NATURAL PRODUCTS

Anti-inflammatory 12,20-Epoxypregnane and 11,12-*seco*-Pregnane Glycosides from the Stems of *Hoya kerrii*

Chonticha Seeka,[†] Samran Prabpai,[‡] Palangpon Kongsaeree,[‡] Supinya Tewtrakul,[§] Thitima Lhinhatrakool,[⊥] and Somyote Sutthivaiyakit^{*,†}

[†]Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Hua Mark, Bangkapi, Bangkok 10240, Thailand

[‡]Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

[§]Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkhla University, Hat Yai, Songkhla 90112, Thailand

¹College of Oriental Medicine, Rangsit University, Muang Ake, Pathumthani 12000, Thailand

Supporting Information

ABSTRACT: Five 12,20-epoxypregnane glycosides (1–3, 5, and 6) and two 11,12-seco-pregnane glycosides (4 and 7) with spirodilactone motifs, as well as spirodilactone cleavage products 8 and 9, were isolated from the stems of *Hoya kerrii*. The relative configurations of the three related skeletons were supported by ROESY experiments and X-ray crystallographic analyses. The isolates were evaluated for their anti-inflammatory activity based on the inhibition of NO production in RAW264.7 cells, and some showed IC₅₀ values ranging from 12.6 to 96.5 μ M. The most potent compound, 9a, was also examined for its anti-inflammatory mechanism against mRNA expression and was found to down-regulate mRNA expression of iNOS and COX-2 in a dose-dependent manner.

Hoya kerrii Craib.¹ [syn. H. obovata Decne. var. kerrii (Craib.) Costantin] of the Apocynaceae family is commonly known in Thailand as "Dang and Tang". This plant is among 53 Hoya species found in Thailand.¹ The latex, stems, and leaves of this plant have been reported to possess wound-healing and antiinflammatory properties. A water decoction of the leaves has been used as an antidiabetic treatment.² There have been reports dealing with the chemical constituents of several Hoya plants, including Hoya australis,³ H. carnosa,^{4,5} H. lacunose,⁶ *H. naumanii*,⁷ and *H. parasitica*,⁸ that led to the isolation of some 3,4-seco-pentacyclic triterpenoids,^{3,6–8} pregnanes,⁴ pregnane glycosides,⁴ androstanes,⁸ sesquiterpenoids,⁸ phenolic compounds,⁸ and oligosaccharides.⁵ However, there have been no reports on any phytochemical investigation of H. kerrii. The preliminary anti-inflammatory activity assessment of the inhibition of nitric oxide production in RAW264.7 cells indicated that the CH22Cl2 extract of the stem was active, showing an IC₅₀ value of 57.2 μ g/mL. An additional in-house brine shrimp lethality assay indicated that the CH₂Cl₂ extract of the stems at a concentration of 250 ppm caused 100% lethality of Artemia salina nauplii. The use of a combination of chromatographic techniques led to the isolation of several new steroids (1-9) in addition to the seven known compounds lupeol acetate,⁹ taraxerol,¹⁰ lupeol,¹⁰ a mixture of sitosterol and stigmasterol, *p*-hydroxybenzaldehyde, scopoletin,¹¹ and lariciresinol.¹² We report herein the spectroscopic identification of compounds 1-9 and their anti-inflammatory activity.

RESULTS AND DISCUSSION

Compound 1 was obtained as a colorless solid that showed an HRESIMS sodium adduct molecular ion at m/z 513.2828, corresponding to a molecular formula of $C_{28}H_{42}O_7$. The FTIR indicated peaks for the presence of a carbonyl and an olefin function at $\nu_{\rm max}$ 1711 and 1661 cm⁻¹, respectively. The ¹³C NMR spectrum revealed the presence of 28 carbon signals comprising five methyl, seven methylene, 11 methine (including seven oxymethine and one olefinic), and five nonprotonated carbons. Among the nonprotonated carbons was a carbonyl, an oxygenated tertiary carbon, and an olefinic carbon. The ¹H NMR resonance at $\delta_{\rm H}$ 4.49 (dd, J = 9.8 and 1.9 Hz) showed an HMQC cross-peak with a dioxygenated methine carbon at $\delta_{\rm C}$ 98.1, assignable to an anomeric H-1', together with ¹H–¹H COSY cross-peaks between H-2'/H-1'

Received: September 4, 2016

Figure 1. Structures of the isolated compounds and their derivatives.

and H-3', H-4'/H-3' and H-5', and H-5'/H3-6'. These correlations permitted the establishment of the presence of a 2,6-dideoxypyranose unit in 1 (Table 1). The coupling constants of the oxymethine protons and the HMBC crosspeak of the OMe singlet at $\delta_{\rm H}$ 3.37 with C-3' ($\delta_{\rm C}$ 78.0) indicated the presence of a β -diginopyranosyl ring.¹³ The remaining 21 carbon resonances of the aglycone with two methyl groups each attached to tertiary carbons and thus resonating in the ¹H NMR spectrum as two singlets at $\delta_{\rm H}$ 1.35 and 1.01 showed that the aglycone contained a pregnane moiety. The olefinic function, as observed by a ¹H NMR resonance at $\delta_{\rm H}$ 5.45 d (J = 5.4 Hz) and ¹³C NMR resonances at $\delta_{\rm C}$ 140.9 (C) and 121.7 (CH), was assigned at C-5(6), as evident from the HMBC cross-peaks between H₃-19 ($\delta_{\rm H}$ 1.01)/ C-1 ($\delta_{\rm C}$ 37.4), C-5, and C-10 ($\delta_{\rm C}$ 39.4) as well as H-3/C-1 and C-5 (Figure S45, Supporting Information). The methyl singlet at $\delta_{\rm H}$ 1.35 assigned to H₃-18 showed HMBC cross-peaks with carbon resonances at $\delta_{\rm C}$ 82.2 (C-14), 91.5 (C-12), and 58.4 (C-17). The presence of a ¹H NMR singlet at $\delta_{\rm H}$ 3.88, showing an HMQC cross-peak with C-12, HMBC cross-peaks not only with C-14, C-17, and C-18 ($\delta_{\rm C}$ 22.7) but also with the carbonyl and the oxymethine carbons at $\delta_{\rm C}$ 211.0 and 82.3 (assigned to C-20), respectively, required the presence of a carbonyl group at C-11 and an ether linkage between C-12 and C-20. On the basis of these data, the aglycone in 1 was defined as 3,14dihydroxy-12,20-epoxypregn-5-en-11-one. The connectivity between the oxygen atom at C-3 and C-1' of the diginopyranose unit was evident from the HMBC cross-peaks between H-3/C-1' and H-1'/C-3. The O-acetyl derivative 1a was obtained after reacting 1 with Ac₂O-pyridine, and its ROESY spectrum showed cross-peaks between H₃-18/H-8, H-12, and H-17, while H₃-19 showed cross-peaks with H-8 and H-12. The anomeric H-1' showed NOE correlations with H-3, H-3', and H-5' (Figure 2a). A single-crystal X-ray crystallographic analysis of 1 provided the ORTEP plot shown in Figure 2b. The absolute configuration of the sugar was assigned after acid hydrolysis of 1 with 0.05 M HCl at 60 °C for 4 h to give the aglycone $12\alpha_{2}20\alpha_{-}epoxy_{-}14\beta_{-}hydroxy_{-}pregn_{-}5-en_{-}11$ -one and

D-diginose, $[\alpha]^{26}_{D}$ +68 (*c* 0.1, H₂O), lit.^{13,14a} +59.6 (*c* 1.48, H₂O). The structure of compound 1 was thus elucidated as 12 α ,20 α -epoxy-14 β -hydroxypregn-5-en-11-one 3-*O*- β -D-digino-pyranoside. Related rare steroid glycosides having ether linkages between C-12 and C-20 but with an additional C-15 carbonyl group and no 14-hydroxy function, e.g., 12 α ,20 α -epoxypregn-5-en-11,15-dione 3-*O*- β -D-diginopyranoside (diginin), have been isolated from *Digitalis ciliate* and *D. purpurea*.¹⁴

Compound 2 was obtained as a colorless solid with a molecular formula of $C_{28}H_{42}O_8$ {HRESIMS $[M + Na]^+ m/z$ 529.2759 (calcd for C₂₈H₄₂O₈Na, 529.2771)}, thus implying that 2 has one more oxygen atom than 1. The $^1\!\mathrm{H}$ and $^{13}\!\mathrm{C}$ NMR resonances of 2 showed close resemblance to those of 1 (Table 1), indicating the presence of diginopyranosyl and 12α , 20α -epoxy- 14β -hydroxypregn-5-en-11-one moieties, except that H-12 resonated at $\delta_{\rm H}$ 4.18, i.e., deshielded relative to 1. Since the ¹H NMR resonance for H-9 ($\delta_{\rm H}$ 2.20) was a singlet, instead of a doublet as in 1, and both H-9 and H-6 ($\delta_{\rm H}$ 5.38) showed HMBC cross-peaks with the same oxygenated tertiary carbon at $\delta_{\rm C}$ 76.7, the presence of the hydroxy group at C-8 was indicated. On the basis of the acid hydrolysis of 1, which provided D-diginose, the structure of compound 2 was therefore elucidated as 12α , 20α -epoxy- 8β , 14β -dihydroxypregn-5-en-11one 3-O- β -D-diginopyranoside. The 4'-O-acetyl derivative 2a was obtained after reacting 2 with Ac_2O in pyridine (Table S1, Supporting Information).

