the values of chemical shifts (δ) are given in parts per million relative to the central peak of the solvent, and the values of coupling constants (J) are given in hertz (Hz). Mass spectra were recorded on a ThermoFinnigan AQA spectrometer. HPLC traces were recorded on an Agilent 1100 or Hewlett Packard 1050 instrument with a Phenomenex Aqua C18 125A 5 mm column, 4.6 mm i.d. × 50 mm length. All compounds tested biologically were found to be ≥90% pure by HPLC at 254 nM.

4.1.1. [2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]methanol (2)

Sulfide **1** (2.80 g, 7.64 mmol) was suspended in MeOH (170 mL), acetone (140 mL), and an aqueous solution of OXONE[®] (14.1 g, 22.9 mmol, in 130 mL H₂O), and allowed to stir for 12 h. The reaction was then concentrated under reduced pressure to approximately 100 mL, then diluted with water (200 mL), filtered, and dried in a vacuum oven at 40 °C overnight. Yield of **2**: 2.35 g (77%) of **5**. ¹H NMR (400 MHz, CDCl₃) δ 3.20 (s, 3H), 4.83 (s, 2H), 7.04–7.44 (m, 4H), 7.53–7.76 (m, 2H), 7.87 (bs, 1H), 8.62 (d, J = 5.4 Hz, 1H), 9.82 (d, J = 7.0 Hz, 1H). MS (ESI+) 398.8.

4.1.2. [3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-yl]methanol (3)

A mixture of sulfone **2** (14.4 g, 36.1 mmol) in THF (200 mL) in a pressure reactor was chilled to less than $-70 \degree$ C in a CO₂/IPA bath. Ammonia (33.1 g, 1.94 mol) was

Scheme 9. Reagents: (a) $H_2NOCH_3 \cdot HCl$; (b) LiBr; (c) i. **49**; ii. DBU; (d) CH_3SO_2Cl , Et_3N ; (e) $HNMe_2$, *i*- Pr_2NEt ; (f) Ac_2O , H_2SO_4 ; (g) DMFDMA; (h) guani-dine $\cdot HCl$, NaOMe.

then bubbled in over 15 min. The pressure reactor was then sealed, and the reaction was allowed to warm to room temperature and stirred for 12 h, during which the reaction pressure reached 55 psi. The pressure was then released, and the reaction was concentrated under reduced pressure, then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **3**: 10.6 g (83%). ¹H NMR (400 MHz, CDCl₃) δ 4.74 (s, 2H), 5.06–5.25 (bs, 2H), 6.50 (d, J = 5.4 Hz, 1H), 6.88 (dd, J = 7.2, 1.6 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.53–7.73 (m, 3H), 8.12 (d, J = 5.4 Hz, 1H), 9.38 (d, J = 7.2 Hz, 1H). MS (ESI+) 336.0.

4.1.3. [3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridine-7-carbaldehyde (4)

A solution of alcohol **3** (10.7 g, 31.9 mmol) in CH₂Cl₂ (1.0 L) was charged with manganese(IV) oxide (69.4 g, 798 mmol). The reaction was stirred at room temperature for

12 h, and was then filtered through Celite, and the Celite filter cake was then rinsed with 9:1 CH₂Cl₂:MeOH (9:1) (500 mL). The filtrates were combined, concentrated under reduced pressure, and not purified further. Yield of **4**: 7.8 g (74%). ¹H NMR (400 MHz, CDCl₃) δ 5.22 (bs, 2H), 6.57 (d, J = 5.3 Hz, 1H), 7.16 (t, J = 8.7 Hz, 2H), 7.43 (dd, J = 7.2, 1.6 Hz, 1H), 7.67 (m, 2H), 8.17 (s, 1H), 8.22 (d, J = 5.3 Hz, 1H), 9.46 (d, J = 7.2 Hz, 1H), 10.06 (s, 1H). MS (ESI+) 334.2.

4.1.4. General procedure for the synthesis of tertiary amines **5a**-**g**

A solution of aldehyde **4** in CH_2Cl_2 was charged with appropriate amine and sodium triacetoxyborohydride. After stirring at room temperature for 12 h, the reaction was concentrated under reduced pressure, chromatographed on SiO₂ using a gradient that started with CH_2Cl_2 and ended with 90:9:1 CH_2Cl_2 :MeOH:concentrated NH₄OH, and then purified further

Scheme 10. Reagents: (a) Ac_2O ; (b) i. **49**; ii. *t*-BuOK; (c), Ac_2O , H_2SO_4 ; (d) DMFDMA; (e) guanidine HCl, NaOMe; (f) HCl; (g) appropriate aldehyde, NaBH₃CN, AcOH or RBr, K_2CO_3 where R is defined in Table 4.

Scheme 11. Reagents: (a) i. 2-amino-4-chloropyridine; ii. *t*-BuOK; (b), Ac₂O, H₂SO₄; (c) DMFDMA; (d) guanidine·HCl, NaOMe; (e) Pd(OAc)₂, 2-(di-*tert*-bu-tylphosphino)biphenyl, *t*-BuONa, *N*-Me-piperazine.

Table 1

Biological activity of 7-substituted imidazopyridines: benzylic amines

^a In cases where a compound was tested more than once, all values obtained are reported.

by HPLC using a MeOH/H₂O gradient, where the aqueous phase was 98.9:1.0:0.1 H₂O:CH₃CN:Et₃N.

4.1.4.1. 4-[7-tert-Butylaminomethyl)-2-(4-fluorophenyl)imidazo-[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (5a). Amine 5a was prepared from aldehyde 4 (100 mg, 0.300 mmol), tert-butylamine (33 mg, 47 µL, 0.45 mmol), and sodium triacetoxyborohydride (95 mg, 0.45 mmol) in CH₂Cl₂ (100 mL). Yield of **5a**: 42.9 mg (37%). ¹H NMR (400 MHz, CDCl₃) δ 1.20 (s, 9H), 3.84 (s, 2H), 5.12 (bs, 2H), 6.52 (d, J = 5.4 Hz, 1H), 7.00 (dd, J = 7.2, 1.5 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.59–7.70 (m, 3H), 8.11 (d, J = 5.4 Hz, 1H), 9.42 (d, J = 7.2 Hz, 1H). MS (ESI+) 391.1.

4.1.4.2. 2-{[3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)*imidazo*[1,2-*a*]*pyridin*-7-*y*[*methy*]*methy*[*amino*]*ethanol* (5b). Amine 5b was prepared from aldehyde 4 (100 mg, 0.300 mmol), 2-(methylamino)ethanol (34 mg, 36 µL, 0.45 mmol), and sodium triacetoxyborohydride (95 mg, 0.45 mmol) in CH₂Cl₂ (100 mL). Yield of **5b**: 27.7 mg (23%). ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 3H), 2.69 (t, J = 4.7 Hz, 2H), 3.62–3.76 (m, 4H), 5.13 (bs, 2H), 6.53 (d, J = 5.3 Hz, 1H), 6.97–7.03 (m, 1H), 7.13

(t, J = 8.7 Hz, 2H), 7.58 (bs, 1H), 7.61-7.71 (m, 2H), 8.13 (d,)J = 5.3 Hz, 1H), 9.46 (d, J = 7.2 Hz, 1H). MS (ESI+) 393.1.

4.1.4.3. 4-(2-(4-Fluorophenyl)-7-{[(2-methoxyethyl)methylamino]methyl}imidazo[1,2-a]pyridin-3-yl)pyrimidin-2-ylamine (5c). Amine 5c was prepared from aldehyde 4 (100 mg, 0.300 mmol), N-(2-methoxyethyl)methylamine (40 mg, 48 µL, 0.45 mmol), and sodium triacetoxyborohydride (95 mg, 0.45 mmol) in CH₂Cl₂ (100 mL). Yield of 5c: 44.6 mg (37%). ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 3H), 2.64–2.75 (m, 2H), 3.38 (s, 3H), 3.53-3.60 (m, 2H), 3.68 (bs, 2H), 5.10 (bs, 2H), 6.53 (d, J = 5.4 Hz, 1H), 7.02–7.08 (m, 1H), 7.13 (t, J = 8.7 Hz, 2H), 7.58 (bs, 1H), 7.61–7.69 (m, 2H), 8.13 (d, J = 5.4 Hz, 1H), 9.42 (d, J = 7.2 Hz, 1H). MS (ESI+) 407.4.

4.1.4.4. 4-{2-(4-Fluorophenyl)-7-{(methylprop-2-ynylamino)*methyl]imidazo[1,2-a]pyridin-3-yl}pyrimidin-2-ylamine* (5*d*). Amine 5d was prepared from aldehyde 4 (100 mg, 0.300 mmol), N-methylpropargylamine (31 mg, 37 µL, 0.45 mmol), and sodium triacetoxyborohydride (95 mg, 0.45 mmol) in CH₂Cl₂ (100 mL). Yield of **5d**: 48.3 mg (42%). ¹H NMR (400 MHz, CDCl₃) δ 2.31 (t, J = 2.2 Hz, 1H), 2.39 (s, 3H), 3.37 (d, J = 2.2 Hz, 2H), 3.67

Compound	R	Ten_K $IC_{50} (nM)^a$	ExMAC dose (ppm)	ExMAC rating			
				Et	Ea	E_{mi}	E _{ma}
10	$N(CH_3)_2$	3	25	3	3	0	3
			12.5	2	0	0	3
			6.25	0	0	0	0
68	$CH_2N(CH_3)_2$	0.11	25	3	3	3	3
			12.5	3	3	3	3
			6.25	3	3	0	0
42a	CH ₂ CH ₂ N(CH ₃) ₂	0.46; 0.62	25	4	4	4	4
			12.5	4	4	3	4
			6.25	4	3	0	2
55	CH ₂ CH ₂ CH ₂ N(CH ₃) ₂	0.27	25	3	3	3	4
			12.5	3	3	0	0
			6.25	0	0	0	0

^a In cases where a compound was tested more than once, all values obtained are reported.

(s, 2H), 5.14 (bs, 2H), 6.53 (d, J = 5.3 Hz, 1H), 7.01 (dd, J = 7.2, 1.5 Hz, 1H), 7.13 (t, J = 8.7 Hz, 2H), 7.62 (bs, 1H), 7.60–7.70 (m, 2H), 8.13 (d, J = 5.3 Hz, 1H), 9.42 (d, J = 7.2 Hz, 1H). MS (ESI+) 387.4.

4.1.4.5. {[3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-ylmethyl]methylamino}acetonitrile (5e). Amine 5e was prepared from aldehyde 4 (100 mg, 0.300 mmol), methylaminoacetonitrile (32 mg, 34 μ L, 0.45 mmol), and sodium triacetoxyborohydride (95 mg, 0.45 mmol) in CH₂Cl₂ (100 mL). Yield of 5e: 19.5 mg (17%). ¹H NMR (400 MHz, CDCl₃) δ 2.48 (s, 3H), 3.56 (s, 2H), 3.72 (s, 2H), 5.15 (bs, 2H), 6.53 (d, J = 5.3 Hz, 1H), 6.95 (dd, J = 7.2, 1.5 Hz, 1H), 7.13 (t, J = 8.7 Hz, 2H), 7.61–7.68 (m, 2H), 7.64 (bs, 1H), 8.14 (d, J = 5.3 Hz, 1H), 9.45 (d, J = 7.2 Hz, 1H). MS (ESI+) 388.3.

4.1.4.6. 4-[7-Diethylaminomethyl-2-(4-fluorophenyl)imidazo-[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (5f). Amine 5f was prepared from aldehyde 4 (100 mg, 0.300 mmol), diethylamine (33 mg, 47 µL, 0.45 mmol), and sodium triacetoxyborohydride (95 mg, 0.45 mmol) in CH₂Cl₂ (100 mL). Yield of 5f: 39.2 mg (34%). ¹H NMR (400 MHz, CDCl₃) δ 1.07 (t, J = 7.0 Hz, 6H), 2.58 (q, J = 7.0 Hz, 4H), 3.65 (s, 2H), 5.11 (bs, 2H), 6.53 (d, J = 5.4 Hz, 1H), 7.00–7.07 (m, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.62 (bs, 1H), 7.62–7.68 (m, 2H), 8.12 (d, J = 5.4 Hz, 1H), 9.41 (d, J = 7.2 Hz, 1H). MS (ESI+) 391.1.

4.1.4.7. 4-[2-(4-Fluorophenyl)-7-(4-methylpiperazin-1-ylmethyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (5g). Amine 5g was prepared from aldehyde 4 (100 mg, 0.300 mmol), *N*-methylpiperazine (45 mg, 60 μ L, 0.45 mmol), and sodium triacetoxyborohydride (95 mg, 0.45 mmol) in CH₂Cl₂ (100 mL). Yield of **5g**: 72.2 mg (58%). ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 2.40–2.69 (m, 8H), 3.60 (s, 2H), 5.12 (bs, 2H), 6.52 (d, J = 5.4 Hz, 1H), 7.00 (dd, J = 7.2, 1.4 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.62 (bs, 1H), 7.63–7.76 (m, 2H), 8.13 (d, J = 5.4 Hz, 1H), 9.42 (d, J = 7.2 Hz, 1H). MS (ESI+) 418.2.

4.1.5. 3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridine-7-carbonitrile (**6**)

A solution of aldehyde 4 (1.20 g, 3.60 mmol) in trifluoroacetic acid (50 mL) was charged with hydroxylamine hydrochloride (375 mg, 5.40 mmol) and 4 Å molecular sieves, and heated to 85 °C for 15 h. The reaction was then cooled to room temperature and neutralized with the slow addition of saturated aqueous NaHCO₃ solution (600 mL), then extracted into 9:1 CH₂Cl₂:MeOH (5 × 200 mL), dried over Na₂SO₄, concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **6**: 590 mg (50%). ¹H NMR (400 MHz, CDCl₃) δ 5.19 (bs, 2H), 6.57 (d, J = 5.3 Hz, 1H), 7.06 (dd, J = 7.3, 1.6 Hz, 1H), 7.16 (t, J = 8.7 Hz, 2H), 7.66–7.74 (m, 2H), 8.08 (bs, 1H), 8.22 (d, J = 5.3 Hz, 1H), 9.54 (d, J = 7.3 Hz, 1H). MS (ESI+) 331.1.

4.1.6. 3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridine-7-carboxylic acid amide (7)

Nitrile **6** (150 mg, 0.454 mmol) was slurried in 1-propanol (25 mL), then charged with KOH (56.0 mg, 1.00 mmol) and heated to 110 °C for 12 h. The reaction was then concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH_2Cl_2 and ended with 90:9:1

Table 3

Biological activity of 7-substituted imidazopyridines: branched amine side chains

Compound	R	Ten_K $IC_{50} (nM)^a$	ExMAC dose (ppm)	ExMAC rating			
				Et	Ea	E_{mi}	E _{ma}
68	$CH_2N(CH_3)_2$	0.11	25	3	3	3	3
			12.5	3	3	3	3
			6.25	3	3	0	0
24a	CH(CH ₃)N(CH ₃) ₂	0.09	6.25	4	4	4	4
			3.1	4	3	3	4
	CH(CH ₃)N(CH ₃) ₂ enantiomer A	0.44; 0.28	4	3	3	0	0
			2	0	0	0	2
			1	2	0	2	2
	CH(CH ₃)N(CH ₃) ₂ enantiomer B	0.087; 0.067	4	3	3	3	4
			2	3	4	3	3
			1	2	3	0	4
24b	CH(CH ₂ CH ₃)N(CH ₃) ₂	0.13; 0.3	12.5	4	4	4	4
			8	2	3	0	2
32a	CH(CH ₂ CH ₂ CH ₃)N(CH ₃) ₂	0.065	25	4	4	4	4
			12.5	0	3	0	0
			6.25	0	3	0	4
37	$C(CH_3)_2NH_2$	0.145; 0.26	12	4	3	0	4
			6	3	3	0	3
			3	0	2	0	3
32b	$C(CH_3)_2N(CH_3)_2$	0.11	8	4	4	0	4
			6.25	4	4	3	3
42a	CH ₂ CH ₂ N(CH ₃) ₂	0.46; 0.62	25	4	4	4	4
			12.5	4	4	3	4
			6.25	4	3	0	2
42b	$CH(CH_2CH_3)CH_2N(CH_3)_2$	0.4	25	4	0	0	4
41c	C(CH ₃) ₂ CH ₂ NH ₂	0.26	25	2	0	2	0
42c	$C(CH_3)_2CH_2N(CH_3)_2$	0.2	25	4	3	3	0
			12.5	3	3	0	0
			6.25	0	0	0	0
47	CHFCH ₂ N(CH ₃) ₂	0.59	25	4	4	4	4
			12.5	3	3	2	4
			6.25	3	0	0	4

^a In cases where a compound was tested more than once, all values obtained are reported.

CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **7**: 42.0 mg (25%). ¹H NMR (400 MHz, CDCl₃) δ 6.47 (d, J = 5.6 Hz, 1H), 7.15 (t, J = 8.6 Hz, 2H), 7.53 (dd, J = 7.3, 1.6 Hz, 1H), 7.56–7.64 (m, 2H), 8.06 (d, J = 5.6 Hz, 1H), 8.16 (bs, 1H), 9.54 (d, J = 7.3 Hz, 1H). MS (ESI+) 348.9.

4.1.7. 3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridine-7-carboximidic acid ethyl ester (8)

A solution of nitrile **6** (430 mg, 1.30 mmol) in EtOH (200 mL) was cooled to 0 °C in an ice water bath, then charged with HCl gas for 30 min. The reaction was then allowed to

warm to room temperature while stirring for 12 h, and was then concentrated under reduced pressure, and carried onto the next step without further purification. MS (ESI+) 376.2.

4.1.8. 3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)-N,Ndimethylimidazo[1,2-a]pyridine-7-carboxamidine (9) and 3-(2-aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-yl]dimethylamine (10)

A solution of imidate **8** (theoretically 490 mg, 1.30 mmol) was charged with EtOH (100 mL), then dimethylamine (26.0 mL of a 2.0 M solution in THF, 52.0 mmol) and heated

Biological activity of 7-substituted imidazopyridines: 6-membered amine side chains

Compound	R	Ten_K IC ₅₀ (nM)	ExMAC dose (ppm)	ExMAC rating			
				Et	Ea	E _{mi}	E _{ma}
68	CH ₂ N(CH ₃) ₂	0.11	25	3	3	3	3
	2 ())2		12.5	3	3	3	3
			6.25	3	3	0	0
61	*NH	0.046	25	0	0	0	4
69		0.044	25	4	4	4	4
09	*N	0.011	12.5	4	4	4	4
			10	4	4	4	4
			8	4	3	3	4
			6	4	3	3	4
62a	*N	0.12	25	4	4	4	4
028		0.12	12.5	4	3	4	4
			10	4	3	3	4
			8	4	3	3	4
			6	4	0	3	0
62b	*N	0.044	25	3+	3+	0	2
	он		12.5	3+	2	3	3
			6.25	3+	0	0	0
62c		0.065	25	4	3	0	0
			12.5	4	0	0	0
			6.25	0	2	0	0
62d	*N	0.12	25	4	4	4	4
			12.5	4	3	3	4
	/		6.25	2	3	0	3
626		0.005	25	4	4	2	2
020	*N	0.095	12.5	4	4	3	3
			6.25	3	3	3	3
62f	*N	0.13	12.5	3	3	0	
62g	*N	0.11	12.5	3	0	0	
. -				2	v	-	

Table	4	(continued)
rabic	-	(commune)

Compound	R	Ten_K IC ₅₀ (nM)	ExMAC dose (ppm)	ExMAC rating			
				Et	E_{a}	E _{mi}	E _{ma}
62h	*\N	0.12	12.5	3	0	0	
62i	*	0.13	12.5	2	0	0	
62j	*\N\	0.11	25 12.5 6.25	3 3 0	0 3 0	0 0 0	4 3 3
62k	*\N\	0.07	12.5	0	0	0	
67	*-N_N-	0.23	25 12.5 6.25	3 3 0	0 0 0	3 2 2	4 0 0

to 80 °C for 2 h. The reaction was then concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **9**: 210 mg (43%). ¹H NMR (400 MHz, CDCl₃) δ 3.10 (s, 6H), 5.17 (bs, 2H), 6.54 (d, J = 5.3 Hz, 1H), 6.98 (d, J = 7.2 Hz, 1H), 7.14 (t, J = 8.7 Hz, 2H), 7.61–7.69 (m, 2H), 7.73 (bs, 1H), 8.18 (d, J = 5.3 Hz, 1H), 9.55 (d, J = 7.2 Hz, 1H). Yield of **10**: 70 mg (20%). ¹H NMR (400 MHz, CDCl₃) δ 3.49 (s, 6H), 5.21 (bs, 2H), 6.54 (d, J = 5.3 Hz, 1H), 7.15 (t, J = 8.7 Hz, 2H), 7.43 (d, J = 7.4 Hz, 1H), 7.61–7.69 (m, 2H), 8.10 (bs, 1H), 8.19 (d, J = 5.3 Hz, 1H), 9.50 (d, J = 7.4 Hz, 1H). MS (ESI+) 349.1.

4.1.9. 2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridine-7-carboxylic acid ethyl ester (12)

A solution of bromide **11** (16.2 g, 47.5 mmol) in EtOH (100 mL) was charged with 2-(amino)isonicotinic acid ethyl ester (7.89 g, 47.5 mmol), then heated to 60 °C for 12 h, after which it was concentrated under reduced pressure, then triturated with EtOH, then filtered. The filter cake was rinsed with EtOH and then dried in a vacuum oven, yielding 7.79 g (40%) of imidazopyridine **12**. The remaining filtrate was then concentrated under reduced pressure and suspended in EtOH (100 mL), then charged with additional 2-(amino)isonicotinic acid ethyl ester (5.40 g, 32.5 mmol), and heated to 90 °C for 12 h, after which it was concentrated under reduced pressure, and then triturated with EtOH, and then filtered. The

filter cake was rinsed with EtOH, and then dried in a vacuum oven, yielding an additional 7.11 g (36%) of imidazopyridine **12**. Total yield of **12**: 14.9 g (76%). ¹H NMR (400 MHz, CDCl₃) δ 1.44 (t, J = 7.2 Hz, 3H), 2.65 (s, 3H), 4.45 (q, J = 7.2 Hz, 2H), 6.85 (d, J = 5.0 Hz, 1H), 7.15 (t, J = 8.6 Hz, 2H), 7.58 (d, J = 7.4 Hz, 1H), 7.60–7.68 (m, 2H), 8.36 (d, J = 5.0 Hz, 1H), 8.45 (bs, 1H), 9.55 (d, J = 7.4 Hz, 1H). MS (ESI+) 409.3.

4.1.10. 2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridine-7-carboxylic acid methoxymethylamide (13)

A solution of ester **12** (10.0 g, 24.5 mmol) in THF (200 mL) was charged with *N*,*O*-dimethylhydroxylamine hydrochloride (7.20 g, 73.4 mmol), then cooled to 0 °C in an ice water bath. The reaction was then charged with the dropwise addition of isopropylmagnesium chloride (73.5 mL of a 2.0 M solution in THF, 147 mmol), then allowed to warm to room temperature and stir for 12 h, after which it was quenched with saturated aqueous NH₄Cl solution (250 mL), then extracted with CH₂Cl₂ (2 × 250 mL). The organic fractions were pooled, dried over Na₂SO₄, filtered, and then chromatographed on SiO₂ using a gradient that started with heptane and ended with EtOAc. Yield of **13**: 5.60 g (54%). ¹H NMR (500 MHz, CDCl₃) δ 2.68 (s, 3H), 3.45 (s, 3H), 3.66 (s, 3H), 6.87 (d, *J* = 5.5 Hz, 1H), 7.18 (t, *J* = 8.5 Hz, 2H), 7.37 (dd, *J* = 7.5, 2.0 Hz, 1H), 7.62–7.80 (m, 2H), 8.20 (bs, 1H), 8.36 (d, J = 5.5 Hz, 1H), 9.58 (d, J = 7.5 Hz, 1H). MS (ESI+) 424.2.

4.1.11. 2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridine-7-carboxylic acid methoxymethylamide (14)

A solution of sulfide **13** (2.00 g, 4.72 mmol) in 1:1 MeOH: acetone (100 mL) was charged with a solution of OXONE[®] (8.70 g, 14.2 mmol) in H₂O (50 mL). The reaction was stirred at room temperature for 12 h, and was then concentrated under reduced pressure to remove as much of the organic solvent as possible, then diluted with H₂O (100 mL) and filtered. The filter cake was dried in a vacuum oven at 60 °C for 3 h. Yield of **14**: 1.60 g (76%). ¹H NMR (400 MHz, CDCl₃) δ 3.43 (s, 3H), 3.44 (s, 3H), 3.64 (s, 3H), 7.22 (t, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 5.6 Hz, 1H), 7.48 (dd, *J* = 7.4, 1.5 Hz, 1H), 7.60–7.68 (m, 2H), 8.19 (bs, 1H), 8.58 (d, *J* = 5.5 Hz, 1H), 9.88 (d, *J* = 7.4 Hz, 1H). MS (ESI+) 456.3.

4.1.12. 3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridine-7-carboxylic acid methoxymethylamide (15)

A suspension of sulfone 14 (1.60 g, 3.51 mmol) in THF (100 mL) was chilled in a pressure reactor to $-70 \,^{\circ}\text{C}$ in a CO₂/IPA bath. Ammonia (16 g, 0.94 mol) was then bubbled in over 15 min, after which the pressure reactor was sealed, and the reaction was allowed to warm to room temperature with stirring for 12 h, during which the reaction pressure reached 65 psi. The pressure was then released, and the reaction was concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **15**: 1.10 g (80%). ¹H NMR (400 MHz, DMSO- d_6) δ 3.32 (s, 3H), 3.62 (s, 3H), 6.37 (d, J = 5.2 Hz, 1H), 6.90 (s, 2H), 7.22 (dd, J = 7.3, 1.6 Hz, 1H), 7.30 (t, J = 8.8 Hz, 2H), 7.65-7.73 (m, 2H), 7.96 (bs, 1H), 8.17 (d, J = 5.2 Hz, 1H), 9.52 (d, J = 7.3 Hz, 1H). MS (ESI+) 393.3.

4.1.13. 1-[3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-yl]propan-1-one (**16**) and 3-(2-aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo-[1,2-a]pyridine-7-carboxylic acid methyl amide (**17**)

A suspension of Weinreb amide **15** (1.02 g, 2.60 mmol) in THF (175 mL) was charged with the dropwise addition of ethylmagnesium bromide (26.0 mL of a 1.0 M solution in THF, 26.0 mmol), and the reaction was stirred at room temperature for 12 h, after which a second portion of ethylmagnesium bromide (25.0 mL of a 1.0 M solution in THF, 25.0 mmol) was added. After stirring at room temperature for an additional 2 h, the reaction was quenched with saturated aqueous NH₄Cl solution (300 mL); the layers were separated, and the aqueous layer was back-extracted with CH₂Cl₂ (2 × 250 mL). The organic fractions were pooled, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **16**: 220 mg (23%). ¹H NMR (400 MHz, CDCl₃) δ 1.26 (t, J = 7.2 Hz, 3H), 3.07 (q, J = 7.2 Hz, 2H), 5.42 (bs, 2H), 6.50 (d, J = 5.4 Hz, 1H), 7.13 (t, J = 8.6 Hz, 2H), 7.49 (dd, J = 7.4, 1.5 Hz, 1H), 7.62 (m, 2H), 8.13 (d, J = 5.4 Hz, 1H), 8.26 (bs, 1H), 9.43 (d, J = 7.4 Hz, 1H). MS (ESI+) 362.3. Yield of **17**: 260 mg (28%). ¹H NMR (400 MHz, CDCl₃) δ 2.99 (s, 3H), 5.51 (bs, 2H), 6.44 (d, J = 5.4 Hz, 1H), 7.12 (t, J = 8.6 Hz, 2H), 7.47 (dd, J = 7.3, 1.8 Hz, 1H), 7.54–7.60 (m, 2H), 7.99 (bs, 1H), 8.08 (d, J = 5.4 Hz, 1H), 9.47 (d, J = 7.3 Hz, 1H). MS (ESI+) 363.3.

4.1.14. 2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridine-7-carbaldehyde (**18**)

A solution of alcohol **1** (3.66 g, 9.99 mol) in CH₂Cl₂ (750 mL) was charged with manganese(IV) oxide (21.7 g, 250 mmol). The reaction was stirred at room temperature for 5 h, and was then filtered through Celite, and the Celite filter cake was then rinsed with CH₂Cl₂ (750 mL) and EtOAc (500 mL). The filtrate was then concentrated under reduced pressure and dried under vacuum, and not purified further. Yield of **18**: 2.39 g (66%). ¹H NMR (500 MHz, CDCl₃) δ 2.65 (s, 3H), 6.87 (d, J = 5.5 Hz, 1H), 7.17 (t, J = 9.0 Hz, 2H), 7.51 (d, J = 7.5 Hz, 1H), 7.62–7.68 (m, 2H), 8.27 (bs, 1H), 8.40 (d, J = 5.5 Hz, 1H), 9.54 (d, J = 7.5 Hz, 1H), 10.08 (s, 1H). MS (ESI+) 365.2.

4.1.15. 1-[2-(4-Fluorophenyl)-3-(2-methanesulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]propan-1-one (19)

A solution of Weinreb amide 13 (5.60 g, 13.2 mmol) and THF (100 mL) was cooled to $-70 \degree$ C in a CO₂/IPA bath, then charged with the dropwise addition of ethylmagnesium bromide (15 mL of a 1.0 M solution in THF, 15.0 mmol). Additional aliquots of ethylmagnesium bromide (15 mL of a 1.0 M solution in THF, 15.0 mmol) were added at t = 2 hand t = 12 h. After stirring for an additional 3 h, the reaction was then quenched with a saturated aqueous NH₄Cl solution (200 mL), and then extracted with CH_2Cl_2 (3 × 200 mL). The organic fractions were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 96:3.6:0.4 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **19**: 1.50 g (29%). ¹H NMR (400 MHz, CDCl₃) δ 1.28 (t, J = 7.3 Hz, 3H), 2.65 (s, 3H), 3.08 (q, J = 7.3 Hz, 2H), 6.85 (d, J = 5.2 Hz, 1H), 7.15 (t, J = 8.6 Hz, 2H), 7.56 (d, J = 7.2 Hz, 1H), 7.59-7.67 (m, 2H), 8.30 (bs, 1H), 8.36 (d, J = 5.2 Hz, 1H), 9.53 (d, J = 7.2 Hz, 1H). MS (ESI+) 393.1.