Compound 3, a colorless solid, had the same molecular mass as 2 based on HRESIMS. The ¹H and ¹³C NMR spectra also exhibited similar patterns of resonances to those observed in 2, except that the ¹H NMR singlet at ca. $\delta_{\rm H}$ 4.18 and the ¹³C NMR resonance at $\delta_{\rm C}$ 90.6, assigned to H-12 and C-12 in 2, were absent (Table 1). The important HMBC cross-peaks of H-9 ($\delta_{\rm H}$ 2.28) and H-17 ($\delta_{\rm H}$ 2.07) with a dioxygenated carbon at $\delta_{\rm C}$ 102.7 led to the placement of a hydroxy group at C-12. Acid hydrolysis of 1 afforded D-diginose; thus the structure of compound 3 was assigned as $12\alpha,20\alpha$ -epoxy- $12\beta,14\beta$ -dihydroxypregn-5-en-11-one 3-O- β -D-diginopyranoside.

Table 1. ¹ H I	NMR Spectroscopic Data (41	00 MHz) of 1	-4 (in CDCl ₃ , J in Hz)					
	1		2		3		4	
position	$\delta_{ m H}$ (J in Hz)	δ_{O} type	$\delta_{ m H}~(J~{ m in}~{ m Hz})$	δ_{C} type	$\delta_{\rm H}$ (J in Hz)	$\delta_{ m C}$, type	$\delta_{ m H}~(J~{ m in}~{ m Hz})$	$\delta_{ m C}$ type
1	2.35, ^a 1.33	37.4, CH ₂	2.36, 1.24	38.4, CH ₂	2.34, 1.20	37.2, CH ₂	2.40, 1.22	36.5, CH ₂
2	1.99, ^b 1.55	29.1, CH ₂	$1.95,^{d}$ 1.63	28.7, CH ₂	1.92, 1.58	29.2, CH ₂	1.98, 1.21	29.0, CH ₂
3	3.55, dddd (11.4, 6.6, 4.6, 1.2)	77.7, CH	3.57, dddd (11.2, 6.2, 5.0, 1.2)	77.9, CH	3.57 ^g	77.2, CH	3.56	77.5, CH
4	2.33, ^a 2.15, brt (11.4)	38.3, CH ₂	2.41, 1.26	39.9, CH ₂	2.23, 1.25	38.3, CH ₂	2.34, 2.18	38.1, CH ₂
5		140.9, C		142.5, C		140.6, C		141.0, C
6	5.45, d (5.4)	121.7, CH	5.38, d (5.6)	117.8, CH	5.38, brs	120.5, CH	5.32, brs	120.6, CH
7	2.27, 1.76, brd (14.8)	28.1, CH ₂	2.37, 2.17 ^e	35.3, CH ₂	2.31, 2.05	28.1, CH ₂	2.58, 2.12	25.4, CH ₂
8	2.34 ^a	36.6, CH		76.7, C	2.28 ^h	37.3, CH	2.55	43.1, CH
6	1.97, d (12.4) ^b	59.6, CH	2.20, s ^e	59.4, CH	2.28 ^h	55.0, CH	2.54	51.5, CH
10		39.4, C		39.7, C		38.7, C		39.7, C
11		211.0, C		211.0, C		207.1, C		175.1, C
12	3.88, s	91.5, CH	4.18, s	90.6, CH		102.7, C		179.1, C
13		63.2, C		62.6, C		63.1, C		56.8, C
14		82.2, C		83.3, C		82.9, C		93.9, C
15	1.92, ^c 1.52	32.4, CH ₂	2.37, 1.74	34.6, CH ₂	1.70	33.5, CH ₂	2.12	39.7, CH ₂
16	1.92, ^c 1.29	25.9, CH ₂	1.85, 1.24	25.8, CH ₂	1.42, brdd (10.6, 4.3)	28.3, CH ₂	2.32, 1.61	27.0, CH ₂
17	1.83, brt (8.1)	58.4, CH	1.81, brt (7.7)	60.6, CH	2.07	59.2, CH	2.33	56.6, CH
18	1.35, s	22.7, CH ₃	1.52, s	25.4, CH ₃	1.21, s	16.2, CH ₃	1.35, s	23.0, CH ₃
19	1.01, s	19.9, CH ₃	1.15, s	18.8, CH ₃	1.15	19.9, CH ₃	1.08, s	18.3, CH ₃
20	3.47, brq (5.9)	82.3, CH	3.45 , quint $(6.3)^{f}$	81.2, CH	3.60, brq (6.1) ^g	81.9, CH	4.25, quint (6.2)	80.0, CH
21	1.31, d (5.9)	20.2, CH ₃	1.30, d (6.2)	20.3 , CH_3	1.34, d (6.1) ⁱ	22.5, CH ₃	1.40, d (6.2)	21.7, CH ₃
1′	4.49, dd (9.8, 1.9)	98.1, CH	4.50, dd (9.8, 2.1)	98.1, CH	4.50, brd (9.6)	97.9, CH	4.48, d (9.7)	98.2, CH
2′	1.95, ^b 1.68	32.0, CH ₂	$1.96,^{d}$ 1.65	$31.9, CH_2$	1.94, brd (12.5), 1.65	32.0, CH ₂	1.92, 1.64	32.0, CH ₂
3′	3.31, ddd (12.0, 4.7, 3.1)	78.0, CH	3.31, ddd (12.0, 4.8, 3.1)	77.8, CH	3.31, ddd (11.9, 4.5, 2.2)	78.0, CH	3.30, ddd (11.9, 4.4, 2.2)	78.0, CH
4,	3.66, brs	67.1, CH	3.66, brd (3.1)	67.0, CH	3.67, brs	67.1, CH	3.66, brs	67.1, CH
S'	3.42, brq (6.4)	70.5, CH	3.43, brq (6.7) ^f	70.5, C	3.43, brq (6.4)	70.4, CH	3.42, brq (6.3)	70.4, CH
6′	1.31, d (6.4)	16.8, CH ₃	1.31, d (6.7)	16.8, CH ₃	1.33, d (6.4) ⁱ	16.8, CH ₃	1.31, d (6.3)	16.8, CH ₃
3′-0CH ₃	3.37, s	55.7, CH ₃	3.37, s	55.7, CH ₃	3.41, s	55.7, CH ₃	3.36, s	55.7, CH ₃
4'-COCH ₃								
^{<i>a-i</i>} Overlapped	signals.							

Journal of Natural Products

Article

Figure 2. (a) Key NOE correlations of 1a and (b) an ORTEP plot of 1.

Compound 4 was isolated as a colorless solid with the molecular formula of $C_{28}H_{40}O_8$ based on its HRESIMS spectrum, showing an $[M + Na]^+$ ion at m/z 527.2625 (calcd for $C_{28}H_{40}O_8Na$, 527.2615). The ¹³C NMR spectrum showed 28 carbons comprising five methyl, seven methylene, 10 methine, and six nonprotonated carbons including two deshielded carbonyl carbons (δ_C 175.1 and 179.1), one olefinic carbon (δ_C 141.0), one oxygenated tertiary carbon (δ_C 93.9), and two quaternary carbons. The ¹H NMR resonances of a

diginopyranosyl moiety [$\delta_{\rm H}$ 4.48 d (J = 9.7 Hz, H-1'), 1.31 (d, J= 6.3 Hz, H_3 -6')] were also apparent (Table 1). The other methyl doublet at $\delta_{\rm H}$ 1.40 (J = 6.2 Hz), assigned to H₃-21, showed a ¹H-¹H COSY cross-peak with a deshielded quintet at $\delta_{\rm H}$ 4.25 (H-20). This deshielded signal compared with those of C-20 in 1-3 suggested the attachment of an O-acyl group to C-20. The HMBC cross-peaks between H₃-18/C-17, the lessshielded C-14 ($\delta_{\rm C}$ 93.9), and a carbonyl carbon ($\delta_{\rm C}$ 179.1, assigned to C-12), as well as an H-20/C-12 cross-peak (Figure S45, Supporting Information), required a lactone linkage between C-20 and C-13. The other important HMBC crosspeaks of both H-8 ($\delta_{\rm H}$ 2.55) and H-9 ($\delta_{\rm H}$ 2.54) with C-14 and a carbonyl carbon at $\delta_{\rm C}$ 175.1 required another lactone moiety between C-14 and C-9. Compound 4 could therefore be identified as an 11,12-seco-pregnane derivative possessing a spirodilactone motif (Scheme 1, postulated transformation). Acetylation of 4 using Ac₂O-pyridine gave 4a. The ROESY spectrum of 4a showed cross-peaks between H-8/H₃-19, H-17/ H₃-18 and H₃-21, and H₃-18/H₃-21, as well as cross-peaks between H-1'/H-3, H-3', and H-5'. The X-ray crystallographic structure of 4a, as illustrated in Figure 3a and b, defined the relative configurations of the stereogenic centers in 4. On the basis of the acid hydrolysis of 1, which gave D-diginose, the structure of compound 4 was proposed as kerriipregnane A 3- $O-\beta$ -D-diginopyranoside.

Compound 5 was obtained as a colorless solid. The HRESIMS revealed a molecular formula of $C_{34}H_{52}O_{12}$. The ¹H and ¹³C NMR spectra established resonances of the diginopyranosyl and the 12α , 20α -epoxy- 14β -hydroxypregn-5-

Scheme 1. Postulated Biosynthesis Transformations of 1-3, 4, and 8/9

8A and **9A**, R' = H 8 and **9**, R' = CH₂

Figure 3. (a) Key NOE correlations and (b) an ORTEP plot of 4a.

en-11-one skeletons as found in 1 (Table 2). The presence of a glucopyranosyl ring was indicated by the ¹H and ¹³C NMR resonances at $\delta_{\rm H}$ 5.18 d (J = 7.6 Hz, H-1"), $\delta_{\rm C}$ 104.6 (CH, C-1"), $\delta_{\rm H}$ 4.57 dd (J = 11.4 and 1.3 Hz, H-6"a), 4.33 dd (J = 11.4 and 5.9 Hz, H-6"b), and $\delta_{\rm C}$ 63.3 (CH₂, C-6"). The HMBC cross-peaks between H-4'/C-1" and H-1"/C-4' indicated the attachment of C-1" of the glucopyranosyl ring to the oxygen atom at C-4'. Upon acid hydrolysis of **5** with 0.05 M HCl at 60 °C for 6 h and subsequent chromatographic purification, the same aglycone as that of 1, together with D-diginose, β -D-glucopyranosyl-(1 \rightarrow 4)-D-diginopyranose, and D-glucose, was obtained. Compound **5** was therefore identified as $12\alpha,20\alpha$ -epoxy-14 β -hydroxypregn-5-en-11-one 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-O- β -D-diginopyranoside.

Compound **6** was isolated as a colorless solid with the molecular formula of $C_{34}H_{52}O_{13}$ based on HRESIMS. The ¹H and ¹³C NMR spectra (Table 2) showed sets of resonances of the diginopyranosyl and the $12\alpha,20\alpha$ -epoxy- $8\beta,14\beta$ -dihydrox-ypregn-5-en-11-one units as observed in **2**, but with extra ¹H and ¹³C NMR resonances of a glucopyranosyl unit. The HMBC cross-peak between H-1″/C-4′ confirmed the connectivity of C-4′-O to C-1″. On the basis of the acid hydrolysis of **5**, which provided D-diginose and D-glucose, the structure of compound **6** was thus assigned as $12\alpha,20\alpha$ -epoxy- $8\beta,14\beta$ -dihydroxypregn-5-en-11-one 3-O- β -D-glucopyranosyl-(1→4)-O- β -D-diginopyranosyle.

Compound 7 was isolated as a colorless solid with the molecular formula $C_{34}H_{50}O_{13}$ based on HRESIMS. The ¹H and ¹³C NMR spectra showed similar sets of resonances to those found in 4 (Table 2) but with the presence of additional signals of a glucopyranosyl moiety. The HMBC cross-peak between H-1" and C-4' indicated connectivity between C-1" and the oxygen atom at C-4' and led to the structural assignment of compound 7 as kerriipregnane A 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-O- β -D-diginopyranoside.

Compound 8 was obtained as a colorless sticky liquid with a molecular formula of $C_{29}H_{44}O_9$ based on HRESIMS. The ¹³C NMR spectrum showed 29 carbon resonances comprising six methyl, seven methylene, 11 methine, and five nonprotonated carbons, among which there were three carbonyl (δ_C 212.4, 178.4, and 174.3), one olefinic (δ_C 140.3), and one quaternary carbon. The ¹H NMR spectrum showed resonances for a diginopyranosyl moiety, H-6 (δ_H 5.40) and H-20 (δ_H 4.09, dq, J = 9.1 and 6.1 Hz), similar to those found in 4 but with three

methyl doublets [$\delta_{\rm H}$ 1.18 (d, J = 7.6 Hz), 1.42 (d, J = 6.1 Hz, H_3-21), and 1.34 (d, J = 6.5 Hz, H_3-6')], instead of two as encountered in 4, together with two methoxy singlets at $\delta_{\rm H}$ 3.65 and 3.39 (OCH₃-3') (Table 3). The ${}^{1}H$, H–COSY spectrum exhibited connectivities between the less-shielded H-20/H₂-21 and H-17 ($\delta_{\rm H}$ 1.65), H-17/H-13 ($\delta_{\rm H}$ 2.28) and H-16, and H- $13/H_3$ -18 (δ_H 1.28). The key HMBC cross-peaks between H-17/C-12 ($\delta_{\rm C}$ 178.4), C-13, C-18, C-20, and C-21 revealed a lactone linkage between C-20 and C-13 (Supporting Information). The placements of a carbonyl group at C-14 and an ester carbonyl at C-11 were based on the HMBC crosspeaks between H-8/C-7, C-9, C-10, and C-14 and H-9/C-7, C-10, C-11 ($\delta_{\rm C}$ 174.3), and C-14, respectively. The methoxy singlet at $\delta_{\rm H}$ 3.65 showing an HMBC cross-peak with C-11 was therefore assigned to OCH₃-11. Owing to the overlap of relevant ¹H NMR resonances, important NOE correlations could not be unambiguously specified from the ROESY spectrum of either 8 or its acetate 8a. However, the relative configurations of the stereogenic centers in 8 were obtained from the X-ray structure of 8a, as shown in Figure 4. On the basis of the acid hydrolysis of 1, affording D-diginose, the structure of compound 8 was defined as kerriipregnane B 3-O- β -D-diginopyranoside.

Compound 9 was obtained as a sticky liquid, separable from 8 by HPLC purification and having the same molecular formula as that of 8 (HRESIMS $[M + Na]^+ m/z 559.2881$, calcd for $C_{29}H_{44}O_9Na$, 559.2871). The ¹H and ¹³C NMR resonances were similar to those of 8 except that the H-20 resonance was deshielded $[\delta_H 4.27 \text{ quint } (J = 6.3 \text{ Hz})]$ and the H₃-18 resonance was shielded $[\delta_H 1.18 \text{ d} (J = 7.6 \text{ Hz})]$ (Table 3). On the basis of the postulated transformation route (Scheme 1) and the ROESY spectra of 9 and its *O*-acetyl derivative 9a, which exhibited NOE cross-peaks between H-8/H₃-19, H-17/H-13 and H₃-21, H-13/H₃-21, and H-1'/H-3, H-3', and H-5' (Figure 5), compound 9 was thus concluded to be the C-13 epimer of 8 and named 13-*epi*-kerriipregnane B 3-*O*- β -D-diginopyranoside.

We propose that compounds 1-3 are inter-related by an oxygenation reaction (Scheme 1). The formation of 4 was proposed from 3 by a nucleophilic attack of the OH-14 group at the C-11 carbonyl function, leading to intermediate A. After oxidative rearrangement, resulting in cleavage of the bond between C-11 and C-12, and some biological oxidant (presumably NADP⁺) accepting a hydride ion, a 11,12-secopregnane derivative with a spirodilactone motif, 4, was established. Hydrolysis of 4 followed by a retro-aldol reaction, which could be by either a one- or two-step reaction, could lead to the formation of either 8A or 9A depending on which face the protonation occurred. Subsequent methylation, most probably with S-adenosylmethionine, provided 8 and 9. It is, however, noteworthy that compound 4 remained intact after stirring 4 (3 mg) with silica gel (50 mg) in MeOH (5 mL) at room temperature for 5 days.

Table 4 shows the anti-inflammatory activities of selected compounds based on their inhibition of nitric oxide (NO) production in RAW264.7 cells.¹⁶ Among the test compounds, compound **9a** showed the most potent inhibitory activity, with an IC₅₀ value of 12.6 μ M, which is comparable to that of the positive control, caffeic acid phenethyl ester, CAPE (IC₅₀ = 9.3 μ M), while compound **8a** exhibited an IC₅₀ value of 31.6 μ M, which is more potent than aspirin, ibuprofen, indomethacin, and L-nitroarginine (L-NA). Compound **9a** was also examined for its anti-inflammatory mechanism against mRNA expression.