4.1.16. 1-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]ethanol (20a)

A solution of aldehyde **18** (1.00 g, 2.74 mmol) in THF (100 mL) was chilled to $-70 \,^{\circ}$ C in a CO₂/IPA bath, then charged with the dropwise addition of methylmagnesium bromide (7.35 mL of a 1.4 M in 3:1 toluene:THF, 10.3 mmol). After stirring at $-70 \,^{\circ}$ C for 2 h, the reaction was quenched

with H₂O (50 mL) and extracted into EtOAc (3 × 200 mL). The organic fractions were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 97:2.7:0.3 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **20a**: 600 mg (58%). ¹H NMR (400 MHz, CDCl₃) δ 1.56 (d, J = 6.4 Hz, 3H), 2.70 (s, 3H), 4.97 (q, J = 6.4 Hz, 1H), 6.83 (d, J = 5.5 Hz, 1H), 7.03 (dd, J = 7.3, 1.5 Hz, 1H), 7.20 (t, J = 8.7 Hz, 2H), 7.61–7.69 (m, 2H), 7.73 (bs, 1H), 8.34 (d, J = 5.5 Hz, 1H), 9.52 (d, J = 7.3 Hz, 1H). MS (ESI+) 380.9.

4.1.17. 1-[2-(4-Fluorophenyl)-3-(2-methanesulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]propan-1-ol (20b)

A solution of ketone **19** (1.50 g, 3.82 mmol) in EtOH (100 mL) was charged with NaBH₄ (174 mg, 4.60 mmol), and the reaction was allowed to stir at room temperature for 12 h, and was then quenched with a saturated aqueous NaHCO₃ solution (150 mL) then extracted into CH₂Cl₂ (2 × 100 mL). The organic fractions were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure, and not purified further. Yield of **20b**: 1.52 g (100%). ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, J = 7.4 Hz, 3H), 1.78 (m, 2H), 2.58 (s, 3H), 4.62–4.70 (m, 1H), 6.74 (d, J = 5.4 Hz, 1H), 6.95 (d, J = 7.4 Hz, 1H), 7.07 (t, J = 8.6 Hz, 2H), 7.55 (m, 2H), 7.58 (bs, 1H), 8.22 (d, J = 5.4 Hz, 1H), 9.49 (d, J = 7.4 Hz, 1H). MS (ESI+) 395.2.

4.1.18. General procedure for the synthesis of mesylates **21a** and **21b**

A solution of appropriate alcohol in THF was cooled to 0 °C in an ice water bath, charged with Et_3N and methanesulfonyl chloride, and then allowed to warm to room temperature with stirring for 12 h. The reaction was cooled again to 0 °C and charged with additional portions of both Et_3N and methanesulfonyl chloride as indicated, and allowed to warm to room temperature again. Once starting material was consumed, the product was then either isolated by aqueous workup (EtOAc, H_2O), or carried directly onto the next step in the same reaction vessel.

4.1.18.1. Methanesulfonic acid 1-[2-(4-fluorophenyl)-3-(2methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]ethyl ester (**21a**). Mesylate **21a** was prepared from alcohol **20a** (1.00 g, 2.64 mmol), Et₃N (801 mg, 7.92 mmol at t = 0 h and t = 12 h), and methanesulfonyl chloride (663 mg, 5.81 mmol at t = 0 h and t = 12 h) in THF (20 mL). After stirring for 5 h beyond the second addition of reagents, the reaction was then quenched with saturated aqueous NaHCO₃ solution (100 mL), and extracted into EtOAc (2 × 50 mL). The organic fractions were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Crude mesylate **21a** was then carried directly onto the next step. ¹H NMR (400 MHz, CDCl₃) δ 1.78 (d, J = 6.6 Hz, 3H), 2.65 (s, 3H), 2.97 (s, 3H), 5.84 (q, J = 6.6 Hz, 1H), 6.83 (d, J = 5.4 Hz, 1H), 7.06 (dd, J = 7.4, 1.6 Hz, 1H), 7.16 (t, J = 8.6 Hz, 2H), 7.59–7.67 (m, 2H), 7.75 (bs, 1H), 8.33 (d, J = 5.4 Hz, 1H), 9.62 (d, J = 7.4 Hz, 1H). MS (ESI+) 394.9 (resulting from displacement of $-OSO_2CH_3$ by $-OCH_3$ in the MS).

4.1.18.2. Methanesulfonic acid 1-[2-(4-fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]propyl ester (21b). Mesylate 21b was prepared from alcohol 20b (1.52 g, 3.82 mmol), Et₃N (1.16 g, 11.5 mmol at <math>t = 0 h and t = 12 h), and methanesulfonyl chloride (0.960 g, 8.40 mmol at t = 0 h and t = 12 h) in THF (100 mL). After stirring for 12 h beyond the second addition of reagents, the reaction was carried onto the next step (synthesis of dimethylamine 22b) in the same reaction vessel without prior isolation of the mesylate.

4.1.19. General procedure for the synthesis of tertiary amines 22a and 22b

A solution of appropriate mesylate in THF was charged with dimethylamine (2.0 M solution in THF), with additional portions added as indicated. The reaction was then quenched with water and extracted into EtOAc, dried over Na_2SO_4 , filtered, concentrated under reduced pressure, and chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH.

4.1.19.1. {1-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]ethyl}dimethylamine (22a). Dimethylamine 22a was prepared from mesylate 21a (theoretically 422 mg, 0.920 mmol) and dimethylamine (920 µL of a 2.0 M solution in THF, 1.84 mmol at t = 0 h, t = 2 h, and t = 4 h) in THF (10 mL). After stirring for 12 h beyond the final addition of dimethylamine solution, the reaction was worked up and chromatographed as described in the general procedure above. Yield of 22a: 110 mg (30% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 1.40 (d, J = 6.7 Hz, 3H), 2.25 (s, 6H), 2.63 (s, 3H), 3.38 (q, J = 6.7 Hz, 1H), 6.80 (d, J = 5.4 Hz, 1H), 7.09 (dd, J = 7.4, 1.5 Hz, 1H), 7.13 (t, J = 8.7 Hz, 2H), 7.56 (bs, 1H), 7.57–7.65 (m, 2H), 8.27 (d, J = 5.4 Hz, 1H), 9.54 (d, J = 7.4 Hz, 1H). MS (ESI+) 407.6.

4.1.19.2. {1-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]propyl}dimethylamine (22b). Dimethylamine 22b was prepared from mesylate 21b (theoretically 1.81 g, 3.82 mmol) and dimethylamine (19.1 mL of a 2.0 M solution in THF, 38.2 mmol at t = 0 h and t = 12 h) in THF (100 mL). After stirring for 72 h beyond the final addition of dimethylamine solution, the reaction was worked up and chromatographed as described in the general procedure above. Yield of 22b: 800 mg (50% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 0.77 (t, J = 7.2 Hz, 3H), 1.69–1.77 (m, 1H), 1.93–2.01 (m, 1H), 2.23 (s, 6H), 2.63 (s, 3H), 3.12 (dd, J = 5.6, 0.8 Hz, 1H), 6.80 (d, J = 5.2 Hz, 1H), 6.98 (dd, J = 7.2, 2.0 Hz, 1H), 7.08–7.16 (m, 2H), 7.50 (bs, 1H), 7.57–7.65 (m, 2H), 8.26 (d, J = 5.2 Hz, 1H), 9.53 (d, J = 7.2 Hz, 1H). MS (ESI+) 422.1.

4.1.20. {1-[2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]ethyl}dimethylamine (**23a**)

A solution of sulfide 22a (625 mg, 1.35 mmol) in MeOH (25 mL) was charged with AcOH (919 mg, 876 µL, 15.3 mmol), hydrogen peroxide (730 mg of a 30% w/w aqueous solution, 658 µL, 6.43 mmol), and sodium tungstate dihydrate (152 mg, 0.461 mmol). After stirring for 4 h at room temperature, second portions of AcOH (919 mg, 876 µL, 15.3 mmol) and hydrogen peroxide (730 mg of a 30% w/w aqueous solution, 658 µL, 6.43 mmol) were added, and stirring continued at room temperature for 12 h. The reaction was then cooled to -70 °C in a CO₂/IPA bath, and charged with sulfur dioxide (22 g). The reaction was stirred at below -20 °C for 3 h, and then allowed to warm to room temperature, and was then quenched with a saturated aqueous NaHCO₃ solution (250 mL), and extracted into EtOAc $(3 \times 100 \text{ mL})$. The organic fractions were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Crude sulfone 23a was then carried onto the next step without further purification. MS (ESI+) 394.9 (resulting from displacement of $-N(CH_3)_2$ by $-OCH_3$ in the MS).

4.1.21. {1-[2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]propyl}dimethylamine (**23b**)

A solution of sulfide 22b (800 mg, 1.90 mmol) was charged with MeOH (25 mL), then a solution of OXONE[®] (3.5 g, 5.7 mmol) in H₂O (25 mL), then acetone (25 mL), and the reaction was allowed to stir at room temperature for 12 h. The reaction was then cooled to -50 °C in a CO₂/IPA bath, and charged with sulfur dioxide gas (6.6 g). The reaction was then allowed to warm to room temperature for 3 h, after which it was neutralized with a saturated aqueous NaHCO₃ solution, and extracted into CH_2Cl_2 (2 × 250 mL). The organic extracts were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure, and carried onto the next step without further purification. Crude yield of **23b**: 886 mg (100%). ¹H NMR (400 MHz, CDCl₃) δ 0.73 (t, J = 7.2 Hz, 3H), 1.69– 1.74 (m, 1H), 1.89-1.95 (m, 1H), 2.19 (s, 6H), 3.09-3.17 (m, 1H), 3.33 (s, 3H), 7.06 (d, J = 7.2 Hz, 1H), 7.14 (t, J = 8.4 Hz, 2H), 7.21 (d, J = 5.6 Hz, 1H), 7.51 (bs, 1H), 7.52–7.60 (m, 2H), 8.43 (d, J = 5.6 Hz, 1H), 9.79 (d, J = 7.2 Hz, 1H). MS (ESI+) 454.2.

4.1.22. General procedure for the synthesis of 2-aminopyrimidines **24a** and **24b**

A suspension of appropriate sulfone in THF was chilled in a pressure reactor to -60 °C to -70 °C in a CO₂/IPA bath, and charged with excess ammonia gas. The pressure reactor was sealed, and the reaction was allowed to warm to room temperature with stirring for 12 h, during which the reaction pressure had reached 35–50 psi. The pressure was then released, and the reaction was concentrated under reduced pressure, and then chromatographed on SiO_2 using a gradient that started with CH_2Cl_2 and ended with 90:9:1 CH_2Cl_2 :MeOH:concentrated NH_4OH .

4.1.22.1. 4-[7-(1-Dimethylaminoethyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (**24a**). 2-Aminopyrimidine **24a** was prepared from sulfone **23a** (theoretically 672 mg, 1.53 mmol) and ammonia (3.50 g, 205 mmol) in THF (50 mL). Yield of **24a**: 240 mg (42% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 1.40 (d, J = 6.6 Hz, 3H), 2.26 (s, 6H), 3.37 (q, J = 6.6 Hz, 1H), 5.23 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 7.03 (dd, J = 7.3, 1.3 Hz, 1H), 7.11 (t, J = 8.7 Hz, 2H), 7.54 (bs, 1H), 7.60–7.68 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.41 (d, J = 7.3 Hz, 1H). MS (ESI+) 376.8. The two enantiomers of **24a** were then separated on a ChiralCel OJ column (Diacel) by eluting with 15% isopropyl alcohol and 85% heptane.

4.1.22.2. 4-[7-(1-Dimethylaminopropyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (**24b**). 2-Aminopyrimidine **24b** was prepared from sulfone **23b** (theoretical quantity: 862 mg, 1.90 mmol) and ammonia (13.4 g, 787 mmol) in THF (50 mL). Yield of **24b**: 500 mg (68% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 0.77 (t, J = 7.2 Hz, 3H), 1.70– 1.77 (m, 1H), 1.93–2.00 (m, 1H), 2.24 (s, 6H), 3.11 (dd, J = 5.6, 4.4 Hz, 1H), 5.12 (bs, 2H), 6.52 (d, J = 5.6 Hz, 1H), 6.93 (dd, J = 7.5, 1.4 Hz, 1H), 7.07–7.15 (m, 2H), 7.48 (bs, 1H), 7.59–7.67 (m, 2H), 8.11 (d, J = 5.6 Hz, 1H), 9.41 (d, J = 7.5 Hz, 1H). MS (ESI+) 391.3.

4.1.23. [2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]acetonitrile (**26**)

A solution of mesylate **25** (7.40 g, 16.6 mmol) in CH₂Cl₂ (200 mL) was charged with tetra-*n*-butylammonium cyanide (4.47 g, 16.6 mmol). After stirring at room temperature for 12 h, the reaction was concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with heptane and ended with EtOAc. Yield of **26**: 4.20 g (67%). ¹H NMR (500 MHz, CDCl₃) δ 2.65 (s, 3H), 3.88 (s, 2H), 6.83 (d, J = 5.2 Hz, 1H), 6.95 (dd, J = 7.5, 2.0 Hz, 1H), 7.15 (t, J = 8.8 Hz, 2H), 7.58–7.66 (m, 2H), 7.69 (bs, 1H), 8.32 (d, J = 5.2 Hz, 1H), 9.61 (d, J = 7.5 Hz, 1H). MS (ESI+) 376.2.

4.1.24. General procedure for the synthesis of α -alkylated nitriles 27a and 27b

A solution of nitrile **26** in THF was cooled to 0 °C in an ice water bath, and then charged with NaH in portions. After stirring for 5 min, appropriate alkyl halide was added. After warming to room temperature and stirring for the indicated length of time, then reaction was worked up (EtOAc, H₂O), dried over Na₂SO₄, filtered, concentrated under reduced pressure, and chromatographed on SiO₂ using a gradient that started with heptane and ended with 50:50 EtOAc:heptane.

4.1.24.1. 2-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]pentanenitrile (27a). α -n-Propylnitrile 27a was prepared from nitrile 26 (3.00 g, 7.99 mmol), NaH (352 mg of a 60% w/w suspension in mineral oil, 8.79 mmol), and 1-bromopropane (2.95 g, 2.18 mL, 24.0 mmol) in THF (100 mL) with 12 h of stirring. Yield of **27a**: 1.77 g (53%). ¹H NMR (400 MHz, CDCl₃) δ 1.01 (t, J = 7.3 Hz, 3H), 1.49–1.65 (m, 2H), 1.88–2.09 (m, 2H), 2.66 (s, 3H), 3.93 (dd, J = 8.0, 6.4 Hz, 1H), 6.84 (d, J = 5.5 Hz, 1H), 6.99 (dd, J = 7.2, 1.9 Hz, 1H), 7.16 (t, J = 8.6 Hz, 2H), 7.59–7.67 (m, 2H), 7.68 (bs, 1H), 8.33 (d, J = 5.5 Hz, 1H), 9.63 (d, J = 7.2 Hz, 1H). MS (ESI+) 418.1.

4.1.24.2. 2-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4yl)imidazo[1,2-a]pyridin-7-yl]-2-methylpropiontirile (**27b**). α,α-Dimethylnitrile **27b** was prepared from nitrile **26** (3.70 g, 9.85 mmol), NaH (1.18 g of 60% w/w suspension in mineral oil, 29.6 mmol), and methyl iodide (3.08 g, 21.7 mmol) in THF (200 mL) with 30 min of stirring. Yield of **27b**: 3.21 g (81%). ¹H NMR 400 MHz, CDCl₃) δ 1.80 (s, 6H), 2.64 (s, 3H), 6.82 (d, J = 5.6 Hz, 1H), 7.11 (d, J = 7.3 Hz, 1H), 7.14 (t, J = 8.6 Hz, 2H), 7.57–7.65 (m, 2H), 7.77 (bs, 1H), 8.31 (d, J = 5.6 Hz, 1H), 9.61 (d, J = 7.3 Hz, 1H). MS (ESI+) 404.2.

4.1.25. General procedure for the synthesis of amides 28a and 28b

Appropriate nitrile was chilled in an ice water bath and treated with the dropwise addition of concentrated H_2SO_4 . The reaction was then heated to 100 °C for 3 h, cooled to room temperature, and then neutralized by the slow addition of saturated aqueous NaHCO₃ solution until basic to litmus paper. The mixture was then extracted into EtOAc. The organic fractions were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure, and not purified further.