Table 2. ¹ H ([.]	400 MHz) and ^{13}C NMR (100 MHz) S	pectroscopic Da	ata of 5–7 (in Pyridine-d ₅)			
	S		9		7	
position	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	$\delta_{\rm H} ~(J~{ m in}~{ m Hz})$	δ _C	$\delta_{\rm H}~(J~{ m in}~{ m Hz})$	$\delta_{ m C}$
1	2.61, ^a 1.51	38.2, CH ₂	2.71, ^e 1.45	40.4, CH ₂	2.55, ^h 1.24	36.4 ⁷ CH ₂
2	2.14, 1.67	33.4, CH ₂	2.10, 1.78	$29.9, CH_2$	2.17, ⁱ 1.68	29.2, CH ₂
ŝ	3.86, dddd (10.9, 10.9, 6.5, 4.6)	77.7, CH	3.90	78.1, CH	3.68, dddd (10.8, 10.8, 6.6, 4.1)	76.S, CH
4	$2.61,^a$ 2.20^b	38.9, CH ₂	2.59, brdd (11.5, 2.4), 2.32	$39.2, CH_2$	$2.47, 2.27^i$	37.9, CH ₂
S		141.0, C		140.9, C		140.6, C
6	5.5, brs	123.1, CH	5.4, brs	119.5, CH	5.28, brs	120.6, CH
7	2.68, 2.27	29.2, CH ₂	2.74, ^e 2.38	36.0, CH ₂	2.73, 2.15	25.0, CH ₂
8	2.24^{b}	37.3, CH		77.3, C	2.58 ^h	43.3, CH
6	2.21, ^b d (13.7)	60.3, CH	2.44, brs	60.6, CH	2.87, d (14.2)	51.1, CH
10		39.9, C		40.6, C		36.4, C
11		211.9, C		212.9, C		179.2, C
12	4.18, s	92.3, CH	4.58, s	91.8, CH		174.8, C
13		64.2, C		63.4, C		56.2, C
14		81.7, C		85.3, C		93.2, C
15	1:99	30.1, CH ₂	1.95	36.4, CH ₂	$2.66, 2.08^{i}$	39.5, CH ₂
16	1.29	26.7, CH	1.23	26.7, CH ₂	2.10^{i} 1.48	26.2, CH ₂
17	1.94, dt (13.0, 6.1)	59.4, CH	1.88 ⁸	61.4, CH	2.13	56.4, CH
18	1.69, s	24.1, CH ₃	1.85, s	27.2, CH ₃	1.35, s	23.1, CH ₃
19	0.97, s	20.1, CH ₃	1.36, s	18.6, CH ₃	1.07, s	17.8, CH ₃
20	3.69, quint (6.1)	82.7, CH	3.62, quint (6.2)	81.6, CH	4.22, quint $(6.4)^k$	79.4, CH
21	1.33, d (6.0)	20.7, CH ₃	1.28, d (5.9)	21.0, CH ₃	1.21, d (6.2)	20.9, CH ₃
1′	4.81, brd (9.4)	98.9, CH	4.78, brd (9.4)	98.9, CH	4.69, brd (9.6)	98.3, CH
2′	2.41, 2.15	32.9, CH ₂	2.31, 2.08, brt (9.4)	33.5, CH ₂	$2.32, 2.08^i$	32.6, CH ₂
3,	3.53, ddd (10.7, 3.9, 2.4)	80.3, CH	3.48, brdt (11.5, 3.3)	80.4, CH	3.41, dt (11.0, 3.2)	79.6, CH
4	4.27 , brs^c	73.4, CH	4.23 , brs^g	73.4, CH	3.59, brs	73.0, CH
S'	3.60'''	71.0, CH	3.55, brq (6.3)	71.1, CH	3.52, q (6.2)	70.3, CH
6′	1.54, d (6.2)	18.1, CH ₃	1.49, d (6.3)	18.2, CH ₃	1.48, d (6.3)	17.4, CH ₃
$3'-OCH_3$	3.43, s	56.4, CH ₃	3.37, s	56.5, CH ₃	3.33, s	55.6, CH ₃
1″	5.18, d (7.6)	104.6, CH	S.11, d (7.7)	104.6, CH	5.13, d (7.7)	104.3, CH
2″	3.97 ^d	78.4, CH ⁿ	3.87^{ℓ}	78.4, CH	3.90	75.5,° CH
3″	$4.24,^c$ obs t (8.9)	78.7, CH ⁿ	4.18, t (8.9)	78.8, CH	$4.14, t (9.1)^k$	71.4, CH
4″	4.15, obs t (8.9)	72.1, CH	4.08, t (9.1)	72.2, CH	$4.12, t (9.1)^k$	78.1, CH
S″	3.99^{d}	76.1, CH	3.94	76.2, CH	3.87^{i}	77.8,° CH
6″	4.57, dd (11.4, 1.3), 4.33, dd (11.4, 5.9)	63.3, CH ₂	4.51, brd (11.5), 4.26, dd (11.5, 6.0) ^g	63.3, CH ₂	4.53, brd (10.6), 4.32, dd (10.6, 5.2)	62.7, CH ₂
			5.69, brs			

DOI: 10.1021/acs.jnatprod.6b00730 J. Nat. Prod. XXXX, XXX, XXX–XXX

 $^{a-k}$ Overlapped signals. m Obscured by solvent signal. n,o Interchangeable signals.

Journal of Natural Products

F

	docomo do vivito o min (are		A a a a a a a a a a a a a a a a a a a a	o mar ardaacan		
	8		6		8a	9a
position	$\delta_{\rm H}$ (J in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (J in Hz)	δ_{C}	$\delta_{\rm H}$ (J in Hz)	$\delta_{\rm H}$ (J in Hz)
1	2.01 ^{<i>a</i>}	37.7, CH ₂	2.02 ^e	37.7, CH ₂	1.85	1.89
2	2.02, ^a 1.59	29.7, CH ₂	2.03, ° 1.57	$29.3, CH_2$	2.03, 1.63	2.03, 1.63
3	3.59, dddd (11.2, 10.9, 6.3, 4.0)	77.3, CH	3.59, dddd (11.2, 10.6, 4.6, 4.0)	76.5, CH	3.57^{h}	3.57^k
4	2.38, brdd (13.5, 4.0), 2.23 ^b	38.4, CH ₂	2.40, dd (13.1. 3.2), 2.21 ^f	38.5, CH ₂	2.40, dd (13.0, 3.5), 2.24	2.40, dd (13.5, 3.3), 2.24
5		140.3, C		140.3, C		
6	5.40, brs	119.4, CH	5.40, brs	119.5, CH	5.39, brs	5.39, d (2.9)
7	2.27, ^b 1.88	28.7, CH ₂	2.21, 1.85	$28.7, CH_2$	2.26, 1.85	2.23, 1.85
8	3.10, dt (11.8, 5.2)	45.3, CH	3.09, dd (11.7, 5.3)	45.2, CH	3.09, dt (11.7, 4.9)	3.08, dt (11.5, 5.2)
6	2.64, ^c d (11.8)	53.8, CH	2.65, d (11.7)	53.9, CH	2.66, d (11.7) ⁱ	2.64, d (11.5) ^j
10		37.1, C		37.1, C		
11		174.3, C		174.3, C		
12		178.4, C		178.5, C		
13	2.28, quint $(7.1)^b$	41.9, C	2.73, quint (7.7)	37.5, CH	2.29	2.72, quint (7.8)
14	1	212.4, C	1	212.6, C		I
15	2.67, ddd (17.9, 7.3, 6.9) ^c	39.3, CH ₂	2.59, ddd (18.1, 7.1, 5.5)	39.6, CH ₂	2.63^{i}	2.57
16	1.76 ^d	24.6, CH ₂	$1.70,^{g}$ 1.59	20.4, CH ₂	1.76	1.73, 1.60
17	1.65	50.4, CH	2.06	45.3, CH	1.68	2.03
18	1.28, d (7.1)	14.9, CH ₃	1.18, d (7.6)	10.3, CH ₃	1.26, d (7.1)	1.17, d (7.8)
19	1.01, s	20.3, CH ₃	1.00, s	20.3, CH ₃	1.00, s	0.99, s
20	4.09, dq (9.1, 6.1)	79.7, CH	4.27, quint (6.3)	79.2, CH	4.07, dq (8.9, 6.1)	4.26, quint (6.3)
21	1.42, d (6.1)	20.0, CH ₃	1.39, d (6.3)	19.5, CH ₃	1.41, d (6.1)	1.38, d (6.3)
1'	4.51, dd (9.7, 1.9)	98.2, CH	4.52, dd (9.7, 1.6)	98.2, CH	4.55, brd (8.3)	4.55, dd (9.7, 1.4)
2′	1.96, brd (12.4, 4.7), 1.69 ^d	31.9, CH ₂	1.94, dd (14.1, 3.5), 1.65 ^g	32.0, CH ₂	1.91, dd (12.1, 3.1), 1.75	1.93, dd (12.2, 3.4), 1.79
3′	3.33, ddd (11.9, 4.7, 3.1)	77.9, CH	3.33, ddd (11.7, 4.7, 3.5)	77.9, CH	3.36'	3.36 ¹
4′	3.69, brs	67.0, CH	3.69, brs	67.0, CH	5.16, brs	5.16, d (1.9)
S'	3.44, brq (6.5)	70.4, CH	3.44, brq (6.4)	70.4, CH	3.53, brq (6.5) ^h	3.54, brq (6.5) ^k
6'	1.34, d (6.5)	16.8, CH ₃	1.34, d (6.4)	16.8, CH ₃	1.19, d (6.5)	1.19, d (6.5)
$3'-OCH_3$	3.39, s	55.7, CH ₃	3.39, s	55.7, CH ₃	3.33, s ⁷	$3.33, s^l$
COOCH ₃ -11	3.65, s	51.6, CH ₃	3.64, s	51.5, CH ₃	3.63, s	3.63, s
COCH ₃ -4'					2.13, s	2.13, s
⁻¹ Overlapped signal.						

Journal of Natural Products

DOI: 10.1021/acs.jnatprod.6b00730 J. Nat. Prod. XXXX, XXX, XXX–XXX

Figure 4. ORTEP plot of 8a.

Figure 5. Key NOE correlations of 9.

Table 4. Anti-inflammatory Activity Based on the Inhibition of Nitric Oxide Production in RAW264.7 Cells^a

compound	IC_{50} (μM)	compound	IC_{50} (μM)
1	96.5 ^b	1a	91.2
2	62.5	2a	87.8
3	84.0	4	93.8
4a	60.4	5	>100
6	>100	8	87.3 ^c
8a	31.6	9	66.1
9a	12.6 ^b	aspirin ^d	43.2
ibuprofen ^d	54.5	indomethacin ^d	46.5
CAPE ^d	9.3	$L-NA^d$	37.7

^{*a*}Each value represents mean \pm SEM of four determinations. ^{*b*}Cytotoxic effect was observed at $\geq 100 \ \mu$ M (by the MTT assay). ^{*c*}Cytotoxic effect was observed at $\geq 10 \ \mu$ M. ^{*d*}Positive control compounds, caffeic acid phenethyl ester (CAPE), L-nitroarginine (L-NA).

The compound was found to down-regulate mRNA expression of iNOS and COX-2 in a dose-dependent manner (Figure 6).

Figure 6. Effect of **9a** at various concentrations (3, 10, 30, 100 μ M) on the mRNA expression of iNOS and COX-2 using RAW264.7 cells [N = LPS (-), sample (-); C = LPS (+), sample (-); 3–100 μ M = LPS (+), sample (+)].

In summary, five rare 12,20-epoxypregnane glycosides and the first two 11,12-*seco*-pregnane glycosides with a spirodilactone motif, as well as the spirodilactone cleavage products, were isolated from the stems of *H. kerrii*. Their structures were elucidated on the basis of extensive spectroscopic and X-ray crystallographic analyses. The absolute configurations of the sugar units were proven by acid hydrolysis of some selected glycosides. Some compounds showed potent to moderate antiinflammatory activity.

EXPERIMENTAL SECTION

General Experimental Procedures. Melting points were measured using an Electrothermal melting point apparatus and are uncorrected. Optical rotations were recorded on a JASCO DIP 1020 polarimeter. The IR spectra were obtained on a PerkinElmer 1760x FT-IR spectrophotometer. The ¹H and ¹³C NMR spectra were recorded with a Bruker AVANCE 400 MHz spectrometer. Chemical shifts are referenced to the residual solvent signals (CDCl₃: $\delta_{\rm H}$ 7.24 and $\delta_{\rm C}$ 77.0). HRESIMS was recorded on a Bruker Daltonics microTOF mass spectrometer. HPLC separation was performed using a Merck LiChrospher 100 RP-18 (5 μ m, 250 × 4.0 mm) column with a TSP SpectraSYSTEM P2000 pump and a TSP SpectraSYSTEM UV2000 detector.

Plant Material. The plant, *Hoya kerrii* (Apocynaceae), was collected from Padaeng Subdistrict, Chattrakan District, Pitsanuloke Province, on May 12, 2009. The plant was identified by Associate Professor Dr. Nijsiri Ruangrangsi, Faculty of Pharmacy, Rangsit University, Pathumthani. A voucher specimen (SSHK-2009) is maintained at the Chemistry Department, Ramkhamhaeng University.

Extraction and Isolation. Fresh stem (5.2 kg) of H. kerrii was cut into small pieces, ground, and soaked in MeOH (24 L) at room temperature for 30 d. The concentrated extract, obtained as a greenish, waxy residue after removal of solvent under reduced pressure, was partitioned successively with hexanes (28.4 L), CH₂Cl₂ (30 L), and EtOAc (24 L) to yield dark green hexanes (83.16 g), dark green CH₂Cl₂ (48.02 g), reddish-brown EtOAc (80.69 g), and reddishbrown aqueous (MeOH) (312.46 g) extracts. The stem CH₂Cl₂ extract (48.02 g) was fractionated by column chromatography (silica gel, hexanes-CH₂Cl₂, 70:30-30:70) to obtain 15 fractions. Fraction 2 (269.9 mg) was purified by column chromatography (CC, silica gel, hexanes-EtOAc, 99.7:0.3) to give three subfractions; the third subfraction (61 mg) was chromatographed (silica gel, hexanes-EtOAc, 99.7:0.3) to give 63.9 mg of a colorless solid of lupeol acetate. Fraction 4 (465.9 mg) was chromatographed (silica gel, hexanes-EtOAc, 98:2 to 95:5) to give three subfractions (4.1-4.3); subfraction 4.2 (242.2 mg) was recrystallized from hexanes-EtOAc (8:2) to give taraxerol (33.2 mg). Fraction 5 (938.6 mg) was recrystallized from hexanes-EtOAc (8:2) to give an additional quantity of taraxerol (67.7 mg), and the concentrated mother liquor was recrystallized from CH₂Cl₂-MeOH (4:6) to give lupeol (77.1 mg). Fraction 6 (939.5 mg) was purified by CC (silica gel, hexanes-EtOAc, 95:5 to 50:50) to give three subfractions (6.1-6.3); subfraction 6.2 (356.1 mg) after CC (silica gel, hexanes-CH₂Cl₂, 50:50, to CH₂Cl₂-MeOH, 99.9:0.5) gave a mixture of sitosterol and stigmasterol (142.8 mg). Fraction 8 (323.4 mg) was purified by CC (silica gel, hexanes-EtOAc, 80:20-50:50) to give three subfractions (8.1-8.3); subfraction 8.2 (44.2 mg) gave phydroxybenzaldehyde (9.3 mg). Subfraction 8.3 (14.0 mg) was separated by chromatography (RP-18, MeOH-H₂O, 70:30-100:0) to give scopoletin (5.9 mg). Fraction 10 (11.40 g) was fractionated (CC, silica gel, hexanes-EtOAc, 70:30, CH₂Cl₂-MeOH, 99.5:0.5) to give six subfractions (10.1-10.6); subfraction 10.2 (1.63 g) after CC (silica gel, CH₂Cl₂-MeOH, 99.7:0.3-96:4) gave five subfractions (10.2.1-10.2.5). Subfraction 10.2.2 (996.7 mg) after CC (RP-18, MeOH-H₂O, 65:35) and then silica gel (hexanes-EtOAc, 50:50) gave colorless compound 4 (58.8 mg); an aliquot of 4 after acetylation (using Ac₂O, pyridine) and purification (CC, silica gel, hexanes -EtOAc, 50:5) gave a colorless solid of 4a. Subfraction 10.2.3 (76.7 mg) was chromatographed (silica gel, hexanes-EtOAc, 50:50) to give four subfractions; the third subfraction was purified by CC (silica gel, hexanes-EtOAc, 50:50) to give four subfractions, the second subfraction of which (31.5 mg) was purified by HPLC, RP-18, MeOH-H₂O, 60:40 to 100:0, TSP 2000, flow rate 1 mL/min, detected at 220 nm, to give 9, $t_{\rm R}$ = 12.8 min (3.4 mg), and 8, $t_{\rm R}$ = 13.7 min (11.2 mg). This subfraction containing a mixture of 8 and 9 (62.3 mg) was acetylated using Ac₂O-pyridine, the crude product (53.6