4.1.25.1. 2-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]pentanoic acid amide (**28a**). Amide **28a** was prepared from nitrile **27a** (1.67 g, 4.00 mmol) and concentrated H₂SO₄ (20 mL). Yield of **28a**: 1.48 g (85%). ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, J = 7.3 Hz, 3H), 1.29–1.42 (m, 2H), 1.78–1.89 (m, 1H), 2.08–2.19 (m, 1H), 2.65 (s, 3H), 3.51 (t, J = 7.6 Hz, 1H), 5.53 (bs, 1H), 5.79 (bs, 1H), 6.80 (d, J = 5.4 Hz, 1H), 7.08 (dd, J = 7.2, 1.7 Hz, 1H), 7.15 (t, J = 8.7 Hz, 2H), 7.59 (bs, 1H), 7.59–7.66 (m, 2H), 8.30 (d, J = 5.4 Hz, 1H), 9.56 (d, J = 7.2 Hz, 1H). MS (ESI+) 436.2.

4.1.25.2. 2-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]isobutyramide (**28b**). Amide **28b** was prepared from nitrile **27b** (1.85 g, 4.59 mmol) and concentrated H₂SO₄ (20 mL). Yield of **28b**: 1.87 g (96%). ¹H NMR (500 MHz, CDCl₃) δ 1.68 (s, 6H), 2.66 (s, 3H), 5.40 (m, 2H), 6.83 (d, J = 5.2 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H), 7.17 (t, J = 8.8 Hz, 2H), 7.60–7.68 (m, 2H), 7.74 (bs, 1H), 8.32 (d, J = 5.2 Hz, 1H), 9.54 (d, J = 7.5 Hz, 1H). MS (ESI+) 422.2.

4.1.26. General procedure for the synthesis of primary amines **29a** and **29b**

A solution of appropriate amide in CH₃CN was charged with bis(trifluoroacetoxy)iodobenzene in portions, and allowed to stir at room temperature for 12 h. The reaction was then treated with the dropwise addition of concentrated HCl and allowed to stir at room temperature for 15 min, after which it was treated with 2 N NaOH solution until it became basic to litmus paper. The mixture was then extracted repeatedly into EtOAc. The organic fractions were pooled, washed with H₂O (2 × 100 mL), dried over Na₂SO₄, filtered, concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH.

4.1.26.1. 1-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]butylamine (**29a**). Amine **29a** was prepared from amide **28a** (460 mg, 1.05 mmol) and bis-(trifluoroacetoxy)iodobenzene (454 mg, 1.05 mmol) in CH₃CN (10 mL). Yield of **29a**: 110 mg (26%). ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, J = 7.3 Hz, 3H), 1.23–1.46 (m, 2H), 1.70 (q, J = 7.4 Hz, 2H), 2.65 (s, 3H), 4.03 (t, J = 6.8 Hz, 1H), 6.81 (d, J = 5.4 Hz, 1H), 7.03 (dd, J = 7.3, 1.6 Hz, 1H), 7.14 (t, J = 8.6 Hz, 2H), 7.61 (bs, 1H), 7.59–7.67 (m, 2H), 8.28 (d, J = 5.4 Hz, 1H), 9.56 (d, J = 7.3 Hz, 1H). MS (ESI+) 408.2.

4.1.26.2. 1-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]-1-methylethylamine (29b). Amine 29b was prepared from amide 28b (400 mg, 0.949 mmol) and bis(trifluoroacetoxy)iodobenzene (410 mg, 0.953 mmol) in CH₃CN (40 mL). Yield of 29b: 202 mg (54%). ¹H NMR (500 MHz, CDCl₃) δ 1.65 (s, 6H), 2.66 (s, 3H), 6.82 (d, J = 5.5 Hz, 1H), 7.15 (t, J = 8.8 Hz, 2H), 7.20 (d, J = 6.0 Hz, 1H), 7.57–7.65 (m, 2H), 7.89 (bs, 1H), 8.30 (d, J = 5.5 Hz, 1H), 9.52 (d, J = 7.5 Hz, 1H). MS (ESI+) 394.2.

4.1.27. General procedure for the synthesis of dimethylamines **30a** and **30b**

A solution of appropriate primary amine in CH_3OH was charged with formaldehyde, AcOH, and sodium cyanoborohydride. After stirring at room temperature for 3 h, the reaction was worked up (EtOAc, saturated NaHCO₃ solution), dried over Na₂SO₄, filtered, concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH_2Cl_2 and ended with 90:9:1 CH_2Cl_2 :MeOH:concentrated NH₄OH.

4.1.27.1. {1-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]butyl}dimethylamine (**30a**). Dimethylamine **30a** was prepared from primary amine **29a** (240 mg, 0.589 mmol), formaldehyde (143 mg of 37% w/w solution in H₂O, 131 µL), AcOH (240 µL), and sodium cyanoborohydride (2.94 mL of a 1.0 M solution in THF, 2.94 mmol) in CH₃OH (5.0 mL). Crude yield of **30a**: 310 mg (>100%). ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, J = 7.3 Hz, 3H), 1.13– 1.34 (m, 2H), 2.10 (s, 3H), 2.17 (q, J = 7.7 Hz, 1H), 2.67 (s, 3H), 2.79 (s, 3H), 3.50 (s, 1H), 4.08 (dd, J = 9.1, 6.4 Hz, 1H), 6.83 (d, J = 5.4 Hz, 1H), 7.17 (dd, J = 7.2, 2.0 Hz, 1H), 7.17 (t, J = 8.6 Hz, 2H), 7.57–7.65 (m, 2H), 7.77 (bs, 1H), 8.37 (d, *J* = 5.4 Hz, 1H), 9.69 (d, *J* = 7.2 Hz, 1H). MS (ESI+) 436.7.

4.1.27.2. {1-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]-1-methylethyl}dimethylamine (**30b**). Dimethylamine **30b** was prepared from amine **29b** (643 mg, 1.63 mmol), formaldehyde (398 mg of a 37% w/ w aqueous solution, 4.90 mmol), AcOH (3.1 mL), and sodium cyanoborohydride (8.17 mL of a 1.0 M solution in THF, 8.17 mmol) in MeOH (36 mL). Yield of **30b**: 560 mg (82%). ¹H NMR (500 MHz, CDCl₃) δ 1.80 (bs, 6H), 2.65 (bs, 6H), 2.70 (s, 3H), 6.85 (d, J = 5.5 Hz, 1H), 7.18 (t, J = 8.5 Hz, 2H), 7.48 (d, J = 7.5 Hz, 1H), 7.60–7.68 (m, 2H), 7.78 (bs, 1H), 8.37 (bs, 1H), 9.67 (d, J = 7.5 Hz, 1H). MS (ESI+) 422.2.

4.1.28. General procedure for the synthesis of sulfones **31a** and **31b**

A solution of appropriate sulfide in 1:1 MeOH:acetone was charged with a solution of OXONE[®] in H₂O, and allowed to stir at room temperature for 12 h. The reaction was then chilled to -40 °C in a CO₂/IPA bath. Excess sulfur dioxide gas was then bubbled in over 5 min. After stirring at -40 °C for an additional 15 min, the reaction was quenched with a saturated aqueous NaHCO₃ solution until basic to litmus paper, and then extracted repeatedly into EtOAc. The organic fractions were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure.

4.1.28.1. {1-[2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]butyl}dimethylamine (**31a**). Sulfone **31a** was prepared from crude sulfide **30a** (theoretically 257 mg, 0.589 mmol) and OXONE[®] (1.08 g, 1.77 mol dissolved in 10 mL H₂O) in 1:1 MeOH:acetone (20 mL), and subsequent treatment with sulfur dioxide (12.9 g, 201 mmol). Yield of **31a**: 234 mg (85% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 0.90 (t, J = 7.2 Hz, 3H), 1.10–1.25 (m, 2H), 1.68–1.82 (m, 1H), 1.87–1.98 (m, 1H), 2.26 (s, 6H), 3.26–3.36 (m, 1H), 3.41 (s, 3H), 7.15 (dd, J = 7.2, 1.7 Hz, 1H), 7.21 (t, J = 8.8 Hz, 2H), 7.29 (d, J = 5.7 Hz, 1H), 7.57 (bs, 1H), 7.60–7.67 (m, 2H), 8.51 (d, J = 5.7 Hz, 1H), 9.87 (d, J = 7.2 Hz, 1H). MS (ESI+) 468.0.

4.1.28.2. {1-[2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]-1-methylethyl]dimethylamine (**31b**). Sulfone **31a** was prepared from sulfide **30b** (560 mg, 1.33 mmol) and OXONE[®] (2.45 g, 3.99 mmol dissolved in 20 mL H₂O) in 1:1 MeOH:acetone (50 mL), and subsequent treatment with sulfur dioxide (43 g, 670 mmol). Yield of **31b**: 354 mg (58%). ¹H NMR (500 MHz, CDCl₃) δ 1.41 (bs, 6H), 2.25 (bs, 6H), 3.42 (s, 3H), 7.22 (t, J = 8.5 Hz, 2H), 7.30 (d, J = 5.5 Hz, 1H), 7.55 (bs, 1H), 7.61–7.68 (m, 2H), 7.77 (bs, 1H), 8.52 (d, J = 5.0 Hz, 1H), 9.83 (d, J = 7.5 Hz, 1H). MS (ESI+) 454.3.

4.1.29. General procedure for the synthesis of 2-aminopyrimidines **32a** and **32b**

A suspension of appropriate sulfone in THF was chilled in a pressure reactor to -60 °C to -70 °C in a CO₂/IPA bath, and

charged with excess ammonia gas. The pressure reactor was sealed, and the reaction was allowed to warm to room temperature with stirring for 12 h, during which the reaction pressure had reached 35-50 psi. The pressure was then released, and the reaction was concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH.

4.1.29.1. 4-[7-(1-Dimethylaminobutyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (**32a**). 2-Aminopyridimine **32a** was prepared from sulfone **31a** (224 mg, 0.479 mmol) and ammonia (12.9 g, 757 mmol) in THF (20 mL). Yield of **32a**: 125 mg (64%). ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, J = 7.3 Hz, 3H), 1.09–1.27 (m, 2H), 1.65–1.79 (m, 1H), 1.85–1.97 (m, 1H), 2.25 (s, 6H), 3.22 (dd, J = 9.7, 4.6 Hz, 1H), 5.13 (bs, 2H), 6.54 (d, J = 5.4 Hz, 1H), 6.94 (dd, J = 7.2, 1.7 Hz, 1H), 7.13 (t, J = 8.8 Hz, 2H), 7.50 (bs, 1H), 7.62–7.70 (m, 2H), 8.13 (d, J = 5.4 Hz, 1H), 9.43 (d, J = 7.2 Hz, 1H). MS (ESI+) 405.2.

4.1.29.2. 4-[7-(1-Dimethylamino-1-methyl-ethyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (32b). 2-Aminopyrimidine **32b** was prepared from sulfone **31b** (354 mg, 0.780 mmol) and ammonia (28.0 g, 1.64 mmol) in THF (150 mL). Yield of **32b**: 168 mg (55%). ¹H NMR (500 MHz, CDCl₃) δ 1.40 (bs, 6H), 2.23 (bs, 6H), 5.11 (bs, 2H), 6.54 (d, J = 5.5 Hz, 1H), 7.14 (t, J = 8.8 Hz, 2H), 7.32 (d, J = 6.8 Hz, 1H), 7.62–7.69 (m, 3H), 8.14 (d, J = 5.5 Hz, 1H), 9.39 (d, J = 6.8 Hz, 1H). MS (ESI+) 391.2.

4.1.30. 2-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]propan-2-ol (33)

A solution of ester 12 (327 mg, 0.828 mmol) in THF (30 mL) was chilled to 0 °C in an ice water bath, then charged with methylmagnesium bromide (2.96 mL of a 1.4 M solution in 3:1 toluene:THF, 4.14 mmol), and the reaction was allowed to warm to room temperature and stir for 12 h, after which a second portion of methylmagnesium bromide (2.96 mL of a 1.4 M solution in 3:1 toluene:THF, 4.14 mmol) was added. After stirring at room temperature for another 3 h, the reaction was concentrated under reduced pressure, diluted with CH₂Cl₂ (800 mL), and then washed with H_2O (3 × 100 mL). The organic layer was dried with Na₂SO₄, filtered, and concentrated under reduced pressure, and not purified further. Yield of 33: 315 mg (96%). ¹H NMR (400 MHz, DMSO- d_6) δ 1.50 (s, 6H), 2.60 (s, 3H), 6.88 (d, J = 5.4 Hz, 1H), 7.23-7.30 (m, 1H), 7.32 (t, J = 8.6 Hz, 2H), 7.62–7.70 (m, 2H), 7.73 (bs, 1H), 8.47 (d, J = 5.4 Hz, 1H), 9.36 (d, J = 7.4 Hz, 1H). MS (ESI+) 394.9.

4.1.31. 2-[2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]propan-2-ol (34)

A solution of sulfide **33** (1.45 g, 3.68 mmol) in MeOH/acetone (7 mL + 56 mL) was charged with a solution of OX- $ONE^{\textcircled{8}}$ (6.78 g, 11.0 mmol) in H₂O (60 mL). The reaction was allowed to stir at room temperature for 12 h, and was then concentrated under reduced pressure to remove as much organic solvent as possible, then diluted with H₂O (200 mL), and extracted into EtOAc (4 × 50 mL). The organic fractions were pooled, washed with H₂O (2 × 50 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Yield of **34**: 1.12 g (72%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.51 (s, 6H), 3.48 (s, 3H), 7.28–7.41 (m, 4H), 7.67–7.75 (m, 2H), 7.79 (bs, 1H), 8.80 (d, *J* = 5.6 Hz, 1H), 9.52 (d, *J* = 7.4 Hz, 1H). MS (ESI+) 426.9.

4.1.32. 2-[3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-yl]propan-2-ol (**35**)

A suspension of sulfone **34** (237 mg, 0.555 mmol) in THF (60 mL) in a pressure reactor was chilled to -78 °C in a CO₂/IPA bath, and ammonia (24.5 g, 144 mmol) was bubbled in over 15 min. The pressure reactor was sealed, and the reaction was allowed to warm to room temperature with stirring for 12 h, during which the reaction pressure reached 50 psi. The pressure was then released, and the reaction was concentrated under reduced pressure, and was then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **35**: 158 mg (78%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.50 (s, 6H), 6.32 (d, *J* = 5.3 Hz, 1H), 6.83 (s, 2H), 7.16 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.29 (t, *J* = 8.8 Hz, 2H), 7.56–7.73 (m, 3H), 8.11 (d, *J* = 5.3 Hz, 1H), 9.47 (d, *J* = 7.4 Hz, 1H). MS (ESI+) 363.9.