mg) was fractionated using Sephadex LH-20 and MeOH, and the major fraction was further purified using HPLC, MeOH-H₂O, 60:40 to 100:0, to give 9a, $t_{\rm R} = 19.7$ min (4.7 mg), and 8a, $t_{\rm R} = 20.8$ min (8.4 mg). Subfraction 10.2.3.4 (79.3 mg) was fractionated (Sephadex LH-20, MeOH, and then RP-18, MeOH-H2O, 50:50) to give lariciresinol (9.0 mg). Fraction 10.2.4 (202.8 mg) was purified by CC (Sephadex LH-20, MeOH) to obtain three subfractions (10.2.4.1-10.2.4.3); subfraction 10.2.4.2 (45.6 mg), after CC (RP-18, MeOH-H₂O, 60:40 to 70:30), gave a colorless solid (18.8 mg) of 3. Subfraction 10.3 (1.01 g) was recrystallized (hexanes-CH2Cl2, 6:4) to give colorless needles (114.6 mg) of 1. An aliquot of 1 (30 mg) was acetylated using Ac₂Opyridine to obtain 1a after purification (silica gel, hexanes-EtOAc, 50:50) (28.9 mg). Subfraction 10.4 (2.24 g) was chromatographed (silica gel, CH₂Cl₂-MeOH, 99.5:0.5-93:7) to give six subfractions (10.4.1-10.4.6). Subfraction 10.4.2 (282.5 mg) was recrystallized from hexanes-CH₂Cl₂ 6:4 to give fine needles (47.1 mg) of 1. Subfraction 10.4.4 (324.0 mg) was purified by CC (RP-18, MeOH-H₂O, 50:50) and then silica gel (hexanes-EtOAc, 45:65) to give five subfractions (10.4.4.1-10.4.4.5); subfraction 10.4.4.2 gave an additional quantity of 1 (20.7 mg), and subfraction 10.4.4.4 gave 2 (17.4 mg). Subfraction 10.5 (1.495 g) was subjected to CC (silica gel, hexanes-EtOAc, 20:80, to CH₂Cl₂-MeOH, 98:2) to give four subfractions (10.5.1-10.5.4). Subfraction 10.5.2 (1.17 g) was separated by chromatography (RP-18, MeOH-H₂O, 50:50-100:0) to obtain two subfractions (10.5.2.1-10.5.2.2); subfraction 10.5.2.1 (365.9 mg) was fractionated (CC, Sephadex LH-20, MeOH) to give three subfractions. Subfraction 10.5.2.1.2 (193.8 mg) after CC (RP-18, MeOH-H₂O, 60:40-100:0, and then Sephadex LH-20, MeOH) gave an additional quantity of a colorless solid (36.2 mg) of 2. The fraction containing 2 as a major compound was acetylated using Ac2O-pyridine to obtain 2a as a colorless solid after CC (silica gel, hexanes-EtOAc, 50:50). Fraction 14 (11.35 g) was fractionated (CC, Sephadex LH-20, MeOH) to obtain three subfractions (14.1-14.3); subfraction 14.2 (8.0 g) was column chromatographed (silica gel, CH₂Cl₂-MeOH, 93:7-80:20) to give four subfractions (14.2.1-14.2.4). Subfraction 14.2.2 (1.73 g) after further CC [(RP-18 MeOH-H2O, 60:40 to 100:0, then Sephadex LH-20 (MeOH)] and finally CC [(silica gel, CH₂Cl₂-MeOH, 93:7)] gave compound 7 (12.3 mg) and compound 5 (9.4 mg). Subfraction 14.2.3 (3.42 g) was subjected to CC (silica gel, CH₂Cl₂-MeOH, 95:5-90:10) to give four subfractions (14.2.3.1-14.2.3.4); subfraction 14.2.3.2 (351.2 mg) after CC (RP-18, MeOH-H2O, 50:50, then Sephadex LH-20, MeOH) gave an additional quantity of 5 (29.5 mg). Subfraction 14.2.3.4 (763.4 mg) was subjected to CC (RP-18, MeOH-H₂O, 50:50) to obtain compound 6 (21.1 mg).

Acid Hydrolysis of 1. A mixture of compound 1 (6.5 mg) and 0.05 M HCl (1.5 mL) was refluxed at 60 °C for 4 h. After cooling, the reaction mixture was extracted with EtOAc (3 × 10 mL). The combined EtOAc extract (5.1 mg). Reversed-phase column chromatography (MeOH–H₂O, 40:60) of the extract gave the agylcone 12 α ,20 α -epoxy-14 β -hydroxypregn-5-en-11-one (3.4 mg, R_f 0.35) and D-diginose (1.8 mg, R_f 0.52) [silica gel TLC, thickness 0.2 mm, CH₂Cl₂–MeOH (94:6)]. The aqueous extract after neutralization and concentration gave an additional quantity of D-diginose (0.9 mg). The optical rotation value was measured after 24 h of dissolution in H₂O: D-diginose [α]²⁶_D +68 (c 0.1, H₂O) (lit.^{13,14a} +59.6 (c 1.48, H₂O)).

Acid Hydrolysis of 5. A mixture of compound 5 (13.8 mg) and 0.05 M HCl (3.0 mL) was refluxed at 60 °C for 6 h. After cooling, the reaction mixture was extracted with EtOAc (3 × 10 mL). The combined EtOAc extract after usual workup (5.1 mg) and column chromatography (silica gel, CH₂Cl₂–MeOH, 98:2) gave 12α,20α-epoxy-14β-hydroxypregn-5-en-11-one (4.1 mg), R_f 0.35 (CH₂Cl₂–MeOH, 96:4): $[\alpha]^{26}_{\text{D}}$ –200 (*c* 0.4, CHCl₃); FT-IR (ATR) ν_{max} 3442, 2928, 2876, 1712, 1458, 1378, 1270, 1144, 1113, 1067, 1047, 1033, 1020, 973 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ_H 5.47 (d, *J* = 5.5 Hz, H-6), 3.90 (s, H-12), 3.53 (H-3), 3.46 (H-20), 2.36 (dt, *J* = 11.9, and 4.4 Hz, H-8); 2.35 (H-4), 2.27 (H-7), 2.14 (brt, *J* = 11.0 Hz, H-4), 2.02 (H-1), 2.02 (d, *J* = 12.3 Hz, H-9), 1.95 (H-16), 1.86 (H-2), 1.83 (H-17), 1.75 (H-7), 1.58 (H-15), 1.45(H-2), 1.39 s (H-19), 1.35 (H-19), 1.3

1), 1.317 (d, J = 6.0 Hz, H-21), 1.27 (H-16), 1.03 s (H-18); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 211.2 (C, C-11), 140.8 (C, C-5), 121.7 (CH, C-6), 91.5 (CH, C-12), 82.3 (CH, C-20), 82.2 (C, C-14), 71.6 (CH, C-3), 63.2 (C, C-13), 59.6 (CH, C-9), 58.4 (CH, C-17), 41.4 (CH₂, C-4), 39.2 (C, C-10), 37.3 (CH₂, C-1), 36.5 (CH, C-8), 32.4 (CH₂, C-15), 31.2 (CH₂, C-2), 28.1 (CH₂, C-7), 22.7 (CH₃, C-18), 20.2 (CH₃, C-21), 20.0 (CH₃, C-19); HRESIMS *m*/*z* 369.2026 [M + Na]⁺ (calcd for C₂₁H₃₀O₄Na, 369.2034). The aqueous phase was neutralized with saturated NaHCO3 and evaporated to give an aqueous extract (8.1 mg). Column chromatography (silica gel, CH₂Cl₂-MeOH, 92:8 to 75:25) of the crude extract gave D-diginose (0.9 mg, R_f 0.57), β -Dglucopyranosyl- $(1\rightarrow 4)$ -D-diginopyranose (1.1 mg, R_f 0.15), and Dglucose (5.4 mg, $R_f 0.03$) [silica gel TLC, thickness 0.2 mm, CH₂Cl₂-MeOH (92:8)]. The optical rotation values were measured after 24 h of dissolution in H₂O: D-diginose $[\alpha]^{26}_{D}$ +59 (c 0.1, H₂O) (lit.^{13,14a} +59.6 (c 1.48, H₂O); β -D-glucopyranosyl-(1 \rightarrow 4)-D-diginopyranose, $[\alpha]_{D}^{26}$ +62 (c 0.1, H₂O) (lit.¹⁵ +50.8 (c 1.3, MeOH); and D-glucose, $[\alpha]_{D}^{26}$ +59 (c 0.1, H₂O) (lit.^{14a} +53.2 (c 0.1, H₂O).

3-β-O-12α,20α-Epoxy-14β-hydroxypregn-5-en-11-one β-D-diginopyranoside (1): colorless solid, mp 192–194 °C; $[α]_D$ –182 (c 0.5, CHCl₃); FT-IR (ATR) ν_{max} 3463, 2936, 2890, 1711, 1661, 1445, 1367, 1322, 1269, 1194, 1167, 1129, 1102, 1060, 1031, 974, 893, 813, 784, 725, 658, 580 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data, see Table 1; HRESIMS *m*/*z* 513.2828 [M + Na]⁺ (calcd for C₂₈H₄₂O₇Na, 513.2816).

4'-O-Acetyl-3-β-O-12α,20α-epoxy-14β-hydroxypregn-5-en-11one β-D-diginopyranoside (**1a**): $[α]_D$ –132 (c 0.4, CHCl₃); FT-IR (ATR) $ν_{max}$ 3445, 2967, 2956, 2930, 2889, 2841, 1735, 1711, 1439, 1379, 1374, 1360, 1235, 1172, 1140, 1112, 1059, 1034, 1019, 973, 951, 884, 863, 847, 814, 661 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data, see Table S1; HRESIMS *m/z* 555.2956 [M + Na]⁺ (calcd for C₃₀H₄₄O₈Na, 555.2928).

12α,20α-Epoxy-8α,14β-dihydroxypregn-5-en-11-one 3-O-β-Ddiginopyranoside (**2**): colorless solid, mp 146–148 °C; $[α]_D$ –57 (*c* 0.7, CHCl₃); FT-IR (ATR) ν_{max} 3436, 2925, 2856, 1736, 1710, 1460, 1445, 1371, 1260, 1191, 1371, 1260, 1191, 1166, 1098, 1059, 1047, 1024, 975, 886, 864, 809, 727 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data, see Table 1; HRESIMS *m*/*z* 529.2759 [M + Na]⁺ (calcd for C₂₈H₄₂O₈Na 529.2766).

4'-O-Acetyl-12α,20α-epoxy-8α,14β-dihydroxypregn-5-en-11-one 3-O-β-D-diginopyranoside (**2a**): colorless solid, mp 204–206 °C; [α]_D –84 (c 0.6, CHCl₃): FT-IR (ATR) ν_{max} 3518, 3426, 2965, 2928, 2872, 1747, 1698, 1457, 1439, 1378, 1367, 1342, 1169, 1227, 1132, 1103, 1063, 1022, 967, 979, 946, 915, 888, 860, 809, 728 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data, see Table S1; HRESIMS m/z 571.2898 [M + Na]⁺ (calcd for C₃₀H₄₄O₉Na, 571.2877).

12α,20α-Epoxy-12β,14β-dihydroxypregn-5-en-11-one 3-O-β-Ddiginopyranoside (**3**): $[\alpha]_D$ -49 (c 0.5, CHCl₃); FT-IR (ATR) ν_{max} 3468, 2965, 2933, 2867, 1717, 1458, 1442, 1375, 1268, 1189, 1166, 1118, 1098, 1062, 1030, 1017, 972, 941, 913, 886, 843, 816, 723 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data, see Table 1; HRESIMS *m*/*z* 529.2779 [M + Na]⁺ (calcd for C₂₈H₄₂O₈Na, 529.2766).

Kerriipregnane A 3-O-β-D-diginopyranoside (4): colorless solid, mp 158–162 °C; $[\alpha]_D$ –78 (*c* 0.5, CHCl₃); FT-IR (ATR) ν_{max} 3511, 2969, 2937, 2874, 1756, 1447, 1376, 1367, 1192, 1167, 1098, 1060, 1028, 979, 966, 937, 894, 851, 812, 719 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data, see Table 1; HRESIMS m/z 527.2625 [M + Na]⁺ (calcd for C₂₈H₄₀O₈Na, 527.2615).

4'-O-Acetylkerriipregnane A 3-O-β-D-diginopyranoside (**4***a*): colorless solid, mp 172–173 °C; $[\alpha]_D$ –25 (*c* 0.8, CHCl₃); FT-IR (ATR) ν_{max} 2978, 2946, 2883, 1757, 1715, 1456, 1439, 1380, 1361, 1240, 1253, 1192, 1168, 1103, 1062, 1029, 961, 950, 918, 726 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data, see Table S1; HRESIMS *m*/*z* 569.2725 [M + Na]⁺ (calcd for C₃₀H₄₂O₉Na, 569.2715).

 $12\alpha_2 20\alpha$ -Epoxy-14β-hydroxypregn-5-en-11-one 3-O-β-D-glucopyranosyl-(1→4)-O-β-D-diginopyranoside (5): $[\alpha]_D$ -79 (c 0.7, CHCl₃); FT-IR (ATR) ν_{max} 3373, 2926, 2870, 2855, 1741, 1711, 1655, 1596, 1451, 1369, 1322, 1271, 1220, 1195, 1166, 1099, 1057, 1026, 1017, 972, 889, 863, 811 cm⁻¹; ¹H NMR (pyridine- d_5 , 400 MHz) and ¹³C NMR (pyridine- d_5 , 100 MHz) data, see Table 2; HRESIMS m/z 675.3356 [M + Na]⁺ (calcd for C₃₄H₅₂O₁₂Na, 675.3342).

12α,20α-Epoxy-8α,14β-dihydroxypregn-5-en-11-one 3-O-β-Dglucopyranosyl-(1→4)-O-β-D-diginopyranoside (**6**). colorless solid, mp 190–194 °C; $[\alpha]_D$ –90 (*c* 0.5, CHCl₃); FT-IR (ATR) ν_{max} 3406, 2973, 2935, 2871, 1700, 1647, 1596, 1456, 1445, 1370, 1320, 1276, 1223, 1199, 1167, 1153, 1100, 1071, 1051, 1022, 994, 977, 954, 944, 916, 892, 863 cm⁻¹; ¹H NMR (pyridine-*d*₅, 400 MHz) and ¹³C NMR (pyridine-*d*₅, 100 MHz) data, see Table 2; HRESIMS *m*/*z* 691.3310 [M + Na]⁺ (calcd for C₃₄H₅₂O₁₃Na 691.3300).

Kerriipregnane A 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-O- β -D-diginopyranoside (7): colorless solid, mp 158–162 °C; FT-IR (ATR) ν_{max} 3384, 2970, 2934, 2872,1761, 1732, 1456, 1442, 1369, 1170, 1099, 1056, 1020 cm⁻¹; ¹H NMR (pyridine- d_s , 400 MHz) and ¹³C NMR (pyridine- d_s , 100 MHz) data, see Table 2; HRESIMS m/z 689.3204 [M + Na]⁺ (calcd for C₃₄H₅₀O₁₃Na, 689.3134).

Kerriipregnane B 3-O-β-D-diginopyranoside (8): colorless solid, mp 132–134 °C; $[\alpha]_D$ –48 (*c* 1.3, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data see Table 3; HRESIMS *m*/*z* 559.2881 [M + Na]⁺ (calcd for C₂₉H₄₄O₉Na, 559.2871).

4'-O-Acetylkerriipregnane B 3-O-β-D-diginopyranoside (**8a**): ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data, see Table 3; HRESIMS m/z 601.3006 [M + Na]⁺ (calcd for C₃₁H₄₆O₁₀Na, 601.2983).

13-epi-Kerriipregnane B 3-O-β-D-diginopyranoside (9): $[\alpha]_D$ -46.46 (c 0.24, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data, see Table 3; HRESIMS *m*/*z* [M + Na] 559.2888 (calcd for C₂₉H₄₄O₉Na 559.2871).

4'-O-Acetyl-13-epi-kerriipregnane B 3-O-β-D-diginopyranoside (**9a**): FT-IR (ATR) ν_{max} 3445, 2966, 2929, 2891, 2842, 1734, 1711, 1438, 1380, 1235, 1170, 1138, 1111, 1059, 1034, 1019, 973, 862 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) data, see Table 3; HRESIMS *m*/*z* 601.3023 [M + Na]⁺ (calcd for C₃₁H₄₆O₁₀Na, 601.2983).

X-ray Crystallographic Analysis of Compounds 1, 4a, and 8a. X-ray analysis was carried out on a Bruker-Nonius kappaCCD diffractometer using a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å) at 298(2) K. The structures were solved by direct methods using SIR97¹⁷ and refined with full-matrix least-squares calculation on F^2 using SHELXL-97.¹⁸ The crystallographic data have been deposited at the Cambridge Crystallographic Data Centre under the reference numbers CCDC 1484810–1484812.