4.1.33. 4-[7-(1-Amino-1-methyl-ethyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (**37**)

A mixture of alcohol 35 (440 mg, 1.21 mmol) and NaCN (2.73 g, 55.9 mmol) was chilled to 0 °C in an ice water bath, then charged with the slow addition of AcOH (5.39 mL, 94.5 mmol), then allowed to stir for 10 min. A mixture of concentrated H₂SO₄ (3.4 mL, 63 mmol) in AcOH (1.00 mL, 17.2 mmol) was then added, and the reaction was allowed to warm to room temperature and stir for 1 h. The reaction was then heated to 70 °C for 2 h, then 90 °C for 2 h. The reaction was then diluted with EtOAc and poured into ice water, neutralized with a saturated aqueous Na₂CO₃ solution, and then extracted repeatedly into EtOAc. The organic fractions were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield 435 mg of a mixture of formamides 36a and 36b, which were carried onto the next step without further purification. This mixture of formamides 36a and 36b (435 mg) was charged with 1.0 N NaOH (30 mL), and then heated to 70 °C for 1 h, then 80 °C for an additional 3 h, and then cooled to room temperature for 12 h. An additional portion of 1.0 N NaOH (30 mL) was added, and the reaction was heated at 90 °C for 3 h. The reaction was then chilled in an ice water bath, then diluted with H₂O and extracted with EtOAc $(3 \times 250 \text{ mL})$. The organic fractions were pooled, washed with H2O (20 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH: concentrated NH₄OH. Yield of **37**: 50 mg (11% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 1.43–1.62 (m, 6H), 5.13 (bs, 2H), 6.52 (d, J = 5.4 Hz, 1H), 7.05–7.17 (m, 1H), 7.12 (t, J = 8.6 Hz, 2H), 7.60–7.68 (m, 2H), 7.77 (bs, 1H), 8.12 (d, J = 5.4 Hz, 1H), 9.43 (d, J = 7.5 Hz, 1H). MS (ESI+) 363.2.

4.1.34. 2-[2-(4-Fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]butyrontirile (**38**)

A solution of nitrile 26 (2.00 g, 5.33 mmol) in THF (100 mL) was charged with NaH (234 mg of a 60% w/w suspension in mineral oil, 5.83 mmol), then bromoethane (871 mg, 597 µL, 8.00 mmol), and the reaction was stirred at room temperature for 12 h, and was then quenched with a saturated aqueous NaHCO₃ solution (200 mL) and extracted into EtOAc $(3 \times 200 \text{ mL})$. The organic fractions were pooled, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 97:2.7:0.3 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **38**: 660 mg (31%). ¹H NMR (400 MHz, CDCl₃) δ 1.16 (t, J = 7.4 Hz, 3H), 2.00–2.11 (m, 2H), 2.66 (s, 3H), 3.88 (t, J = 7.0 Hz, 1H), 6.84 (d, J = 5.4 Hz, 1H), 6.98 (dd, J = 7.3, 2.0 Hz, 1H), 7.16 (t, J = 8.8 Hz, 2H), 7.60–7.67 (m, 2H), 7.67–7.72 (m, 1H), 8.33 (d, J = 5.4 Hz, 1H), 9.63 (d, J = 7.3 Hz, 1H). MS (ESI+) 404.1.

4.1.35. General procedure for the synthesis of sulfones **39a**, **39b**, and **39c**

A solution of appropriate sulfide in 1:1 MeOH:acetone was charged with a solution of OXONE[®] in H₂O, and allowed to stir at room temperature for 12 h. The reaction was then chilled to -40 °C in a CO₂/IPA bath. Excess sulfur dioxide gas was then bubbled in over 5 min. After stirring at -40 °C for an additional 15 min, the reaction was quenched with a saturated aqueous NaHCO₃ solution until basic to litmus paper, and then extracted repeatedly into EtOAc. The organic fractions were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure.

4.1.35.1. [2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]acetonitrile (**39a**). Sulfone **39a** was prepared from sulfide **26** (1.00 g, 2.66 mmol) and OXONE[®] (10.0 g, 16.4 mmol dissolved in 150 mL H₂O) in 1:1 MeOH:acetone (300 mL). Yield of **39a**: 980 mg (91%). ¹H NMR (400 MHz, CDCl₃) δ 3.40 (s, 3H), 3.91 (s, 2H), 7.07 (d, J = 7.6 Hz, 1H), 7.20 (t, J = 8.2 Hz, 2H), 7.31 (d, J = 5.6 Hz, 1H), 7.57–7.65 (m, 2H), 7.77 (bs, 1H), 8.54 (d, J = 5.6 Hz, 1H), 9.92 (d, J = 7.6 Hz, 1H). MS (ESI+) 408.2.

4.1.35.2. 2-[2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]butyronitrile (**39b**). Sulfone **39b** was prepared from sulfide **38** (660 mg, 1.64 mmol) and OXONE[®] (3.02 g, 4.92 mmol in 30 mL H₂O) in 1:1 MeOH:acetone (60 mL). Yield of **39b**: 630 mg (88%). MS (ESI+) 435.9.

4.1.35.3. 2-[2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]-2-methylpropiontirile (**39c**). Sulfone **39c** was prepared from sulfide **27b** (2.20 g, 5.45 mmol) and OXONE[®] (10.0 g, 16.4 mmol in 150 mL H₂O) in 1:1 MeOH:acetone (200 mL). Yield of **39c**: 2.10 g (89%). ¹H NMR (500 MHz, CDCl₃) δ 1.84 (s, 6H), 3.43 (s, 3H), 7.20–7.29 (m, 3H), 7.34 (d, J = 5.5 Hz, 1H), 7.61–7.69 (m, 2H), 7.90 (bs, 1H), 8.57 (d, J = 5.5 Hz, 1H), 9.97 (d, J = 7.5 Hz, 1H). MS (ESI+) 436.2.

4.1.36. General procedure for the synthesis of primary amines 40a and 40b

A solution of appropriate nitrile in 9:1 EtOH:CHCl₃ in a pressure reactor was charged with platinum(IV) oxide, pressurized with hydrogen at 50 psi, and stirred at room temperature for 12 h. Additional platinum(IV) oxide was added as noted. The reaction was then filtered, concentrated under reduced pressure, and carried onto the next step without further purification.

4.1.36.1. 2-[2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]ethylamine (40a). Primary amine 40a was prepared from nitrile 39a (980 mg, 2.41 mmol) and platinum(IV) oxide (200 mg, 0.881 mmol at t = 0 h, and 500 mg, 1.14 mmol at t = 12 h) in 9:1 EtOH:CHCl₃ (20 mL). Crude yield of 40a: 1.20 g (>100%). MS (ESI+) 412.2.

4.1.36.2. 2-[2-(4-Fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]butylamine (40b). Primaryamine 40b was prepared from nitrile 39b (630 mg, 1.45 mmol)and platinum oxide (500 mg, 1.14 mmol) in 9:1 EtOH:CHCl₃(50 mL). Crude yield of 40b: 740 mg (>100%). MS (ESI+)440.1.

4.1.37. General procedure for the synthesis of 2-aminopyrimidines **40c**, **41a**, and **41b**

A suspension of appropriate sulfone in THF was chilled in a pressure reactor to -60 °C to -70 °C in a CO₂/IPA bath, and charged with excess ammonia gas. The pressure reactor was sealed, and the reaction was allowed to warm to room temperature with stirring for 12 h, during which the reaction pressure had reached 35–50 psi. The pressure was then released, and the reaction was concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH.

4.1.37.1. 3-[2-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-yl]-2-methylpropiontirile (40c). 2-Aminopyrimidine 40c was prepared from sulfone 39c (1.10 g, 2.53 mmol) and ammonia (49.0 g, 2.88 mol) in THF (100 mL). Yield of 40c: 750 mg (80%). ¹H NMR 500 MHz, CDCl₃) δ 1.82 (s, 6H), 5.15 (bs, 2H), 6.56 (d, J = 5.5 Hz, 1H), 7.09 (dd, J = 7.5, 2.0 Hz, 1H), 7.15 (t, J = 8.8 Hz, 2H), 7.62–7.70 (m, 2H), 7.77 (bs, 1H), 8.17 (d, J = 5.5 Hz, 1H), 9.45 (d, J = 7.5 Hz, 1H). MS (ESI+) 373.4.

4.1.37.2. 4-[7-(2-Aminoethyl)-2-(4-fluorophenyl)imidazo[1,2a]pyridin-3-yl]pyrimidin-2-ylamine (41a). 2-Aminopyrimidine 41a was prepared from sulfone 40a (theoretically 1.20 g, 2.41 mmol) and ammonia (19.1 g, 1.12 mol) in THF (50 mL). Yield of 41a: 214 mg (26% over two steps). ¹H NMR (500 MHz, CDCl₃) δ 2.87 (t, J = 7.0 Hz, 2H), 3.08 (t, J = 7.0 Hz, 2H), 5.14 (bs, 2H), 6.53 (d, J = 5.2 Hz, 1H), 6.82 (dd, J = 7.0, 1.5 Hz, 1H), 7.10–7.18 (m, 2H), 7.51 (bs, 1H), 7.61–7.69 (m, 2H), 8.13 (d, J = 5.2 Hz, 1H), 9.45 (d, J = 7.0 Hz, 1H). MS (ESI+) 349.3.

4.1.37.3. 4-[7-(2-Aminomethylpropyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (**41b**). 2-Aminopyrimidine **41b** was prepared from sulfone **40b** (theoretically 636 mg, 1.45 mmol) and ammonia (16.0, 1.17 mol) in THF (50 mL). Yield of **41b**: 40.0 mg (7.3% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, J = 7.3 Hz, 3H), 1.49– 1.72 (m, 1H), 1.69–1.89 (m, 1H), 2.53–2.74 (m, 1H), 2.83– 3.15 (m, 2H), 5.10 (bs, 2H), 6.53 (d, J = 5.4 Hz, 1H), 6.81 (d, J = 7.1Hz, 1H), 7.13 (t, J = 8.4 Hz, 2H), 7.51 (bs, 1H), 7.61– 7.69 (m, 2H), 8.12 (d, J = 5.4 Hz, 1H), 9.46 (d, J = 7.1 Hz, 1H). MS (ESI+) 377.2.

4.1.38. 4-[7-(2-Amino-1,1-dimethylethyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (**41c**)

A solution of nitrile **40c** (700 mg, 1.88 mmol) in THF (25 mL) was charged with LiAlH₄ (285 mg, 7.52 mmol). After stirring at room temperature for 45 min, the reaction was diluted with EtOAc (200 mL), treated with the slow addition of water (10 mL), and then charged with excess of 2:1 Na₂. SO₄·10H₂O:Celite. The mixture was filtered, then concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **41c**: 196 mg (28%). ¹H NMR (500 MHz, CDCl₃) δ 1.38 (s, 6H), 2.89 (s, 2H), 5.14 (bs, 2H), 6.54 (d, *J* = 5.5 Hz, 1H), 6.97 (dd, *J* = 7.5, 2.0 Hz, 1H), 7.10–7.18 (m, 2H), 7.61–7.69 (m, 3H), 8.13 (d, *J* = 5.5 Hz, 1H), 9.46 (d, *J* = 7.5 Hz, 1H). MS (ESI+) 377.2.

4.1.39. General procedure for the synthesis of tertiary amines 42a, 42b, and 42c

A solution of appropriate primary amine in CH_3OH was charged with formaldehyde, AcOH, and sodium cyanoborohydride. After stirring at room temperature for 3 h, the reaction was worked up (EtOAc, saturated NaHCO₃ solution), dried over Na₂SO₄, filtered, concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH.

4.1.39.1. 4-[7-(2-Dimethylaminoethyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (42a). Dimethylamine 42a was prepared from primary amine 41a (100 mg, 0.287 mmol), formaldehyde (93 mg of a 37% w/w/

1145

solution in H₂O, 0.34 mmol), AcOH (100 µL), and sodium cyanoborohydride (1.43 mL of a 1.0 M solution in THF, 1.43 mmol) in MeOH (3.0 mL). After chromatography on SiO₂, the product was purified further by HPLC using a MeOH/H₂O gradient, where the aqueous phase was 98:9.1:0.1 H₂O:CH₃CN:Et₃N. Yield of **42a**: 68.0 mg (63%). ¹H NMR (500 MHz, CDCl₃) δ 2.33 (s, 6H), 2.64 (t, J = 7.8 Hz, 2H), 2.89 (t, J = 7.8 Hz, 2H), 5.11 (bs, 2H), 6.52 (d, J = 5.5 Hz, 1H), 6.83 (dd, J = 7.0, 2.0 Hz, 1H), 7.10– 7.18 (m, 2H), 7.52 (bs, 1H), 7.61–7.69 (m, 2H), 8.12 (d, J = 5.5 Hz, 1H), 9.44 (dd, J = 7.5, 0.5 Hz, 1H). MS (ESI+) 377.4.

4.1.39.2. 4-[7-(1-Dimethylaminomethylpropyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (42b). Dimethylamine 42b was prepared from primary amine 41b (40.0 mg, 0.106 mmol), formaldehyde (34 mg of a 37% w/w solution in H₂O, 23 µL, 0.43 mmol), AcOH (35 mL), and sodium cyanoborohydride (531 µL of a 1.0 M in THF, 0.531 mmol) in MeOH (2.0 mL). Yield of 42b: 20.0 mg (47%). ¹H NMR (400 MHz, CDCl₃) δ 0.60–0.90 (m, 1H), 0.85 (t, J = 7.4 Hz, 3H), 1.47–1.68 (m, 1H), 1.70–1.93 (m, 1H), 2.25 (s, 6H), 2.62–2.75 (m, 1H), 2.73–2.90 (m, 1H), 5.09 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 6.81 (dd, J = 7.3, 1.8 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.48 (bs, 1H), 7.60–7.68 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.46 (d, J = 7.3 Hz, 1H). MS (ESI+) 405.2.

4.1.39.3. 4-[7-(2-Dimethylamino-1,1-dimethylethyl)-2-(4fluorophenvl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (42c). Dimethylamine 42c was prepared from primary amine **41c** (170 mg, 0.452 mmol), formaldehyde (110 mg of a 37%) aqueous solution, 1.35 mmol), AcOH (170 µL), and sodium cyanoborohydride (2.26 mL of a 1.0 M solution in THF, 2.26 mmol) in MeOH (2.0 mL). After chromatography on SiO₂, the product was purified further by HPLC using a MeOH/H₂O gradient, where the aqueous phase was 98:9.1:0.1 H₂O:CH₃CN:Et₃N. Yield of **42c**: 104 mg (57%). ¹H NMR (500 MHz, CDCl₃) δ 1.39 (s, 6H), 2.15 (s, 6H), 2.54 (s, 2H), 5.11 (bs, 2H), 6.54 (d, J = 5.5 Hz, 1H), 7.06 (dd, J = 7.3, 2.0 Hz, 1H), 7.09–7.17 (m, 2H), 7.62–7.71 (m, 3H), 8.12 (d, J = 5.5 Hz, 1H), 9.44 (d, J = 7.3 Hz, 1H). MS (ESI+) 405.3.

4.1.40. 2-(4-Fluorophenyl)-7-(3-methyloxazolidin-5-yl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo-[1,2-a]pyridine (**43**)

A solution of aldehyde **18** (1.44 g, 3.95 mmol) in toluene (120 mL) was charged with sarcosine (710 mg, 7.97 mmol) and paraformaldehyde (600 mg, 20.0 mmol), and the reaction was equipped with a Dean Stark trap and heated under reflux for 12 h. The reaction was then concentrated under reduced pressure, diluted with acetone, and then filtered through a 5 g SiO₂ cartridge, which was then washed with acetone (80 mL). The filtrate was then concentrated under reduced pressure, and not purified further. Yield of **43**: 1.65 g (98%). ¹H NMR (400 MHz, CDCl₃) δ 2.63 (bs, 6H), 2.90–2.98 (m,

1H), 3.51-3.59 (m, 1H), 4.61-4.68 (m, 1H), 4.67-4.72 (m, 1H), 5.13-5.22 (m, 1H), 6.80 (d, J = 5.4 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 7.13 (t, J = 8.4 Hz, 2H), 7.57-7.64 (m, 2H), 7.69 (bs, 1H), 8.29 (d, J = 5.4 Hz, 1H), 9.56 (d, J = 7.6 Hz, 1H). MS (ESI+) 410.2 (under MS conditions, the aminal bond is cleaved and instead an M + 1 peak is observed for the resulting 7-C(OH)HCH₂N(Me)H product).

4.1.41. 2-Dimethylamino-1-[2-(4-fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]ethanol (44)

A solution of oxazolidine 43 (1.65 g, 3.91 mmol) in EtOH (50 mL) was charged with NaBH₄ (450 mg, 11.9 mmol), and stirred at room temperature for 3 h. The reaction was then quenched with a 20% w/v aqueous NH₄Cl solution (16 mL) and concentrated under reduced pressure, then diluted with H₂O and neutralized with an aqueous K₂CO₃ solution, and then extracted with CH_2Cl_2 (3 × 50 mL). The organic extracts were then pooled, dried over MgSO₄, filtered, and concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **44**: 1.01 g (60%). ¹H NMR (400 MHz, DMSO- d_6) δ 2.21 (s, 6H), 2.49 (m, 2H), 2.58 (s, 3H), 4.74-4.81 (m, 1H), 5.40 (bs, 1H), 6.86 (d, J = 5.6 Hz, 1H), 7.16 (dd, J = 7.2, 1.6 Hz, 1H), 7.29 (t, J = 8.8 Hz, 2H), 7.60–7.68 (m, 3H), 8.45 (d, J = 5.6 Hz, 1H), 9.32 (d, J = 7.2 Hz, 1H). MS (ESI+) 424.2.

4.1.42. {2-Fluoro-2-[2-(4-fluorophenyl)-3-(2-methylsulfanylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]ethyl}dimethylamine (**45**)

A solution of alcohol 44 (134 mg, 0.316 mmol) in CH₂Cl₂ (5.0 mL) was cooled to -78 °C in a CO₂/IPA bath, and then charged with diethylaminosulfur trifluoride (51 mg, 42 µL, 0.32 mmol), then allowed to warm to room temperature and stir for 2 h. The reaction was then washed with H₂O, dried over MgSO₄, filtered, and concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of 45: 44 mg (32%). ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 6H), 2.64 (s, 3H), 2.74-3.01 (m, 2H), 5.70-5.88 (m, 1H), 6.82 (d, J = 5.4 Hz, 1H), 7.00 (dd, J = 7.3, 1.5 Hz, 1H), 7.14 (t, J = 8.6 Hz, 2H), 7.58-7.66 (m, 2H), 7.69 (bs, 1H), 8.30(d, J = 5.4 Hz, 1H), 9.59 (d, J = 7.3 Hz, 1H).

4.1.43. {2-Fluoro-2-[2-(4-fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)imidazo[1,2-a]pyridin-7-yl]ethyl}dimethylamine (**46**)

A solution of sulfide **45** (59 mg, 0.14 mmol) in 1:1 MeO-H:acetone (4.0 mL) was charged with a solution of OXONE[®] (256 mg, 0.417 mmol) in water (2.0 mL), and the reaction was allowed to stir for 12 h at room temperature. The reaction was then cooled to -78 °C in a CO₂/IPA bath, and charged with excess sulfur dioxide for 5 min. After stirring at room temperature for an additional 2 h, the reaction was concentrated under reduced pressure, diluted with H₂O, and treated with a saturated aqueous NaHCO₃ solution until pH = 8. The mixture was then extracted with 9:1 CH₂Cl₂:MeOH (3×20 mL). The organic fractions were pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure, and not purified further. Crude yield of **46**: 102 mg (>100%). MS (ESI+) 457.9.

4.1.44. 4-[7-(2-Dimethylamino-1-fluoroethyl)-2-(4-fluoro-phenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (47)

A suspension of crude sulfone **46** (theoretically 64 mg, 0.14 mmol) in THF (20 mL) in a pressure reactor was chilled to -78 °C in a CO₂/IPA bath, and excess ammonia was bubbled in over 5 min. The pressure reactor was sealed, and the reaction was allowed to warm to room temperature with stirring for 12 h. The pressure was then released, and the reaction was concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **47**: 95 mg (44% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 2.40 (s, 6H), 2.62–2.77 (m, 1H), 2.82–2.98 (m, 1H), 5.15 (bs, 2H), 5.58–5.78 (m, 1H), 6.53 (d, J = 5.3 Hz, 1H), 6.93 (dd, J = 7.3, 1.7 Hz, 1H), 7.13 (t, J = 8.7 Hz, 2H), 7.61–7.70 (m, 3H), 8.15 (d, J = 5.3 Hz, 1H), 9.49 (d, J = 7.3 Hz, 1H). MS (ESI+) 395.2.

4.1.45. 2-Chloro-1-(4-fluorophenyl)ethanone O-methyloxime (**49**) and 2-bromo-1-(4-fluorophenyl)ethanone O-methyloxime (**49**)

A solution of 4-fluorophenacyl chloride (100 g, 579 mmol) in MeOH (1.0 L) was charged with *O*-methylhydroxylamine hydrochloride (96.8 g, 1.56 mol), and was then heated to 65 °C for 2 h. The reaction with crude **48** was then concentrated under reduced pressure, then charged with acetone (750 mL) and LiBr (252 g, 2.90 mol), and heated to 60 °C for 16 h. The reaction was then concentrated under reduced pressure, suspended in CH₂Cl₂ (1.0 L), and washed with H₂O (3 × 200 mL). The organic extracts were then pooled, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Yield of **49**: 118 g (83% over two steps). ¹H NMR (500 MHz, CDCl₃) δ 4.10 (s, 3H), 4.35 (s, 2H), 7.11 (t, J = 8.8 Hz, 2H), 7.69–7.75 (m, 2H). MS (ESI+) 246.0.

4.1.46. 3-[2-(4-Fluorophenyl)imidazo[1,2-a]pyridin-7-yl]propan-1-ol (**50**)

A solution of 3-(pyridin-4-yl)propan-1-ol (7.00 g, 51.0 mmol) in acetone (250 mL) was charged with bromide **49** (12.5 g, 51.0 mmol), and the reaction was stirred at room temperature for 12 h. The intermediate salt was filtered, then dissolved in THF (150 mL) and charged with DBU (5.96 g, 5.85 mL, 39.1 mmol), and the reaction was heated to reflux for 3 h. The reaction was then concentrated under reduced pressure, diluted in CH₂Cl₂, and washed with H₂O. The organic layer was dried with Na₂SO₄, filtered, and concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **50**: 2.00 g (23%). ¹H NMR (400 MHz, CDCl₃)

 δ 1.76–1.86 (m, 2H), 2.64 (t, J = 7.8 Hz, 2H), 3.59 (t, J = 6.3 Hz, 2H), 6.52 (d, J = 6.9 Hz, 1H), 7.00 (t, J = 8.7 Hz, 2H), 7.27 (bs, 1H), 7.59 (bs, 1H), 7.77 (m, 2H), 7.86 (d, J = 6.9 Hz, 1H). MS (ESI+) 270.9.

4.1.47. Methanesulfonic acid 3-[2-(4-fluorophenyl)imidazo-[1,2-a]pyridin-7-yl]propyl ester (51)

A solution of alcohol **50** (600 mg, 2.22 mmol) in CH_2Cl_2 (20 mL) was chilled to 0 °C in an ice water bath, then charged with Et_3N (269 mg, 371 mL, 2.66 mmol) and methanesulfonyl chloride (279 mg, 189 mL), then allowed to warm to room temperature and stir for 2 h. The reaction was diluted with 9:1 CH_2Cl_2 :MeOH and washed with H_2O , then dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. Crude methanesulfonate ester **51** was carried onto the next step without further purification.

4.1.48. {3-[2-(4-Fluorophenyl)imidazo[1,2-a]pyridin-7-yl]propyl}dimethylamine (52)

A solution of crude methanesulfonate ester 51 (theoretically 773 mg, 2.22 mmol) in CH₂Cl₂ (10 mL) was charged with diisopropylethylamine (513 mg, 773 µL, 4.44 mmol) and dimethylamine (773 µL of a 2.0 M in THF, 4.44 mmol). After stirring at room temperature for 2 h, a second portion of dimethylamine (773 µL of a 2.0 M in THF, 4.44 mmol) was added, and the reaction was stirred at room temperature for an additional 12 h. The reaction was then concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **52**: 720 mg (78% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 1.67–1.77 (m, 2H), 2.11 (s, 6H), 2.21 (t, J=7.2 Hz, 2H), 2.56 (t, J = 7.6 Hz, 2H), 6.54 (dd, J = 6.9, 1.4 Hz, 1H), 6.99 (t, J = 8.7 Hz, 2H), 7.27 (bs, 1H), 7.60 (bs, 1H), 7.72–7.81 (m, 2H), 7.89 (d, J = 6.9 Hz, 1H). MS (ESI+) 297.9.

4.1.49. 1-[7-(3-Dimethylaminopropyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]ethanone (53)

A solution of imidazopyridine **52** (170 mg, 0.572 mmol) in acetic anhydride (10.0 mL) was charged with concentrated H₂SO₄ (four drops) and heated to 160 °C for 12 h. The reaction was then concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **53**: 80.0 mg (41%). ¹H NMR (400 MHz, CDCl₃) δ 1.80–1.93 (m, 2H), 2.17 (s, 3H), 2.23 (s, 6H), 2.27–2.37 (m, 2H), 2.79 (t, *J* = 7.6 Hz, 2H), 6.96 (dd, *J* = 7.1, 1.6 Hz, 1H), 7.19 (t, *J* = 8.7 Hz, 2H), 7.51 (bs, 1H), 7.57 (m, 2H), 9.65 (d, *J* = 7.1 Hz, 1H). MS (ESI+) 340.1.

4.1.50. 3-Dimethylamino-1-[7-(3-dimethylaminopropyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]propenone (**54**)

A solution of ketone 53 (290 mg, 0.850 mmol) in DMFDMA (509 mg, 567 μ L, 4.27 mmol) was heated to

110 °C for 12 h. The reaction was then concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH_2Cl_2 and ended with 90:9:1 CH_2Cl_2 :MeOH:concentrated NH₄OH, and carried directly onto the next step. Yield of **54**: 100 mg (30%). MS (ESI+) 395.2.

4.1.51. 4-[7-(3-Dimethylaminopropyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (**55**)

A solution of enone 54 (97 mg, 0.24 mmol) in DMF (6.0 mL) was charged with guanidine hydrochloride (27 mg, 0.28 mmol) and K_2CO_3 (39 mg, 0.28 mmol), and the reaction was heated to 110 °C for 12 h. The reaction was then diluted with 9:1 CH₂Cl₂:MeOH, and washed with a saturated aqueous NaHCO₃ solution, then saturated aqueous LiCl solution, then dried over Na₂SO₄, filtered, and concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH: concentrated NH₄OH. Yield of 55: 27 mg (28%). ¹H NMR (400 MHz, CDCl₃) δ 1.83–1.93 (m, 2H), 2.27 (s, 6H), 2.32– 2.39 (m, 2H), 2.77 (t, J = 7.6 Hz, 2H), 5.09 (bs, 2H), 6.52 (d, J = 5.5 Hz, 1H), 6.81 (dd, J = 7.3, 1.8 Hz, 1H), 7.13 (t, J = 8.9 Hz, 2H), 7.48 (bs, 1H), 7.60-7.67 (m, 2H), 8.12 (d, J = 5.5 Hz, 1H), 9.43 (d, J = 7.3 Hz, 1H). MS (ESI+) 391.3.

4.1.52. 1-(3,4,5,6-Tetrahydro-2H-[4,4']bipyridin-1-yl)ethanone (**56**)

A solution of 1,2,3,4,5,6-hexahydro-[4,4']bipyridinyl (3.01 g, 18.6 mmol) in acetic anhydride was stirred at room temperature for 12 h, and was then concentrated under reduced pressure, diluted with CH₂Cl₂ (250 mL), washed with a saturated aqueous NaHCO₃ solution (3 × 50 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Yield of **56**: 2.99 g (79%). ¹H NMR (400 MHz, CDCl₃) δ 1.54–1.72 (m, 2H), 1.92 (t, *J* = 13.6 Hz, 2H), 2.14 (s, 3H), 2.58–2.70 (m, 1H), 2.70–2.83 (m, 1H), 3.14–3.25 (m, 1H), 3.91–4.02 (m, 1H), 4.75–4.88 (m, 1H), 7.15 (d, *J* = 5.9 Hz, 2H), 8.55 (d, *J* = 5.9 Hz, 2H). MS (ESI+) 204.9.

4.1.53. 1-{4-[2-(4-Fluorophenyl)imidazo[1,2-a]pyridin-7-yl]piperidin-1-yl}ethanone (57)

A solution of pyridine **56** (2.97 g, 14.5 mmol) in acetone (100 mL) was charged with α -bromo-*O*-methyloxime **49** (3.57 g, 14.5 mmol), and the reaction was stirred at room temperature for 12 h, then concentrated under reduced pressure, diluted with MeOH (100 mL), charged with *t*-BuOK (1.95 g, 17.4 mmol), and heated to 80 °C for 12 h. The reaction was then concentrated under reduced pressure, and chromato-graphed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **57**: 3.05 g (62%). ¹H NMR (400 MHz, CDCl₃) δ 1.57–1.73 (m, 2H), 1.92–2.04 (m, 2H), 2.16 (s, 3H), 2.62–2.72 (m, 1H), 2.76–2.86 (m, 1H), 3.17–3.27 (m, 1H), 3.94–4.04 (m, 1H), 4.79–4.88 (m, 1H), 6.69 (dd, *J*=7.1, 1.0 Hz, 1H), 7.13 (t, *J*=8.7 Hz, 2H), 7.46 (s, 1H), 7.77 (s,

1H), 7.89–7.96 (m, 2H), 8.08 (d, J = 7.1 Hz, 1H). MS (ESI+) 338.1.

4.1.54. 1-{4-[3-Acetyl-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-yl]piperidin-1-yl}ethanone (58)

A solution of imidazopyridine **57** (3.04 g, 9.01 mmol) in acetic anhydride (100 mL) was charged with concentrated H₂SO₄ (three drops) and heated to 160 °C for 12 h. The reaction was then concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **58**: 1.43 g (43%). ¹H NMR (400 MHz, CDCl₃) δ 1.61–1.77 (m, 2H), 1.96–2.06 (m, 2H), 2.17 (s, 3H), 2.20 (s, 3H), 2.64–2.73 (m, 1H), 2.86–2.95 (m, 1H), 3.18–3.28 (m, 1H), 4.01 (d, *J* = 13.4 Hz, 1H), 4.86 (dd, *J* = 13.4, 1.6 Hz, 1H), 6.98 (dd, *J* = 7.2, 1.4 Hz, 1H), 7.21 (t, *J* = 8.6 Hz, 2H), 7.55–7.62 (m, 2H), 7.56 (s, 1H), 9.70 (d, *J* = 7.2 Hz, 1H). MS (ESI+) 379.9.

4.1.55. 1-[7-(1-Acetylpiperidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]-3-dimethylaminopropenone (59)

A solution of ketone **58** (1.43 g, 3.77 mmol) in DMFDMA (50 mL) was heated to 110 °C for 12 h, then concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **59**: 1.41 g (86%). ¹H NMR (400 MHz, CDCl₃) δ 1.58–1.78 (m, 2H), 1.99 (t, J = 12.3 Hz, 2H), 2.16 (s, 3H), 2.48 (bs, 3H), 2.62–2.74 (m, 1H), 2.79–2.90 (m, 1H), 3.05 (bs, 3H), 3.16–3.27 (m, 1H), 3.99 (bd, J = 13.4 Hz, 1H), 4.83 (bd, J = 13.4 Hz, 1H), 5.11 (d, J = 12.5 Hz, 1H), 6.83 (dd, J = 7.3, 1.6 Hz, 1H), 7.14 (t, J = 8.7 Hz, 2H), 7.45 (bs, 1H), 7.63 (d, J = 12.5 Hz, 1H), 7.66–7.74 (m, 2H), 9.58 (d, J = 7.3 Hz, 1H). MS (ESI+) 435.1.