Crystal data for 1: $2(C_{28}H_{42}O_7) 3(H_2O)$, MW = 1035.3, 0.15 × 0.15 × 0.20 mm³, monoclinic, space group $P2_1$ (No. 4), a = 7.2520(1) Å, b = 35.8010(5) Å, c = 10.7280(2) Å, $\beta = 90.0590(5)^\circ$, V = 2785.30(8) Å³, Z = 2, T = 298(2) K, μ (Mo K α) = 0.090 mm⁻¹, $D_x = 1.235$ g/cm³, reflections measured/unique: 16 175/3306, observed [$I > 2\sigma(I)$]: 3154, $R_1 = 0.0464$, $wR_2 = 0.1250$ (all data).

Crystal data for **4a**: $C_{30}H_{42}O_9$, MW = 546.64, 0.25 × 0.25 × 0.30 mm³, monoclinic, space group $P2_1$ (No. 4) a = 12.0520(6), Å, b = 8.5300(4) Å, c = 14.5650(7) Å, $\beta = 95.408(3)^\circ$, V = 1490.67(12) Å³, Z = 2, T = 298(2) K, μ (Mo K α) = 0.090 mm⁻¹, $D_x = 1.218$ g/cm³, reflections measured/unique: 6495/1868, observed $[I > 2\sigma(I)]$: 1439, $R_1 = 0.0577$, $wR_2 = 0.1710$ (all data).

Crystal data for **8a**: $2(C_{30}H_{46}O_{710})$, MW = 578.68, 0.15 × 0.15 × 0.30 mm³, orthorhombic, space group $P2_12_12$ (No. 18), a = 27.6220(4) Å, b = 19.96800(10) Å, c = 5.6990(5) Å, V = 3143.3(3) Å³, Z = 4, T = 298(2) K, μ (Mo K α) = 0.090 mm⁻¹, $D_x = 1.223$ g/cm³, reflections measured/unique: 5050/4650, observed $[I > 2\sigma(I)]$: 4200, $R_1 = 0.0520$, $wR_2 = 0.1346$ (all data).

Bioassays. The assay for anti-inflammatory activity based on the inhibition of NO production in RAW264.7 cells was conducted using a previously published protocol.¹⁵

To acquire the mechanism of action of the cytokine release of 9a, assays for the mRNA expression of iNOS and COX-2 were performed. The total RNA was isolated from RAW264.7 cells and was harvested after 20 h of incubation with samples at various concentrations (3, 10,

30, 100 μ M) using the RNeasy mini kit (Qiagen Operon Co. Ltd., USA). The total RNA from each sample was used for cDNA synthesis using a first-strand cDNA synthesis kit (Rever Tra Ace- α , TOYOBO Co., Ltd., Japan), followed by RT-PCR (Rever Tra Dash, TOYOBO Co., Ltd., Japan). The primers for iNOS and COX-2 were used (forward primer for iNOS: 5'-ATCTGGATCAGGAACCTGAA-3' and its reverse primer: 5'-CCTTTTTTGCCCCATAGGAA-3'; forward primer for COX-2:5'-GGAGAGACTATCAAGATA-GTGATC-3' and its reverse primer: 5'-ATGGTCAGTAGACTTT-TACAGCTC-3'; forward primer for β -actin (an internal standard): 5'-TGTGATGGTGGGAATGGGTCAG-3' and reverse primer: 5'-TTTGATGTCACGCACGATTTCC-3'). The solution for cDNA synthesis consisted of 11 μ L of RNA solution, 4 μ L of 5× RT buffer, 2 μ L of dNTP mixture (10 mM), 1 μ L of RNase inhibitor (10 U/ μ L), 1 μ L of Oligo(dT)20, and 1 μ L of Rever Tra Ace (reverese transcriptase enzyme) for a 20 μ L reaction. The conditions for cDNA synthesis were as follows: 42 °C for 20 min, 99 °C for 5 min, and 4 °C for 5 min. After that, 1/10 the volume (2 μ L) of the cDNA product was further used for PCR. The PCR mixture consisted of 2 μ L of RT reaction mixture (cDNA product): 85 μ L of sterilized water, 10 μ L of 10× PCR buffer, 1 μ L of forward primer (10 pmol/ μ L), 1 μ L of reverse primer (10 pmol/ μ L), and 1 μ L of KOD Dash (polymerase enzyme) for a final volume of 100 μ L. The conditions for PCR were as follows: denaturation at 94 °C for 1 min, 98 °C for 30 s, 55 °C for 30 s, and 74 °C for 1 min (30 cycles). The PCR products were analyzed in 1.2% agarose gel electrophoresis and visualized by SYBR safe staining and UV irradiation under a wavelength of 312 nm.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnat-prod.6b00730.

HMBC correlations of compounds 1–4 and 8 (PDF) X-ray data of 1 (CIF) X-ray data of 4a (CIF) X-ray data of 8a (CIF) ¹H and ¹³C NMR spectroscopic data of 1a, 2a, and 4a in CDCl₃ (PDF) ¹H and ¹³C NMR spectra of compounds 1–9; 2D NMR spectra of 1, 4, and 8 (PDF)

AUTHOR INFORMATION

Corresponding Author

*Tel: (662) 319-0931. Fax: (662) 319-1900. E-mail: somyote_ s@yahoo.com; s_somyote@ru.ac.th.

ORCID 0

Somyote Sutthivaiyakit: 0000-0002-3249-1380

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the Thailand Research Fund (BRG5580012) and Ramkhamhaeng University for financial support. C.S. acknowledges the Royal Golden Jubilee Ph.D. Program, Thailand Research Fund, and the Center of Excellence for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education, the Ministry of Education, for a scholarship. P.K. gratefully acknowledges the support from Mahidol University and the Office of the Higher Education Commission under the National Research Universities Initiative. We acknowledge Mr. M. Taegyong, Mr. S. Singha, Miss S. Kruakaew, and the late Mr. W. Komkhunthot for technical assistance.

Journal of Natural Products

REFERENCES

- (1) Smitinand, T. *Thai Plant Names*, Revised ed.; BKF Forest Herbarium: Bangkok, 2014; p 302.
- (2) http://www.phargarden.com/main.php?action=viewpage&pid= 50 (in Thai, March 2016).
- (3) Baas, W. J.; van Berkel, I. E. M.; Versluis, C.; Heerma, W.; Kreyenbroek, M. N. *Phytochemistry* **1992**, *31* (6), 2073–2078.

(4) Abe, F.; Fujishima, H.; Iwase, Y.; Yamauchi, T.; Kinjo, K.; Yaga, S. *Chem. Pharm. Bull.* **1999**, 47 (8), 1128–1133.

(5) Yoshikawa, K.; Nishino, H.; Arihara, S.; Chang, H. – C.; Wang, J. – D. J. Nat. Prod. 2000, 63, 146–148.

(6) Bass, W. J. Phytochemistry 1983, 22 (12), 2809-2812.

(7) Baas, W. J.; van Berkel, I. E. M. Phytochemistry **1991**, 30 (5), 1625–1628.

(8) Sadhu, S. K.; Khatun, A.; Ohtsuki, T.; Ishibashi, M. Planta Med. 2008, 74, 760–763.

(9) Bhattacharyya, J.; Barros, C. B. Phytochemistry 1986, 25, 274–276.

(10) Mahato, S. B.; Kundu, A. P. Phytochemistry **1994**, 37, 1517–1575.

(11) Razdan, T. K.; Qadri, B.; Harkar, S.; Waight, E. S. *Phytochemistry* **1987**, *26*, 2063–2069.

(12) (a) Fonseca, S. F.; Campello, J. D. P.; Barat, L. E. S.; Ruveda, E. *Phytochemistry* **1978**, *17*, 499–502. (b) Achenbach, H.; Waibel, R.;

Addae-Mensah, I. Phytochemistry 1983, 22, 749–753. (c) Xie, L.-H.;

Akao, T.; Hamasaki, K.; Deyama, D.; Hattori, M. Chem. Pharm. Bull. 2003, 51, 508-515.

(13) Tsukamoto, S.; Kaneko, K.; Hayashi, K. Chem. Pharm. Bull. 1989, 37, 637-641.

(14) (a) Perone, A.; Capasso, A.; Festa, M.; Kemertelidze, E.; Pizza,

C.; Skhirtlade, A.; Piacente, S. Fitoterapia 2012, 83, 554-562.

(b) Tschesche, R.; Bruegmann, G. *Tetrahedron* **1964**, *20*, 1469–1475. (c) Liedtke, S.; Wichtl, M. *Pharmazie* **1997**, *52*, 79–80.

(15) Zhao, M.; Bai, L.; Toki, A.; Hasegawa, R.; Sakai, J.; Hasegawa, T.; Ogura, H.; Kataoka, T.; Bai, Y.; Ando, M.; Hirose, K.; Ando, M. *Chem. Pharm. Bull.* **2011**, *59*, 371–377.

(16) Premprasert, C.; Tewtrakul, S.; Plubrukarn, A.; Wungsintaweekul, J. J. Nat. Med. 2013, 67, 174–181.

(17) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. **1999**, 32, 115–119.

(18) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.