4.1.56. 1-{4-[3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-yl]piperidin-1-yl}ethanone (**60**)

A solution of enone 59 (1.41 g, 3.24 mmol) in 1-propanol (100 mL) was charged with guanidine hydrochloride (465 mg, 4.87 mmol) and sodium methoxide (1.05 g of a 25% w/w solution in MeOH, 1.11 mL, 4.87 mmol), and the reaction was heated to 100 °C for 12 h. The reaction was then concentrated under reduced pressure, suspended in H₂O (50 mL), and extracted into 4:1 CH₂Cl₂:MeOH (3×250 mL). The organic fractions were pooled, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and then chromatographed on SiO2 using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **60**: 1.01 g (72%). ¹H NMR (400 MHz, CDCl₃) δ 1.57–1.74 (m, 2H), 1.98 (t, J = 12.7 Hz, 2H), 2.15 (s, 3H), 2.63–2.73 (m, 1H), 2.79-2.89 (m, 1H), 3.17-3.28 (m, 1H), 3.98 (d, J = 13.5 Hz, 1H), 4.83 (d, J = 13.5 Hz, 1H), 5.22 (bs, 2H), 6.51 (d, J =5.4 Hz, 1H), 6.78 (dd, J = 7.3, 1.6 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.47 (bs, 1H), 7.59–7.67 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.43 (d, J = 7.3 Hz, 1H). MS (ESI+) 430.8.

4.1.57. 4-[2-(4-Fluorophenyl)-7-piperidin-4-ylimidazo-[1,2-a]pyridin-3-yl]piperidin-2-ylamine (**61**)

Amide **60** (990 mg, 2.30 mmol) was charged with 3 N HCl (40 mL) and heated to 90 °C for 12 h. The reaction was then concentrated under reduced pressure, diluted to 10 mL in MeOH, treated with concentrated NH₄OH until basic to litmus paper, and then purified by HPLC using a MeOH/H₂O gradient, where the aqueous phase was 98.9:1.0:0.1 H₂O:CH₃C-N:Et₃N. Yield of **61**: 467 mg (52%). ¹H NMR (400 MHz, CDCl₃) δ 1.66–1.81 (m, 2H), 1.94 (bd, J = 12.8 Hz, 2H), 2.69–2.80 (m, 1H), 2.77–2.87 (m, 2H), 3.28 (bd, J = 12.1 Hz, 2H), 5.12 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 6.85 (dd, J = 7.3, 1.6 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.50 (bs, 1H), 7.58–7.70 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.44 (d, J = 7.3 Hz, 1H). MS (ESI+) 388.8.

4.1.58. General procedure for the synthesis of N-substituted piperidines 62a and 62d-k (Method A)

A solution of secondary amine **61** in MeOH (8.0 mL) was charged with AcOH, appropriate aldehyde, and sodium cyanoborohydride (1.0 M solution in THF). After stirring at room temperature for 6 h, additional aldehyde was added if the reaction was not yet complete, and all reactions then stirred for an additional 12 h at room temperature. Each reaction was then treated with excess concentrated NH₄OH (500 μ L), then purified by HPLC using a MeOH/H₂O gradient, where the aqueous phase was 98.9:1.0:0.1 H₂O:CH₃CN:Et₃N. Any modifications to this procedure are noted below.

4.1.59. General procedure for the synthesis of N-substituted piperidines **62b** and **62c** (Method B)

A solution of secondary amine **61** in EtOH (10 mL) was charged with K_2CO_3 and appropriate alkyl bromide, and heated to 90 °C for 24 h. If necessary, additional alkyl halide was then added, and heating continued for another 24 h. The reaction was then purified by HPLC using a MeOH/H₂O gradient, where the aqueous phase was 98.9:1.0:0.1 H₂O:CH₃C-N:Et₃N. Any modifications to this procedure are noted below.

4.1.59.1. 4-[7-(1-Ethylpiperidin-4-yl)-2-(4-fluorophenyl)imidazo [1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (62a). Compound 62a was prepared by Method A from amine 61 (40.0 mg, 0.103 mmol), AcOH (40 µL), acetaldehyde (5.0 mg, 7.0 µL, 0.12 mmol at t = 0 h, then an additional 3 µL at t = 6 h), and sodium cyanoborohydride (113 µL of a 1.0 M solution in THF, 0.113 mmol). Yield of 62a: 27.5 mg (53%). ¹H NMR (400 MHz, CDCl₃) δ 1.14 (t, J = 7.2 Hz, 3H), 1.71–2.13 (m, 6H), 2.48 (q, J = 7.2 Hz, 2H), 2.55–2.66 (m, 1H), 3.05–3.20 (m, 2H), 5.14 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 6.84 (dd, J = 7.2, 1.9 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.50 (bs, 1H), 7.60–7.68 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.42 (d, J = 7.2 Hz, 1H). MS (ESI+) 417.2.

4.1.59.2. 2-{4-[3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-yl]piperidin-1-yl}ethanol (62b). Compound 62b was prepared by Method B from amine 61 (40.0 mg, 0.103 mmol), K₂CO₃ (21.0 mg, 0.154 mmol), and 2-bromoethanol (15 mg, 9.0 μ L, 0.12 mmol). Yield of **62b**: 23.4 mg (53%). ¹H NMR (400 MHz, CDCl₃) δ 1.80–2.00 (m, 5H), 2.28 (t, *J* = 11.3 Hz, 2H), 2.64 (t, *J* = 5.2 Hz, 2H), 3.12 (d, *J* = 11.3 Hz, 2H), 3.69 (t, *J* = 5.2 Hz, 2H), 5.11 (bs, 2H), 6.52 (d, *J* = 5.4 Hz, 1H), 6.85 (d, *J* = 7.2 Hz, 1H), 7.13 (t, *J* = 8.5 Hz, 2H), 7.50 (bs, 1H), 7.60–7.68 (m, 2H), 8.12 (d, *J* = 5.4 Hz, 1H), 9.44 (d, *J* = 7.2 Hz, 1H). MS (ESI+) 433.1.

4.1.59.3. 2-{4-[3-(2-Aminopyrimidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-yl]piperidin-1-yl]propan-1-ol (62c). Compound 62c was prepared by Method B from amine 61 (40.0 mg, 0.103 mmol), K₂CO₃ (21.0 mg, 0.154 mmol), and 3-bromopropan-1-ol (15 mg, 9.0 µL, 0.12 mmol at t = 0 h, then an additional 11 µL at t = 24 h, and 22 µL at t = 48 h, while heating at 90 °C for a total of 72 h). Yield of 63c: 32.2 mg (70%). ¹H NMR (400 MHz, CDCl₃) δ 1.61–1.86 (m, 4H), 1.75–2.00 (m, 2H), 2.11 (t, J = 11.3 Hz, 2H), 2.55–2.70 (m, 1H), 2.67 (t, J = 5.6 Hz, 2H), 3.23 (d, J = 11.3 Hz, 2H), 3.84 (t, J = 5.1Hz, 2H), 5.14 (bs, 2H), 6.51 (d, J = 5.3 Hz, 1H), 6.81 (d, J = 7.3 Hz, 1H), 7.12 (t, J = 8.5 Hz, 2H), 7.48 (bs, 1H), 7.59–7.66 (m, 2H), 8.11 (d, J = 5.3 Hz, 1H), 9.42 (d, J = 7.3 Hz, 1H). MS (ESI+) 447.2.

4.1.59.4. 4-[2-(4-Fluorophenyl)-7-(1-isobutylpiperidin-4-yl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (62d). Compound 62d was prepared by Method A from amine 61 (40.0 mg, 0.103 mmol), AcOH (40 µL), 2-methylpropionaldehyde (9.0 mg, 11 µL, 0.12 mmol at t = 0 h, then an additional 2.0 µL at t = 6 h), and sodium cyanoborohydride (113 µL of a 1.0 M solution in THF, 0.113 mmol). Yield of 62d: 38.1 mg (69%). ¹H NMR (400 MHz, CDCl₃) δ 0.94 (d, J = 6.5 Hz, 6H), 1.73–1.97 (m, 5H), 1.97–2.25 (m, 4H), 2.50–2.76 (m, 1H), 2.90–3.30 (m, 2H), 5.10 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 6.87 (d, J = 7.1 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.50 (bs, 1H), 7.60–7.68 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.42 (d, J = 7.1 Hz, 1H). MS (ESI+) 445.3.

4.1.59.5. 4-[7-(1-Cyclopropylmethylpiperidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (62e). Compound 62e was prepared by Method A from amine 61 (40.0 mg, 0.103 mmol), AcOH (40 μ L), cyclopropanecarbaldehyde (9.0 mg, 9.0 μ L, 0.12 mmol), and sodium cyanoborohydride (113 μ L of a 1.0 M solution in THF, 0.113 mmol). Yield of 62e: 34.3 mg (62%). ¹H NMR (400 MHz, CDCl₃) δ 0.16 (q, J = 5.0 Hz, 2H), 0.57 (dd, J = 12.8, 5.0 Hz, 2H), 0.81–1.09 (m, 1H), 1.80–2.00 (m, 4H), 2.14 (t, J = 10.4 Hz, 2H), 2.35 (d, J = 6.4 Hz, 2H), 2.50–2.74 (m, 1H), 3.27 (d, J = 11.1 Hz, 2H), 5.12 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 6.87 (dd, J = 7.3, 1.5 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.51 (bs, 1H), 7.60–7.68 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.43 (d, J = 7.3 Hz, 1H). MS (ESI+) 443.3.

4.1.59.6. 4-{2-(4-Fluorophenyl)-7-[1-(2-methylbutyl)piperidin-4-yl]imidazo[1,2-a]pyridin-3-yl}pyrimidin-2-ylamine (**62f**). Compound **62f** was prepared by Method A from amine **61** (40.0 mg, 0.103 mmol), AcOH (40 μL), 2-methylbutyraldehyde (11 mg, 13 µL, 0.12 mmol at t = 0 h, then an additional 2.0 µL at t = 6 h), and sodium cyanoborohydride (113 µL of a 1.0 M solution in THF, 0.113 mmol). Yield of **62f**: 36.5 mg (64%). ¹H NMR (400 MHz, CDCl₃) δ 0.75–1.00 (m, 6H), 1.10–1.40 (m, 1H), 1.34–1.51 (m, 1H), 1.70–2.30 (m, 9H), 2.59 (t, J = 9.8 Hz, 1H), 2.91–3.15 (m, 2H), 5.09 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 6.86 (d, J = 7.1 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.50 (bs, 1H), 7.60–7.68 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.42 (d, J = 7.1 Hz, 1H). MS (ESI+) 459.3.

4.1.59.7. 4-[7-[1-(3,3-Dimethylbutyl)piperidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (62g). Compound 62g was prepared by Method A from amine 61 (40.0 mg, 0.103 mmol), AcOH (40 μL), 3,3-dimethylbutyraldehyde (12 mg, 16 μL, 0.12 mmol), and sodium cyanoborohydride (113 μL of a 1.0 M solution in THF, 0.113 mmol). Yield of 62g: 34.5 mg (58%). ¹H NMR (400 MHz, CDCl₃) δ 0.94 (s, 9H), 1.40–1.55 (m, 2H), 1.73–1.98 (m, 4H), 2.00–2.19 (m, 2H), 2.28–2.47 (m, 2H), 2.52–2.70 (m, 1H), 3.13 (d, *J* = 11.2 Hz, 2H), 5.10 (bs, 2H), 6.51 (d, *J* = 5.4 Hz, 1H), 6.86 (dd, *J* = 7.2, 1.3 Hz, 1H), 7.12 (t, *J* = 8.6 Hz, 2H), 7.51 (bs, 1H), 7.64 (m, 2H), 8.11 (d, *J* = 5.4 Hz, 1H), 9.43 (d, *J* = 7.2 Hz, 1H). MS (ESI+) 473.3.

4.1.59.8. 4-{2-(4-Fluorophenyl)-7-[1-(2-methylpentyl)piperidin-4-yl]imidazo[1,2-a]pyridin-3-yl}pyrimidin-2-ylamine (62h). Compound **62h** was prepared by Method A from amine **61** (40.0 mg, 0.103 mmol), AcOH (40 µL), 2-methylpentanal (12 mg, 15 µL, 0.12 mmol at t = 0 h, then an additional 4.0 µL at t = 6 h), and sodium cyanoborohydride (113 µL of a 1.0 M solution in THF, 0.113 mmol). Yield of **62h**: 38.8 mg (66%). ¹H NMR (400 MHz, CDCl₃) δ 0.85–0.97 (m, 6H), 1.03–1.15 (m, 1H), 1.22–1.49 (m, 3H), 1.61–1.75 (m, 1H), 1.75–1.95 (m, 4H), 1.93–2.28 (m, 4H), 2.49–2.67 (m, 1H), 3.02 (t, J = 11.5 Hz, 2H), 5.11 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 6.86 (dd, J = 7.3, 1.6 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.50 (bs, 1H), 7.60–7.68 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.42 (d, J = 7.3 Hz, 1H). MS (ESI+) 473.4.

4.1.59.9. 4-[2-(4-Fluorophenyl)-7-(1-hexylpiperidin-4-yl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (62i). Compound 62i was prepared by Method A from amine 61 (40.0 mg, 0.103 mmol), AcOH (40 µL), hexanal (12 mg, 15 µL, 0.12 mmol at t = 0 h, then an additional 4.0 µL at t = 6 h), and sodium cyanoborohydride (113 µL of a 1.0 M solution in THF, 0.113 mmol). Yield of 62i: 38.6 mg (65%). ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, J = 6.6 Hz, 3H), 1.32 (bs, 6H), 1.50–1.63 (m, 2H), 1.75–1.98 (m, 4H), 1.98–2.14 (m, 2H), 2.33–2.45 (m, 2H), 2.54–2.71 (m, 1H), 3.12 (d, J = 10.1 Hz, 2H), 5.10 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 6.86 (dd, J = 7.3, 1.3 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.51 (bs, 1H), 7.64 (dd, J = 8.7, 5.5 Hz, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.43 (d, J = 7.3 Hz, 1H). MS (ESI+) 473.4.

4.1.59.10. 4-[7-(1-Benzylpiperidin-4-yl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (62j). Compound 62j was prepared by Method A from amine 61 (40.0 mg, 0.103 mmol), AcOH (40 µL), benzaldehyde (13 mg, 13 µL, 0.12 mmol at t = 0 h, then an additional 7.0 µL at t = 6 h), and sodium cyanoborohydride (113 µL of a 1.0 M solution in THF, 0.113 mmol). Yield of **62j**: 35.4 mg (60%). ¹H NMR (400 MHz, CDCl₃) δ 1.88 (q, J = 12.0 Hz, 4H), 2.15 (t, J = 10.6 Hz, 2H), 2.53–2.69 (m, 1H), 3.07 (d, J = 11.2 Hz, 2H), 3.59 (s, 2H), 5.10 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 6.85 (dd, J = 7.3, 1.5 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.23–7.40 (m, 5H), 7.50 (bs, 1H), 7.63 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.42 (d, J = 7.3 Hz, 1H). MS (ESI+) 479.4.

4.1.59.11. 4-[2-(4-Fluorophenyl)-7-(1-phenethylpiperidin-4-yl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (62k). Compound 62k was prepared by Method A from amine 61 (40.0 mg, 0.103 mmol), AcOH (40 µL), phenylacetaldehyde (15 mg, 13 µL, 0.12 mmol at t = 0 h, then an additional 2.0 µL at t = 6 h), and sodium cyanoborohydride (113 µL of a 1.0 M solution in THF, 0.113 mmol). Yield of 62k: 38.3 mg (63%). ¹H NMR (400 MHz, CDCl₃) δ 1.80–1.95 (m, 2H), 1.91–2.00 (m, 2H), 2.20 (bt, J = 10.8 Hz, 2H), 2.57–2.74 (m, 3H), 2.82–2.94 (m, 2H), 3.20 (bd, J = 11.3 Hz, 2H), 5.10 (bs, 2H), 6.51 (d, J = 5.4 Hz, 1H), 6.85 (dd, J = 7.3, 1.5 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 7.19–7.41 (m, 5H), 7.50 (bs, 1H), 7.59–7.67 (m, 2H), 8.11 (d, J = 5.4 Hz, 1H), 9.42 (d, J = 7.3 Hz, 1H). MS (ESI+) 493.3.

4.1.60. 7-Chloro-2-(4-fluorophenyl)imidazo-[1,2-a]pyridine (63)

A solution of 2-amino-4-chloropyridine (2.00 g, 15.5 mmol) and 2-bromo-1-(4-fluorophenyl)ethanone (3.36 g, 15.5 mmol) in EtOH (40 mL) was heated to 60 °C for 12 h. The reaction was then concentrated under reduced pressure, and then chromatographed on SiO₂ using a heptane/EtOAc gradient. Yield of **63**: 700 mg (18%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.98 (dd, *J* = 7.1, 2.0 Hz, 1H), 7.28 (t, *J* = 8.6 Hz, 2H), 7.75 (bs, 1H), 7.95–8.05 (m, 2H), 8.41 (s, 1H), 8.57 (d, *J* = 7.1 Hz, 1H). MS (ESI+) 247.0.

4.1.61. 1-[7-Chloro-2-(4-fluorophenyl)imidazo-[1,2-a]pyridin-3-yl]ethanone (64)

A solution of imidazopyridine **63** (600 mg, 2.43 mmol) in acetic anhydride (16 mL) was charged with concentrated H₂SO₄ (three drops) and heated to 160 °C for 6 h. The reaction was then concentrated under reduced pressure, and then chromatographed on SiO₂ using a gradient that started with heptane and ended with 30:70 EtOAc:heptane. Yield of **64**: 300 mg (42%). ¹H NMR (400 MHz, CDCl₃) δ 2.20 (s, 3H), 7.08 (dd, J = 7.5, 1.9 Hz, 1H), 7.21 (t, J = 8.6 Hz, 2H), 7.53–7.60 (m, 2H), 7.72 (d, J = 1.9 Hz, 1H), 9.70 (d, J = 7.5 Hz, 1H). MS (ESI+) 289.0.

4.1.62. 1-[7-Chloro-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]-3-dimethylaminopropenone (65)

A mixture of ketone **64** (300 mg, 1.04 mmol) in DMF (5.0 mL) was charged with DMFDMA (1.38 g, 10.4 mmol)

and heated to 110 °C for 6 h. The reaction mixture with enone **65** was concentrated under reduced pressured, and then carried onto the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 2.48 (bs, 3H), 3.07 (bs, 3H), 5.10 (d, J = 12.4 Hz, 1H), 6.93 (dd, J = 7.5, 2.2 Hz, 1H), 7.14 (t, J = 8.7 Hz, 2H), 7.64 (d, J = 12.4 Hz, 1H), 7.65 (d, J = 2.2 Hz, 1H), 7.65–7.73 (m, 2H), 9.59 (d, J = 7.5 Hz, 1H). MS (ESI+) 343.8.

4.1.63. 4-[7-Chloro-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (**66**)

The reaction mixture described above with enone **65** (theoretically 357 mg, 1.04 mmol) in DMF (5.0 mL and DMFDMA (1.38 g, 10.4 mmol) was charged with guanidine hydrochloride (496 mg, 5.19 mmol) and K₂CO₃ (717 mg, 5.20 mmol). The reaction was heated to 110 °C for 12 h, and was then chromatographed on SiO₂ using a heptane/EtOAc gradient. Yield of **66**: 147 mg (41% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 5.12 (bs, 2H), 6.53 (d, J = 5.3 Hz, 1H), 6.92 (dd, J = 7.5, 1.9 Hz, 1H), 7.14 (t, J = 8.7 Hz, 2H), 7.60–7.68 (m, 2H), 7.69 (d, J = 1.9 Hz, 1H), 8.15 (d, J = 5.3 Hz, 1H), 9.48 (d, J = 7.5 Hz, 1H). MS (ESI+) 339.8.

4.1.64. 4-[2-(4-Fluorophenyl)-7-(4-methylpiperazin-1-yl)imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (**67**)

Nitrogen was bubbled through a solution of imidazopyridine **66** (62 mg, 0.18 mmol) in *N*-methylpiperazine (6.0 mL). After 10 min, 2-(di-*tert*-butylphosphino)biphenyl (8.0 mg, 0.027 mmol), sodium *tert*-butoxide (26 mg, 0.27 mmol) and palladium(II) acetate (4.0 mg, 0.018 mmol) were sequentially added, and the reaction was heated to 100 °C under nitrogen for 12 h. The reaction was then concentrated under reduced pressure, and chromatographed on SiO₂ using a gradient that started with CH₂Cl₂ and ended with 90:9:1 CH₂Cl₂:MeOH:concentrated NH₄OH. Yield of **67**: 43 mg (58%). ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 2.60 (t, *J* = 4.8 Hz, 4H), 3.35 (t, *J* = 4.8 Hz, 4H), 5.01 (bs, 2H), 6.49 (d, *J* = 5.5 Hz, 1H), 6.70 (dd, *J* = 7.8, 2.7 Hz, 1H), 6.87 (bs, 1H), 7.12 (t, *J* = 8.8 Hz, 2H), 7.60–7.68 (m, 2H), 8.05 (d, *J* = 5.5 Hz, 1H), 9.41 (d, *J* = 7.8 Hz, 1H). MS (ESI+) 404.2.

References

- R.B. Williams, A compartmentalized model for the estimation of the cost of coccidiosis to the world's chicken production industry, Int. J. Parasitol. 29 (1999) 1209.
- [2] R.G.K. Donald, J. Allocco, S.B. Singh, B. Nare, S.P. Salowe, J. Wiltsie, P.A. Liberator, *Toxoplasma gondii* cyclic GMP-dependent kinase: chemotherapeutic targeting of an essential parasite protein kinase, Eukaryot. Cell 1 (2002) 317.
- [3] A.M. Gurnett, P.A. Liberator, P.M. Dulski, S.P. Salowe, R.G.K. Donald, J.W. Anderson, J. Wiltsie, C.A. Diaz, G. Harris, B. Chang, S.J. Darkin-Rattray, B. Nare, T. Crumley, P.S. Blum, A.S. Misura, T. Tamas, M.K. Sardana, J. Yuan, T. Biftu, D.M. Schmatz, Purification and molecular characterization of cGMP-dependent protein kinase from apicomplexan parasites: a novel chemotherapeutic target, J. Biol. Chem. 277 (2002) 15913.
- [4] (a) T. Biftu, D. Feng, M. Fisher, G.-B. Liang, X. Qian, A. Scribner, R. Dennis, S. Lee, P.A. Liberator, C. Brown, A. Gurnett, P.S. Leavitt,

D. Thompson, J. Mathew, A. Misura, S. Samaras, T. Tamas, J.F. Sina, K.A. McNulty, C.G. McKnight, D.M. Schmatz, M. Wyvratt, Synthesis and SAR studies of very potent imidazopyridine antiprotozoal agents, Bioorg. Med. Chem. Lett. 16 (2006) 2479;

(b) D. Feng, M. Fisher, G.-B. Liang, X. Qian, C. Brown, A. Gurnett, P.S. Leavitt, P.A. Liberator, J. Mathew, A. Misura, S. Samaras, T. Tamas, D.M. Schmatz, M. Wyvratt, T. Biftu, Synthesis and SAR of 2-(4-fluorophenyl)-3-pyrimidin-4-ylimidazo[1,2-*a*]pyridine derivatives as anticoccidial agents, Bioorg. Med. Chem. Lett. 16 (2006) 5978.

- [5] A. Scribner, R. Dennis, J. Hong, S. Lee, D. McIntyre, D. Perrey, D. Feng, M. Fisher, M. Wyvratt, P. Leavitt, P. Liberator, A. Gurnett, C. Brown, J. Mathew, D. Thompson, D. Schmatz, T. Biftu, Synthesis and biological activity of imidazopyridine anticoccidial agents: part I, Eur, J. Med. Chem. 42 (11–12) (2007) 1334.
- [6] E. Diez-Barra, J.C. Garcia-Martinez, S. Merino, R. del Ray, J. Rodriguez-Lopez, P. Sanchez-Verdu, J. Tejeda, Synthesis, characterization, and optical response of dipolar and non-dipolar poly(phenylenevinylene) dendrimers, J. Org. Chem. 66 (2001) 5664.
- [7] A.F. Abdel-Magid, K.G. Carson, B.D. Harris, C.A. Maryanoff, R.D. Shah, Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures, J. Org. Chem. 61 (1996) 3849.
- [8] A. Coelho, E. Sotelo, I. Estevez, E. Ravina, Pyridazines part XXIII: efficient arylation at position 5 of the 6-phenyl-(2*H*)-pyridazin-3-one system using a Suzuki cross-coupling reaction, Synthesis (2001) 871.
- [9] J.H. Hall, M. Gisler, A simple method for converting nitriles to amides. Hydrolysis with potassium hydroxide in *tert*-butyl alcohol, J. Org. Chem. 41 (1976) 3769.
- [10] W.J. Guilford, K.J. Shaw, J.L. Dallas, S. Koovakkat, W. Lee, A. Liang, D.R. Light, M.A. McCarrick, M. Whitlow, B. Ye, M.M. Morrissey, Synthesis, characterization, and structure–activity relationships of amidinesubstituted (bis)benzylidine-cycloketone olefin isomers as potent and selective factor Xa inhibitors, J. Med. Chem. 42 (1999) 5415.
- [11] S.L. Colletti, J.L. Frie, E.C. Dixon, S.B. Singh, B.K. Choi, G. Scapin, C.E. Fitzgerald, S. Kumar, E.A. Nichols, S.J. O'Keefe, E.A. O'Neill, G. Porter, K. Samuel, D.M. Schmatz, C.D. Schwartz, W.L. Shoop, C.M. Thompson, J.E. Thompson, R. Wang, A. Woods, D.M. Zaller, J.B. Doherty, Hybrid-designed inhibitors of p38 MAP kinase utilizing *N*-arylpyridazinones, J. Med. Chem. 46 (2003) 349.
- [12] J.M. Williams, R.B. Jobson, N. Yasunda, G. Marchesini, U.-H. Dolling, E.J.J. Grabowski, A new general method for preparation of *N*-methoxy-*N*-methylamides. Application in direct conversion of an ester to a ketone, Tetrahedron Lett. 36 (1995) 5461.
- [13] J.A. Montgomery, A.T. Shortnacy, J.A. Secrist III, Synthesis and biological evaluation of 2-fluoro-8-azaadenosine and related compounds, J. Med. Chem. 26 (1983) 1483.
- [14] S.L. Graham, T.H. Scholz, A new mode of reactivity of N-methoxy-N-methylamides with strongly basic reagents, Tetrahedron Lett. 31 (1990) 6269.
- [15] (a) F.N.H. Chang, J.F. Oneto, P.P.T. Sah, B.M. Tolbert, H. Rapoport, The synthesis of codeine labeled in the 3-methoxy group with C¹⁴, J. Org. Chem. 15 (1950) 634;
 (b) S.M. Sami, R.T. Dorr, A.M. Solyom, D.S. Alberts, B.S. Iyengar, W.A. Remers, 6- and 7-Substituted 2-[2'-(dimethylamino)ethyl]-1,2-di-hydro-3*H*-dibenz[*de,h*]isoquinoline-1,3-diones: synthesis, nucleophilic displacements, antitumor activity, and quantitative structure-activity relationships, J. Med. Chem. 39 (1996) 1609.
- [16] R. Freudenmann, B. Behnisch, M. Hannack, Synthesis of conjugatedbridged triphenylenes and applications in OLEDs, J. Mater. Chem. 11 (2001) 1618.
- [17] M. Mathe-Allainmat, M. Le Gall, C. Jellimann, J. Andrieux, M. Langlois, Synthesis of β-substituted naphth-1-ylethylamido derivatives as new melatoninergic agonists, Bioorg. Med. Chem. 7 (1999) 2945.
- [18] W. Grell, R. Hurnaus, G. Griss, R. Sauter, E. Rupprecht, M. Mark, P. Luger, H. Nar, H. Wittneben, P. Muller, Repaglinide and related hypoglycemic benzoic acid derivatives, J. Med. Chem. 41 (1998) 5219.
- [19] I. Erdelmeier, C. Tailhan-Lomont, J.C. Yadan, Copper(I)-assisted mild and convenient synthesis of new Se-N heterocycles: access to a promising class of GPx mimics, J. Org. Chem. 65 (2000) 8152.

- [20] Y. Genisson, P.C. Tyler, R. Ball, R.N. G; Young, Stereoselective total synthesis of (±)-thielocin A1b, J. Am. Chem. Soc. 123 (2001) 11381.
- [21] T. Jen, J.S. Frazee, C. Kaiser, D.F. Colella, J.R. Wardell Jr., Adrenergic agents. 6. Synthesis and potential β-adrenergic agonist activity of some meta-substituted *p*-hydroxyphenylethanolamines related to salbutamol, J. Med. Chem. 20 (1977) 1029.
- [22] J.J. Ritter, P.P. Minieri, New reactions of nitriles. I. Amides from alkenes and mononitriles, J. Am. Chem. Soc. 70 (1948) 4045.
- [23] R. Filler, W. Chen, S.M. Woods, Polyfluoroaralkylamines: an improved synthesis of 4,5,6,7-tetrafluoroindole, J. Fluor. Chem. 73 (1995) 95.
- [24] G. Cimino, M. Gavagnin, G. Sodano, A. Spinella, G. Strazzullo, Revised structure of bursatellin, J. Org. Chem. 52 (1987) 2301.
- [25] M. Nyerges, I. Fejes, A. Viranyi, P.W. Groundwater, L. Toke, A new and convenient synthesis of 1-aryl-2-dimethylaminoethanols, Synthesis (2001) 1479.

- [26] W.J. Middleton, New fluorinating agents. Dialkylaminosulfur fluorides, J. Org. Chem. 40 (1975) 574.
- [27] V.A. Artyomov, A.M. Shestopalov, V.P. Litvinov, Synthesis of imidazo[1,2-a]pyridines from pyridines and *p*-bromophenacyl bromide *O*methyloxime, Synthesis (1996) 927.
- [28] K.S. Gudmundsson, B.A. Johns, Synthesis of novel imidazo[1,2-a]pyridines with potent activity against herpesviruses, Org. Lett. 5 (2003) 1369.
- [29] J.A. Sisko, One pot synthesis of 1-(2,2,6,6-tetramethyl-4-piperidinyl)-4-(4-fluorophenyl)-5-(2-amino-4-pyrimidinyl)-imidazole: a potent inhibitor of p38 MAP kinase, J. Org. Chem. 63 (1998) 4529.
- [30] J.-P. Meigh, M. Alvarez, J.A. Joule, Cyclic ureas as ortho directing substituents, J. Chem. Soc. Perkin Trans. 1 (2001) 2012.
- [31] J.P. Wolfe, S.L. Buchwald, A highly active catalyst for the room-temperature amination and Suzuki coupling of aryl chlorides, Angew. Chem. Int. Ed. Engl. 38 (1999) 2413.